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Introduction

m Empirical results suggest the need of time-inhomogeneous
models in order to calibrate over several maturities

B CGMY’07 use processes with characteristic triplet
(b(t), 0, k(t, 2)dz),

Lzl
7

_ pya—1€_
k(t,z) =t W’

v€(0,1), M >1,a € (0,2)and ¢t € (0,T).
m Degenerate diffusion models with generators of the form:

AD)d(x) = ObTVo(x) + ﬂ%tr[zp%(x)]
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Introduction

m Let (2, F,F,P) be a complete filtered probability space. An
adapted cadlag stochastic process (X (t))o<i<7 IS @
time-inhomogeneous Lévy process if

(i) X has independent increments
(i) vt €10,T], we have .

E[ei(u,X(t))] = exp (/0 (z(u, b(S)) - %('L% E(S)u)

+/ (ei("’z) —1- i(u,z)ﬂ‘zkl)l/(s,dz))ds
R

W j(s) € R?, ¥(s) € R4*4 symmetric, positive semidefinite
W 1 (s,dz) is a Lévy measure on R?
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Introduction

m Let (2, F,F,P) be a complete filtered probability space. An
adapted cadlag stochastic process (X (t))o<i<7 IS @
time-inhomogeneous Lévy process if

(i) X has independent increments
(i) vt €10,T], we have .

E[ei(u,X(t))] = exp (/0 (z(u, b(S)) - %('L% Z(S)u)

+/ (ei("’z) —1- i(u,z)ﬂ‘zkl)y(s,dz))ds
R

W j(s) € R?, ¥(s) € R4*4 symmetric, positive semidefinite
W 1 (s,dz) is a Lévy measure on R?
W We further assume

/OT <|b(8)| +[12(s)] + /]Rd(l A |z|2)y(3,dz)> ds < oo

B For properties of time-inhomogeneous Lévy processes we
refer, for example, to the dissertations of W. Kluge’'05 and
K.Glau'11.
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Introduction

M Consider the following model problem:

Ou—t"Lu = fon(0,T] x D,
u(0) = gon{0} x D andu|sp =0,

where v € (—1,1), L is self-adjoint, L € L(V,V*), V = H}(D)
such that
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Introduction

M Consider the following model problem:

Ou—t"Lu = fon(0,T] x D,
u(0) = gon{0} x D andu|sp =0,

where v € (—1,1), L is self-adjoint, L € L(V,V*), V = H}(D)
such that

2
—(Lu,u) > Cllully -

Main Challanges:
B Well-posedness (weighted spaces needed)

M Discretization in time (classical time-marching schemes not
applicable)

M Discretization in space due to possibly high-dimensional
structure
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Well-posedness

BB-Conditions |

Let Hilbert spaces X, Y and the bilinear form
B(-,-) : X x Y — R be given, then the BB-conditions read

inf  sup B, v)
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Well-posedness

BB-Conditions |

Let Hilbert spaces X, Y and the bilinear form
B(-,-) : X x Y — R be given, then the BB-conditions read

inf  sup B, v)

T S, 1)
0£ueX vy [|ull x [[v]ly

VO#wveY: sup B(u,v) >0 (2)
ueX
and

ouex.0zvey llullx lvlly
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Well-posedness

BB-Conditions Il

Theorem
Let the bilinear form B(-,-) : X x Y — R satisfy (1)-(3), then the
problem: find v € X such that

B(u,v) = f(v), Yvey, 4)

admits a unique solution with ||ul|3% < C'||f||3. for f € Y* and
C > 0.
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Well-posedness

BB-Conditions Il

Theorem
Let the bilinear form B(-,-) : X x Y — R satisfy (1)-(3), then the
problem: find v € X such that

B(u,v) = f(v), Yvey, 4)

admits a unique solution with ||ul|3% < C'||f||3. for f € Y* and
C > 0.

