ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Efficient option pricing for time-inhomogeneous processes
O. Reichmann
joint work with V. Kazeev and Ch. Schwab
Department of Mathematics, ETH Zürich
AMaMeF 2013, June 10-15

Introduction

Well-posedness

Time discretization

Space discretization

Numerical examples

■ Empirical results suggest the need of time-inhomogeneous models in order to calibrate over several maturities

■ Empirical results suggest the need of time-inhomogeneous models in order to calibrate over several maturities

■ CGMY'07 use processes with characteristic triplet $(b(t), 0, k(t, z) d z)$,

$$
k(t, z)=t^{\gamma \alpha-1} \frac{e^{-M \frac{|z|}{t^{t}}}}{|z|^{1+\alpha}}
$$

$$
\gamma \in(0,1), M>1, \alpha \in(0,2) \text { and } t \in(0, T)
$$

■ Empirical results suggest the need of time-inhomogeneous models in order to calibrate over several maturities

■ CGMY'07 use processes with characteristic triplet $(b(t), 0, k(t, z) d z)$,

$$
k(t, z)=t^{\gamma \alpha-1} \frac{e^{-M \frac{|z|}{t^{\gamma}}}}{|z|^{1+\alpha}}
$$

$$
\gamma \in(0,1), M>1, \alpha \in(0,2) \text { and } t \in(0, T)
$$

\square Degenerate diffusion models with generators of the form:

$$
\mathcal{A}(t) \phi(x)=t^{\gamma} b^{\top} \nabla \phi(x)+t^{\gamma} \frac{1}{2} \operatorname{tr}\left[\Sigma D^{2} \phi(x)\right]
$$

\square Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be a complete filtered probability space. An adapted càdlàg stochastic process $(X(t))_{0 \leq t \leq T}$ is a time-inhomogeneous Lévy process if
(i) X has independent increments
(ii) $\forall t \in[0, T]$, we have

$$
\begin{aligned}
\mathbb{E}\left[e^{i(u, X(t))}\right]= & \exp \left(\int _ { 0 } ^ { t } \left(i(u, b(s))-\frac{1}{2}(u, \Sigma(s) u)\right.\right. \\
& \left.+\int_{\mathbb{R}^{d}}\left(e^{i(u, z)}-1-i(u, z) \mathbb{1}_{|z|<1}\right) \nu(s, d z)\right) d s
\end{aligned}
$$

$\square b(s) \in \mathbb{R}^{d}, \Sigma(s) \in \mathbb{R}^{d \times d}$ symmetric, positive semidefinite
$\square \nu(s, d z)$ is a Lévy measure on \mathbb{R}^{d}
\square Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be a complete filtered probability space. An adapted càdlàg stochastic process $(X(t))_{0 \leq t \leq T}$ is a time-inhomogeneous Lévy process if
(i) X has independent increments
(ii) $\forall t \in[0, T]$, we have

$$
\begin{aligned}
\mathbb{E}\left[e^{i(u, X(t))}\right]= & \exp \left(\int _ { 0 } ^ { t } \left(i(u, b(s))-\frac{1}{2}(u, \Sigma(s) u)\right.\right. \\
& \left.+\int_{\mathbb{R}^{d}}\left(e^{i(u, z)}-1-i(u, z) \mathbb{1}_{|z|<1}\right) \nu(s, d z)\right) d s
\end{aligned}
$$

$\square b(s) \in \mathbb{R}^{d}, \Sigma(s) \in \mathbb{R}^{d \times d}$ symmetric, positive semidefinite
$\square \nu(s, d z)$ is a Lévy measure on \mathbb{R}^{d}

- We further assume

$$
\int_{0}^{T}\left(|b(s)|+\|\Sigma(s)\|+\int_{\mathbb{R}^{d}}\left(1 \wedge|z|^{2}\right) \nu(s, d z)\right) d s<\infty
$$

\square Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be a complete filtered probability space. An adapted càdlàg stochastic process $(X(t))_{0 \leq t \leq T}$ is a time-inhomogeneous Lévy process if
(i) X has independent increments
(ii) $\forall t \in[0, T]$, we have

$$
\begin{aligned}
\mathbb{E}\left[e^{i(u, X(t))}\right]= & \exp \left(\int _ { 0 } ^ { t } \left(i(u, b(s))-\frac{1}{2}(u, \Sigma(s) u)\right.\right. \\
& \left.+\int_{\mathbb{R}^{d}}\left(e^{i(u, z)}-1-i(u, z) \mathbb{1}_{|z|<1}\right) \nu(s, d z)\right) d s
\end{aligned}
$$

