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Empirical results suggest the need of time-inhomogeneous
models in order to calibrate over several maturities

CGMY’07 use processes with characteristic triplet
(b(t), 0, k(t, z)dz),

k(t, z) = tγα−1 e
−M

|z|
tγ

|z|1+α ,

γ ∈ (0, 1), M > 1, α ∈ (0, 2) and t ∈ (0, T ).

Degenerate diffusion models with generators of the form:

A(t)φ(x) = tγb⊤∇φ(x) + tγ
1

2
tr[ΣD2φ(x)]
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Let (Ω,F ,F,P) be a complete filtered probability space. An
adapted càdlàg stochastic process (X(t))0≤t≤T is a
time-inhomogeneous Lévy process if

(i) X has independent increments
(ii) ∀t ∈ [0, T ], we have

E[ei(u,X(t))] = exp
(

∫ t

0

(i(u, b(s))−
1

2
(u,Σ(s)u)

+

∫

Rd

(ei(u,z) − 1− i(u, z)1|z|<1)ν(s, dz)
)

ds

b(s) ∈ R
d, Σ(s) ∈ R

d×d symmetric, positive semidefinite
ν(s, dz) is a Lévy measure on R

d
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b(s) ∈ R
d, Σ(s) ∈ R
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We further assume
∫ T

0

(

|b(s)|+ ‖Σ(s)‖+

∫

Rd

(1 ∧ |z|
2
)ν(s, dz)

)

ds < ∞
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(ei(u,z) − 1− i(u, z)1|z|<1)ν(s, dz)
)

ds

b(s) ∈ R
d, Σ(s) ∈ R

d×d symmetric, positive semidefinite
ν(s, dz) is a Lévy measure on R

d

We further assume
∫ T

0

(

|b(s)|+ ‖Σ(s)‖+

∫

Rd

(1 ∧ |z|
2
)ν(s, dz)

)

ds < ∞

For properties of time-inhomogeneous Lévy processes we
refer, for example, to the dissertations of W. Kluge’05 and
K.Glau’11.
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Consider the following model problem:

∂tu− tγLu = f on (0, T ]×D,

u(0) = g on {0} ×D and u|∂D = 0,

where γ ∈ (−1, 1), L is self-adjoint, L ∈ L(V, V ∗), V = H1
0 (D)

such that

−(Lu, u) ≥ C ‖u‖
2
V .
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Consider the following model problem:

∂tu− tγLu = f on (0, T ]×D,

u(0) = g on {0} ×D and u|∂D = 0,

where γ ∈ (−1, 1), L is self-adjoint, L ∈ L(V, V ∗), V = H1
0 (D)

such that

−(Lu, u) ≥ C ‖u‖
2
V .

Main Challanges:

Well-posedness (weighted spaces needed)

Discretization in time (classical time-marching schemes not
applicable)

Discretization in space due to possibly high-dimensional
structure
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BB-Conditions I
Let Hilbert spaces X, Y and the bilinear form
B(·, ·) : X × Y → R be given, then the BB-conditions read

inf
06=u∈X

sup
06=v∈Y

B(u, v)

‖u‖X ‖v‖Y
> 0, (1)
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B(·, ·) : X × Y → R be given, then the BB-conditions read

inf
06=u∈X

sup
06=v∈Y

B(u, v)

‖u‖X ‖v‖Y
> 0, (1)

∀ 0 6= v ∈ Y : sup
u∈X

B(u, v) > 0 (2)

and

sup
06=u∈X,06=v∈Y

|B(u, v)|

‖u‖X ‖v‖Y
< ∞. (3)
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BB-Conditions II

Theorem
Let the bilinear form B(·, ·) : X × Y → R satisfy (1)-(3), then the
problem: find u ∈ X such that

B(u, v) = f(v), ∀v ∈ Y, (4)

admits a unique solution with ‖u‖2X ≤ C ‖f‖2Y ∗ for f ∈ Y ∗ and
C > 0.
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BB-Conditions II

Theorem
Let the bilinear form B(·, ·) : X × Y → R satisfy (1)-(3), then the
problem: find u ∈ X such that

B(u, v) = f(v), ∀v ∈ Y, (4)

admits a unique solution with ‖u‖2X ≤ C ‖f‖2Y ∗ for f ∈ Y ∗ and
C > 0.