In our case
® B(u,v) fo U, v) + tVa(u,v)) dt, a(u,v) = (Lu,v)
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Well-posedness

BB-Conditions Il
For V := H}(D), I = (0,1) and

(1) = TR0 O,y = [t an
¢ I
We have B(-,-) : Xy x Y — R for X and ) given as
X = HL(LV)NLL(LV)
~ (HL,(D)eV)n (LA eV),
Y = LA(ILV)=LE1) eV,
Xo = {wed w(0,)=0inV"}

Proof see [OR 2012].:
® Eigenfunction expansion of the diffusion operator
m Consideration of the arising systems of ODEs
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Time discretization

Discretization

m We discretize the space-time domain using appropriate
tensor products of wavelet functions.
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Time discretization

Discretization

m We discretize the space-time domain using appropriate
tensor products of wavelet functions.

B Main advantage: They form Riesz bases of the
corresponding function spaces allowing for efficient
preconditioning.

W Main drawback: Possibly hard to construct and to
implement.

® The temporal basis is given as © = {0, : A € Vg} and
spatial basis as ¥ = {x,, : € Vs} = @7, .
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Time discretization

Solution process
The bi-infinite system corresponding to B(u,v) = f(v) reads
Bu = f, (5)

B = [(@',@)@(E,E)+/t7a(@®2,@®2)dt
I

< (Lo Sly') oo D]y

£ /I(f,®® =)y dt.
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Time discretization

Solution process
The bi-infinite system corresponding to B(u,v) = f(v) reads
Bu = f, (5)

B = [(@’,@)@(E,E)+/t7a(@®2,@®2)dt
I

< (Lo Sly') oo D]y
P = [es
I
® Optimal (x, t)-adaptive algorithms for the approximate

solution of (5) available, cf. [Ch. Schwab & R. Stevenson
2008], [OR 2012].
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Time discretization

Discontinuous Galerkin timestepping |
M = {I,}F M € N, partition of (0,7), r € N)*! dG orders.

m=1"

dG-FEM: U e VE(M; V) :i={u:J =V :u;,, €
P (I, V),m =1,...,M + 1}, such that for all v € VZ(M; V)
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Time discretization

Discontinuous Galerkin timestepping |
M = {I,}F M € N, partition of (0,7), r € N)*! dG orders.

m=1"1
dG-FEM: U e VE(M; V) :i={u:J =V :u;,, €
P (I, V),m =1,...,M + 1}, such that for all v € VZ(M; V)

Bac(U,v) = Fag(v), where

M M

Bic(U,v) = > /1 (U, v)r2pydt + > /I a(U,v) dt
m=1""m m=1""'m
M

+ (Ulm=1,vm_1) 2oy + (U 0 ) 12Dy

m=2

M
Fae = (UO,UJ)B(DH—Z/I (f(),v)y+ v dt.
m=1Y"'m
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Time discretization

Geometric Timesteps/ linear order vector

® A geometric time partition My, = {I,,,}**] with grading

factor g € (0,1) and M + 1 time steps I,,,, m=1,..., M +1
is given by the nodes

to=0, tm=T¢"" ™ 1<m<M+1.
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Time discretization

Geometric Timesteps/ linear order vector

® A geometric time partition My, = {I,,,}**] with grading

factor ¢ € (0,1) and M + 1 time steps I,,,, m=1,...,. M +1
is given by the nodes

to=0, tm=T¢"" ™ 1<m<M+1.