$\square b(s) \in \mathbb{R}^{d}, \Sigma(s) \in \mathbb{R}^{d \times d}$ symmetric, positive semidefinite
$\square \nu(s, d z)$ is a Lévy measure on \mathbb{R}^{d}

- We further assume

$$
\int_{0}^{T}\left(|b(s)|+\|\Sigma(s)\|+\int_{\mathbb{R}^{d}}\left(1 \wedge|z|^{2}\right) \nu(s, d z)\right) d s<\infty
$$

■ For properties of time-inhomogeneous Lévy processes we refer, for example, to the dissertations of W. Kluge'05 and K.Glau'11.
\square Consider the following model problem:

$$
\begin{aligned}
\partial_{t} u-t^{\gamma} L u & =f \text { on }(0, T] \times D \\
u(0) & =g \text { on }\{0\} \times D \text { and }\left.u\right|_{\partial D}=0,
\end{aligned}
$$

where $\gamma \in(-1,1), L$ is self-adjoint, $L \in \mathcal{L}\left(V, V^{*}\right), V=H_{0}^{1}(D)$ such that

$$
-(L u, u) \geq C\|u\|_{V}^{2}
$$

- Consider the following model problem:

$$
\begin{aligned}
\partial_{t} u-t^{\gamma} L u & =f \text { on }(0, T] \times D \\
u(0) & =g \text { on }\{0\} \times D \text { and }\left.u\right|_{\partial D}=0,
\end{aligned}
$$

where $\gamma \in(-1,1), L$ is self-adjoint, $L \in \mathcal{L}\left(V, V^{*}\right), V=H_{0}^{1}(D)$ such that

$$
-(L u, u) \geq C\|u\|_{V}^{2}
$$

Main Challanges:

\square Well-posedness (weighted spaces needed)

- Discretization in time (classical time-marching schemes not applicable)

■ Discretization in space due to possibly high-dimensional structure

BB-Conditions I

Let Hilbert spaces X, Y and the bilinear form $B(\cdot, \cdot): X \times Y \rightarrow \mathbb{R}$ be given, then the BB-conditions read

$$
\begin{equation*}
\inf _{0 \neq u \in X} \sup _{0 \neq v \in Y} \frac{B(u, v)}{\|u\|_{X}\|v\|_{Y}}>0 \tag{1}
\end{equation*}
$$

BB-Conditions

Let Hilbert spaces X, Y and the bilinear form $B(\cdot, \cdot): X \times Y \rightarrow \mathbb{R}$ be given, then the BB-conditions read

$$
\begin{align*}
& \inf _{0 \neq u \in X} \sup _{0 \neq v \in Y} \frac{B(u, v)}{\|u\|_{X}\|v\|_{Y}}>0 \tag{1}\\
& \forall 0 \neq v \in Y: \sup _{u \in X} B(u, v)>0 \tag{2}
\end{align*}
$$

BB-Conditions I

Let Hilbert spaces X, Y and the bilinear form $B(\cdot, \cdot): X \times Y \rightarrow \mathbb{R}$ be given, then the BB-conditions read

$$
\begin{align*}
& \inf _{0 \neq u \in X} \sup _{0 \neq v \in Y} \frac{B(u, v)}{\|u\|_{X}\|v\|_{Y}}>0 \tag{1}\\
& \forall 0 \neq v \in Y: \sup _{u \in X} B(u, v)>0 \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\sup _{0 \neq u \in X, 0 \neq v \in Y} \frac{|B(u, v)|}{\|u\|_{X}\|v\|_{Y}}<\infty \tag{3}
\end{equation*}
$$

BB-Conditions II

Theorem

Let the bilinear form $B(\cdot, \cdot): X \times Y \rightarrow \mathbb{R}$ satisfy (1)-(3), then the problem: find $u \in X$ such that

$$
\begin{equation*}
B(u, v)=f(v), \quad \forall v \in Y \tag{4}
\end{equation*}
$$

admits a unique solution with $\|u\|_{X}^{2} \leq C\|f\|_{Y^{*}}^{2}$ for $f \in Y^{*}$ and $C>0$.