In our case

B(u, v) =
∫ T
0 ((u̇, v) + tγa(u, v)) dt, a(u, v) = (Lu, v)
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BB-Conditions III
For V := H1

0 (D), I = (0, 1) and

L2
tγ (I) := C∞(0, 1)

‖·‖
L2
tγ

(I) , ‖u‖2L2
tγ

(I) :=

∫

I
u2tγ dt.
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0 (D), I = (0, 1) and

L2
tγ (I) := C∞(0, 1)

‖·‖
L2
tγ

(I) , ‖u‖2L2
tγ

(I) :=

∫

I
u2tγ dt.

We have B(·, ·) : X(0 × Y → R for X and Y given as

X := H1
t−γ (I;V

∗) ∩ L2
tγ (I;V )

∼=
(

H1
t−γ (I)⊗ V ∗

)

∩
(

L2
tγ (I)⊗ V

)

,

Y := L2
tγ (I;V ) ∼= L2

tγ (I)⊗ V,

X(0 := {w ∈ X : w(0, ·) = 0 in V ∗}.
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BB-Conditions III
For V := H1

0 (D), I = (0, 1) and
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tγ (I) := C∞(0, 1)

‖·‖
L2
tγ

(I) , ‖u‖2L2
tγ

(I) :=

∫

I
u2tγ dt.

We have B(·, ·) : X(0 × Y → R for X and Y given as

X := H1
t−γ (I;V

∗) ∩ L2
tγ (I;V )

∼=
(

H1
t−γ (I)⊗ V ∗

)

∩
(

L2
tγ (I)⊗ V

)

,

Y := L2
tγ (I;V ) ∼= L2

tγ (I)⊗ V,

X(0 := {w ∈ X : w(0, ·) = 0 in V ∗}.

Proof see [OR 2012].:
Eigenfunction expansion of the diffusion operator
Consideration of the arising systems of ODEs
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Discretization

We discretize the space-time domain using appropriate
tensor products of wavelet functions.
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Main advantage: They form Riesz bases of the
corresponding function spaces allowing for efficient
preconditioning.
Main drawback: Possibly hard to construct and to
implement.
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Discretization

We discretize the space-time domain using appropriate
tensor products of wavelet functions.

Main advantage: They form Riesz bases of the
corresponding function spaces allowing for efficient
preconditioning.
Main drawback: Possibly hard to construct and to
implement.

The temporal basis is given as Θ = {θλ : λ ∈ ∇Θ} and
spatial basis as Σ = {χµ : µ ∈ ∇Σ} =

⊗d
i=1Σi.
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Solution process
The bi-infinite system corresponding to B(u, v) = f(v) reads

Bu = f , (5)

B =

[

(Θ′,Θ)⊗ (Σ,Σ) +

∫

I
tγa(Θ ⊗ Σ,Θ⊗Σ)dt

]

×
(

1t ⊗ ‖Σ‖−1
V

)

‖Θ⊗ Σ‖−1
X

f =

∫

I
〈f,Θ⊗ [Σ]V 〉 dt.
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Solution process
The bi-infinite system corresponding to B(u, v) = f(v) reads

Bu = f , (5)

B =

[

(Θ′,Θ)⊗ (Σ,Σ) +

∫

I
tγa(Θ ⊗ Σ,Θ⊗Σ)dt

]

×
(

1t ⊗ ‖Σ‖−1
V

)

‖Θ⊗ Σ‖−1
X

f =

∫

I
〈f,Θ⊗ [Σ]V 〉 dt.

Optimal (x, t)-adaptive algorithms for the approximate
solution of (5) available, cf. [Ch. Schwab & R. Stevenson
2008], [OR 2012].
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Discontinuous Galerkin timestepping I
M = {Im}M+1

m=1 , M ∈ N, partition of (0, T ), r ∈ N
M+1
0 dG orders.

dG-FEM: U ∈ Vr(M;V ) := {u : J → V : u|Im ∈
Prm(Im, V ),m = 1, . . . ,M + 1}, such that for all v ∈ Vr(M;V )
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Discontinuous Galerkin timestepping I
M = {Im}M+1

m=1 , M ∈ N, partition of (0, T ), r ∈ N
M+1
0 dG orders.

dG-FEM: U ∈ Vr(M;V ) := {u : J → V : u|Im ∈
Prm(Im, V ),m = 1, . . . ,M + 1}, such that for all v ∈ Vr(M;V )