® A polynomial degreee vector r = {rm}%ill is called linear

with slope v > 0 on the geometric partition My, on (0,T)
of

rir=0andr,, =|vm]for2<m< M +1.
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Time discretization

Discontinuous Galerkin timestepping Il

Theorem (V. Kazeev, OR, Ch. Schwab 2012)

Consider the time-inhomogeneous forward problem on

J = (0, 1) with initial data uy € Hy for some 6 € (0, 1] and right
hand side f. Discretize in time using dGFEM on a geometric
partition M, ,. Then for all degree vectors r = (rq,...,7ar)
with slope v > vy > 0 the semidiscrete dGFEM solution U
obtained in VE(M 4, V') converges exponentially w.r. to N, No.
of "time-DOFs*:

l|u— UHL2 L:v) < Clg, v0) exp(— bN"1/2).
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Space discretization

Curse of dimension

B Spatial discretization using finite elements or finite
differences suffers from the "curse of dimension"
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Space discretization

Curse of dimension

B Spatial discretization using finite elements or finite
differences suffers from the "curse of dimension"

m Sparse grids can be used
e AN AR

:

Figure: Sparse grid in two dimensions
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Space discretization

TT-format |

m Here we use the TT/QTT formats developed by Oseledets
and Tyrtyshnikov.

O. Reichmann June 13, 2013



Space discretization

TT-format |

m Here we use the TT/QTT formats developed by Oseledets
and Tyrtyshnikov.

mWe say that A € R">*"d np > 1, ke{l,...,d},d>1is
represented in the TT-format if

Ay, ...y ig) = G1(i1)Ga(i2) . . . Ga(iq),

where Gy (i) € RM=1%"k,

O. Reichmann June 13, 2013



Space discretization

TT-format |

m Here we use the TT/QTT formats developed by Oseledets
and Tyrtyshnikov.

mWe say that A € R">*"d np > 1, ke{l,...,d},d>1is
represented in the TT-format if

Ay, ...y ig) = G1(i1)Ga(i2) . . . Ga(iq),

where Gy (i) € RM=1%"k,

m Storage cost: O(dr?n), where n;, <n andr, < r,
k=1,....d

O. Reichmann June 13, 2013



Space discretization

TT-format |

m Here we use the TT/QTT formats developed by Oseledets
and Tyrtyshnikov.

mWe say that A € R">*"d np > 1, ke{l,...,d},d>1is
represented in the TT-format if

Ay, ...y ig) = G1(i1)Ga(i2) . . . Ga(iq),

where Gk(’tk) € RMe=1%Tk,

m Storage cost: O(dr?n), where n;, <n andr, < r,
k=1,...,d

m Operations such as addition, matrix-matrix multiplication,
matrix-vector multiplication available in the format

m Solver for linear equations available based on alternating
least squares
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Space discretization

TT-format Il

| Certain finite element discretizations of reaction-diffusion
equations under certain assumptions on the coefficients
can be shown to admit a TT-representation with "small” r.
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| Certain finite element discretizations of reaction-diffusion
equations under certain assumptions on the coefficients
can be shown to admit a TT-representation with "small” r.

® Non-uniform meshes are required in order to resolve
incompatible initial data appropriately, the solution has
boundary layers for small times ¢.
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Space discretization

TT-format Il

| Certain finite element discretizations of reaction-diffusion
equations under certain assumptions on the coefficients
can be shown to admit a TT-representation with "small” r.

® Non-uniform meshes are required in order to resolve
incompatible initial data appropriately, the solution has
boundary layers for small times ¢.

m Shishkin meshes employed here.

h h

h
AR KOOI

0 P 1—-p 1

Figure: A Shishkin mesh in 1D. The meshwidths are h and £, the
width of the boundary zone is p.
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Numerical examples

Test problem
Find v € X such that for all v € ),

/J [((2),00) g2y + 17 (Vu(t), V(1)) | e = 0

u(0) = up,
J = (07 1]’ D = (07 1)d! Y= L?’y/2 (*LH(% (D>)1
X = fftl_w2 (J;ff_1 (D)) HL;M (J; H& (D))
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Test problem
Find v € X such that for all v € ),

/J [((2),00) g2y + 17 (Vu(t), V(1)) | e = 0

u(0) = up,
J = (07 1]’ D = (07 1)d’ Y= L?"//2 (']’ H(% (D>)’
X = Htl_v/2 (J;H1 (D)) n wa/z (J; Hj (D)).
m Compatible initial data:
d
ug (T1,...,2q) = Hsinmvk for zp€(0,1), 1<k<d.
k=1
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Numerical examples