BB-Conditions II

Theorem

Let the bilinear form $B(\cdot, \cdot): X \times Y \rightarrow \mathbb{R}$ satisfy (1)-(3), then the problem: find $u \in X$ such that

$$
\begin{equation*}
B(u, v)=f(v), \quad \forall v \in Y \tag{4}
\end{equation*}
$$

admits a unique solution with $\|u\|_{X}^{2} \leq C\|f\|_{Y^{*}}^{2}$ for $f \in Y^{*}$ and $C>0$.

In our case
$\square B(u, v)=\int_{0}^{T}\left((\dot{u}, v)+t^{\gamma} a(u, v)\right) d t, a(u, v)=(L u, v)$

BB-Conditions III

For $V:=H_{0}^{1}(D), I=(0,1)$ and

$$
L_{t \gamma}^{2}(I):=\overline{C^{\infty}(0,1)}\|\cdot\|_{L_{t \gamma}^{2}(I)}, \quad\|u\|_{L_{t \gamma}^{2}(I)}^{2}:=\int_{I} u^{2} t^{\gamma} d t .
$$

BB-Conditions III

For $V:=H_{0}^{1}(D), I=(0,1)$ and

We have $B(\cdot, \cdot): \mathcal{X}_{(0} \times \mathcal{Y} \rightarrow \mathbb{R}$ for \mathcal{X} and \mathcal{Y} given as

$$
\begin{aligned}
\mathcal{X} & :=H_{t^{-\gamma}}^{1}\left(I ; V^{*}\right) \cap L_{t \gamma}^{2}(I ; V) \\
& \left.\cong\left(H_{t^{-\gamma}}^{1} I\right) \otimes V^{*}\right) \cap\left(L_{t \gamma}^{2}(I) \otimes V\right), \\
\mathcal{Y} & :=L_{t_{\gamma}}^{2}(I ; V) \cong L_{t_{\gamma}}^{2}(I) \otimes V, \\
\mathcal{X}_{(0} & :=\left\{w \in \mathcal{X}: w(0, \cdot)=0 \text { in } V^{*}\right\} .
\end{aligned}
$$

BB-Conditions III

For $V:=H_{0}^{1}(D), I=(0,1)$ and

We have $B(\cdot, \cdot): \mathcal{X}_{(0} \times \mathcal{Y} \rightarrow \mathbb{R}$ for \mathcal{X} and \mathcal{Y} given as

$$
\begin{aligned}
\mathcal{X} & :=H_{t^{-\gamma}}^{1}\left(I ; V^{*}\right) \cap L_{t^{\gamma}}^{2}(I ; V) \\
& \cong\left(H_{t^{-\gamma}}^{1}(I) \otimes V^{*}\right) \cap\left(L_{t^{\gamma}}^{2}(I) \otimes V\right), \\
\mathcal{Y} & :=L_{t^{\gamma}}^{2}(I ; V) \cong L_{t^{\gamma}}^{2}(I) \otimes V \\
\mathcal{X}_{(0} & :=\left\{w \in \mathcal{X}: w(0, \cdot)=0 \text { in } V^{*}\right\} .
\end{aligned}
$$

Proof see [OR 2012].:

- Eigenfunction expansion of the diffusion operator
- Consideration of the arising systems of ODEs

Discretization

\square We discretize the space-time domain using appropriate tensor products of wavelet functions.

Discretization

■ We discretize the space-time domain using appropriate tensor products of wavelet functions.

■ Main advantage: They form Riesz bases of the corresponding function spaces allowing for efficient preconditioning.
■ Main drawback: Possibly hard to construct and to implement.

Discretization

\square We discretize the space-time domain using appropriate tensor products of wavelet functions.

■ Main advantage: They form Riesz bases of the corresponding function spaces allowing for efficient preconditioning.
■ Main drawback: Possibly hard to construct and to implement.

- The temporal basis is given as $\Theta=\left\{\theta_{\lambda}: \lambda \in \nabla_{\Theta}\right\}$ and spatial basis as $\Sigma=\left\{\chi_{\mu}: \mu \in \nabla_{\Sigma}\right\}=\bigotimes_{i=1}^{d} \Sigma_{i}$.