BdG(U, v) = FdG(v), where

BdG(U, v) =
M
∑

m=1

∫

Im

(U ′, v)L2(D) dt+
M
∑

m=1

∫

Im

tγa(U, v) dt

+

M
∑

m=2

([U ]m−1, v
+
m−1)L2(D) + (U+

0 , v+0 )L2(D)

FdG = (u0, v
+
0 )L2(D) +

M
∑

m=1

∫

Im

(f(t), v)V ∗,V dt.
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Geometric Timesteps/ linear order vector
A geometric time partition MM,q = {Im}M+1

m=1 with grading
factor q ∈ (0, 1) and M +1 time steps Im, m = 1, . . . ,M +1
is given by the nodes

t0 = 0, tm = TqM+1−m, 1 ≤ m ≤ M + 1.
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Geometric Timesteps/ linear order vector
A geometric time partition MM,q = {Im}M+1

m=1 with grading
factor q ∈ (0, 1) and M +1 time steps Im, m = 1, . . . ,M +1
is given by the nodes

t0 = 0, tm = TqM+1−m, 1 ≤ m ≤ M + 1.

A polynomial degreee vector r = {rm}M+1
m=1 is called linear

with slope ν > 0 on the geometric partition MM,q on (0, T )
of

r1 = 0 and rm = ⌊νm⌋ for 2 ≤ m ≤ M + 1.

O. Reichmann June 13, 2013 p. 12
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Discontinuous Galerkin timestepping II

Theorem (V. Kazeev, OR, Ch. Schwab 2012)
Consider the time-inhomogeneous forward problem on
J = (0, 1) with initial data u0 ∈ Hθ for some θ ∈ (0, 1] and right
hand side f . Discretize in time using dGFEM on a geometric
partition MM,q. Then for all degree vectors r = (r1, . . . , rM )
with slope ν ≥ ν0 > 0 the semidiscrete dGFEM solution U

obtained in Vr(MM,q, V ) converges exponentially w.r. to N , No.
of "time-DOFs“:

‖u− U‖L2

tγ/2
(J ;V ) ≤ C(q, ν0) exp(−bN−1/2).
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Curse of dimension
Spatial discretization using finite elements or finite
differences suffers from the "curse of dimension"
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Curse of dimension
Spatial discretization using finite elements or finite
differences suffers from the "curse of dimension"
Sparse grids can be used

Figure: Sparse grid in two dimensions
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TT-format I
Here we use the TT/QTT formats developed by Oseledets
and Tyrtyshnikov.
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TT-format I
Here we use the TT/QTT formats developed by Oseledets
and Tyrtyshnikov.
We say that A ∈ R

n1×...×nd , nk ≥ 1, k ∈ {1, . . . , d}, d ≥ 1 is
represented in the TT-format if

A(i1, . . . , id) = G1(i1)G2(i2) . . . Gd(id),

where Gk(ik) ∈ R
rk−1×rk .
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n1×...×nd , nk ≥ 1, k ∈ {1, . . . , d}, d ≥ 1 is
represented in the TT-format if

A(i1, . . . , id) = G1(i1)G2(i2) . . . Gd(id),

where Gk(ik) ∈ R
rk−1×rk .

Storage cost: O(dr2n), where nk ≤ n and rk ≤ r,
k = 1, . . . , d
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TT-format I
Here we use the TT/QTT formats developed by Oseledets
and Tyrtyshnikov.
We say that A ∈ R

n1×...×nd , nk ≥ 1, k ∈ {1, . . . , d}, d ≥ 1 is
represented in the TT-format if

A(i1, . . . , id) = G1(i1)G2(i2) . . . Gd(id),

where Gk(ik) ∈ R
rk−1×rk .

Storage cost: O(dr2n), where nk ≤ n and rk ≤ r,
k = 1, . . . , d

Operations such as addition, matrix-matrix multiplication,
matrix-vector multiplication available in the format
Solver for linear equations available based on alternating
least squares
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TT-format II
Certain finite element discretizations of reaction-diffusion
equations under certain assumptions on the coefficients
can be shown to admit a TT-representation with "small" r.
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TT-format II
Certain finite element discretizations of reaction-diffusion
equations under certain assumptions on the coefficients
can be shown to admit a TT-representation with "small" r.
Non-uniform meshes are required in order to resolve
incompatible initial data appropriately, the solution has
boundary layers for small times t.
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TT-format II
Certain finite element discretizations of reaction-diffusion
equations under certain assumptions on the coefficients
can be shown to admit a TT-representation with "small" r.
Non-uniform meshes are required in order to resolve
incompatible initial data appropriately, the solution has
boundary layers for small times t.
Shishkin meshes employed here.