Test problem
Find v € X such that for all v € ),

/J [((2),00) g2y + 17 (Vu(t), V(1)) | e = 0

u(0) = up,
J = (07 1]’ D = (07 1>d’ Y= L§7/2 (']’ H(% (D>)’
X = Htl_v/2 (J;H1 (D)) n wam (J; Hj (D)).
m Compatible initial data:
d
ug (T1,...,2q) = Hsinmvk for zp€(0,1), 1<k<d.
k=1

B Incompatible initial data:
ug (x1,...,2q) =1 for xz, €(0,1), 1<k<d.
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Numerical examples

Compatible initial conditions

=—3 7=0 8l
M =30 M =10 M =
d || err [uf\/j] time | err [uf\/j] time | err [u‘];w] time
5 11-1078% 122 [88-107Y 39 |[1.0-107" 4.1
10 | 3.1-1078 242 | 14-10° 75 |69-1071 75
20 || 5.6-107% 474 | 24-107° 152 | 1.7-1070 146
30/ 9.0-107% 71.8| 3.1-1072 231 ]19-10719 216
40 || 1.9-1077 964 | 3.7-1072 316 | 2.8-10719 293

Table: Compatible initial data in d dimensions: relative L2-error
(err [uj,]) at t = T and computation times in seconds for ¢ = 0.5.
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Numerical examples

-1
10 —0— 0=0.5000, M=10
—O— 0=0.5000, M=20
12| B 0=05000, M=30 N
0 —%— 0=0.2315, M=10 ¢ 10
——%—— 0=0.1072, M=10 |
-3
10
-4
10 i
10
-5
10
-6
10
0
10
-7
10
-8
10
-10 -8 -6 -4 -2 0 -10 -8 -6 -4 -2 0
10 10 10 10 10 10 10 10 10 10 10 10

(a) Relative L*-error vs. (b) Computation time vs.
tm tm

Figure: Comparison of DG-discretizations in time
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Numerical examples

Incompatible initial conditions: space discretization

1072 x10°
25 00
800
2 700
-3
10
600
15
500
400
4 1
10
300
05 200
100
-4 -2 0 0 o
10 10 10 2 4 6 8 10 12 14 16 18
(@) Relative LZ-error vs. (b) relative L2-error (black)
tm and total computation time
(gray) vs. d

Figure: Multivariate problem with incompatible initial data
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Numerical examples

Conclusion
B Time-degenerate models using weighted spaces in time
and a space-time approach were considered.
m CG discretizations in space-time were analyzed.

m DG in time for time-inhomogeneous models was
discussed.

m Spatial discretization using the TT-format was outlined.

m Shishkin meshes for the resolution of boundary layers
were used.

O. Reichmann June 13, 2013



Numerical examples

References:

m Low-rank tensor structure of linear diffusion operators in
the TT and QTT formats, with V. Kazeev and Ch. Schwab,
LAA, 2013.

m hp-DG-QTT solution of high-dimensional degenerate
diffusion equations, with V. Kazeev and Ch. Schwab, 2012.

m Optimal space-time adaptive wavelet methods for
degenerate parabolic PDEs, Num. Math. 2012.
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Dziekuje bardzo!!
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Numerical examples

References:

m Low-rank tensor structure of linear diffusion operators in
the TT and QTT formats, with V. Kazeev and Ch. Schwab,
LAA, 2013.

m hp-DG-QTT solution of high-dimensional degenerate
diffusion equations, with V. Kazeev and Ch. Schwab, 2012.
m Optimal space-time adaptive wavelet methods for
degenerate parabolic PDEs, Num. Math. 2012.
Dziekuje bardzo!!
Thank you very much!!

O. Reichmann June 13, 2013
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