0 ρ 1− ρ 1

h̃ h h̃

Figure: A Shishkin mesh in 1D. The meshwidths are h and h̃, the
width of the boundary zone is ρ.
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Test problem
Find u ∈ X such that for all v ∈ Y,

∫

J

[

〈u̇(t), v(t)〉L2(D) + tγ 〈∇u(t),∇v(t)〉L2(D)

]

dt = 0

u(0) = u0,

J = (0, 1], D = (0, 1)d, Y = L2
tγ/2

(

J ;H1
0 (D)

)

,
X = H1

t−γ/2

(

J ;H−1 (D)
)

∩ L2
tγ/2

(

J ;H1
0 (D)

)

.
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Test problem
Find u ∈ X such that for all v ∈ Y,

∫

J

[

〈u̇(t), v(t)〉L2(D) + tγ 〈∇u(t),∇v(t)〉L2(D)

]

dt = 0

u(0) = u0,

J = (0, 1], D = (0, 1)d, Y = L2
tγ/2

(

J ;H1
0 (D)

)

,
X = H1

t−γ/2

(

J ;H−1 (D)
)

∩ L2
tγ/2

(

J ;H1
0 (D)

)

.
Compatible initial data:

u0 (x1, . . . , xd) =

d
∏

k=1

sinπxk for xk ∈ (0, 1), 1 ≤ k ≤ d.
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Test problem
Find u ∈ X such that for all v ∈ Y,

∫

J

[

〈u̇(t), v(t)〉L2(D) + tγ 〈∇u(t),∇v(t)〉L2(D)

]

dt = 0

u(0) = u0,

J = (0, 1], D = (0, 1)d, Y = L2
tγ/2

(

J ;H1
0 (D)

)

,
X = H1

t−γ/2

(

J ;H−1 (D)
)

∩ L2
tγ/2

(

J ;H1
0 (D)

)

.
Compatible initial data:

u0 (x1, . . . , xd) =

d
∏

k=1

sinπxk for xk ∈ (0, 1), 1 ≤ k ≤ d.

Incompatible initial data:

u0 (x1, . . . , xd) = 1 for xk ∈ (0, 1), 1 ≤ k ≤ d.
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Compatible initial conditions

γ = −1
2 γ = 0 γ = 1

2
M = 30 M = 10 M = 10

d err

[

uδM
]

time err

[

uδM
]

time err

[

uδM
]

time
5 1.1 · 10−8 12.2 8.8 · 10−10 3.9 1.0 · 10−11 4.1
10 3.1 · 10−8 24.2 1.4 · 10−9 7.5 6.9 · 10−11 7.5
20 5.6 · 10−8 47.4 2.4 · 10−9 15.2 1.7 · 10−10 14.6
30 9.0 · 10−8 71.8 3.1 · 10−9 23.1 1.9 · 10−10 21.6
40 1.9 · 10−7 96.4 3.7 · 10−9 31.6 2.8 · 10−10 29.3

Table: Compatible initial data in d dimensions: relative L2-error
(err

[

uδ
M

]

) at t = T and computation times in seconds for q = 0.5.
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Incompatible initial conditions: time discretization
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(a) Relative L
2-error vs.
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Figure: Comparison of DG-discretizations in time
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Incompatible initial conditions: space discretization

10
−4

10
−2

10
0

10
−4

10
−3

10
−2

 

 

d=1
d=2
d=4
d=8
d=10
d=12
d=14
d=16
d=18

(a) Relative L
2-error vs.

tm

2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5
x 10

−3

2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

600

700

800

900

(b) relative L
2-error (black)

and total computation time
(gray) vs. d

Figure: Multivariate problem with incompatible initial data
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Conclusion
Time-degenerate models using weighted spaces in time
and a space-time approach were considered.

CG discretizations in space-time were analyzed.

DG in time for time-inhomogeneous models was
discussed.

Spatial discretization using the TT-format was outlined.

Shishkin meshes for the resolution of boundary layers
were used.
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