Solution process

The bi-infinite system corresponding to $B(u, v)=f(v)$ reads

$$
\begin{align*}
\mathbf{B u}= & \mathbf{f} \tag{5}\\
\mathbf{B}= & {\left[\left(\Theta^{\prime}, \Theta\right) \otimes(\Sigma, \Sigma)+\int_{I} t^{\gamma} a(\Theta \otimes \Sigma, \Theta \otimes \Sigma) d t\right] } \\
& \times\left(\mathbb{1}_{t} \otimes\|\Sigma\|_{V}^{-1}\right)\|\Theta \otimes \Sigma\|_{\mathcal{X}}^{-1} \\
\mathbf{f}= & \int_{I}\left\langle f, \Theta \otimes[\Sigma]_{V}\right\rangle d t .
\end{align*}
$$

Solution process

The bi-infinite system corresponding to $B(u, v)=f(v)$ reads

$$
\begin{aligned}
\mathbf{B u}= & \mathbf{f} \\
\mathbf{B}= & {\left[\left(\Theta^{\prime}, \Theta\right) \otimes(\Sigma, \Sigma)+\int_{I} t^{\gamma} a(\Theta \otimes \Sigma, \Theta \otimes \Sigma) d t\right] } \\
& \times\left(\mathbb{1}_{t} \otimes\|\Sigma\|_{V}^{-1}\right)\|\Theta \otimes \Sigma\|_{\mathcal{X}}^{-1} \\
\mathbf{f}= & \int_{I}\left\langle f, \Theta \otimes[\Sigma]_{V}\right\rangle d t .
\end{aligned}
$$

\square Optimal (x, t)-adaptive algorithms for the approximate solution of (5) available, cf. [Ch. Schwab \& R. Stevenson 2008], [OR 2012].

Discontinuous Galerkin timestepping I

$\mathcal{M}=\left\{I_{m}\right\}_{m=1}^{M+1}, M \in \mathbb{N}$, partition of $(0, T), \underline{r} \in \mathbb{N}_{0}^{M+1}$ dG orders. dG-FEM: $U \in \mathcal{V}^{\underline{r}}(\mathcal{M} ; V):=\left\{u: J \rightarrow V:\left.u\right|_{I_{m}} \in\right.$ $\left.\mathcal{P}^{r_{m}}\left(I_{m}, V\right), m=1, \ldots, M+1\right\}$, such that for all $v \in \mathcal{V}^{\underline{r}}(\mathcal{M} ; V)$

Discontinuous Galerkin timestepping I

$\mathcal{M}=\left\{I_{m}\right\}_{m=1}^{M+1}, M \in \mathbb{N}$, partition of $(0, T), \underline{r} \in \mathbb{N}_{0}^{M+1}$ dG orders. dG-FEM: $U \in \mathcal{V}^{\underline{r}}(\mathcal{M} ; V):=\left\{u: J \rightarrow V:\left.u\right|_{I_{m}} \in\right.$ $\left.\mathcal{P}^{r_{m}}\left(I_{m}, V\right), m=1, \ldots, M+1\right\}$, such that for all $v \in \mathcal{V}^{\underline{r}}(\mathcal{M} ; V)$

$$
\begin{aligned}
B_{\mathrm{dG}}(U, v) & =F_{\mathrm{dG}}(v), \text { where } \\
B_{\mathrm{dG}}(U, v) & =\sum_{m=1}^{M} \int_{I_{m}}\left(U^{\prime}, v\right)_{L^{2}(D)} d t+\sum_{m=1}^{M} \int_{I_{m}} t^{\gamma} a(U, v) d t \\
& +\sum_{m=2}^{M}\left([U]_{m-1}, v_{m-1}^{+}\right)_{L^{2}(D)}+\left(U_{0}^{+}, v_{0}^{+}\right)_{L^{2}(D)} \\
F_{\mathrm{dG}} & =\left(u_{0}, v_{0}^{+}\right)_{L^{2}(D)}+\sum_{m=1}^{M} \int_{I_{m}}(f(t), v)_{V^{*}, V} d t .
\end{aligned}
$$

Geometric Timesteps/ linear order vector

■ A geometric time partition $\mathcal{M}_{M, q}=\left\{I_{m}\right\}_{m=1}^{M+1}$ with grading factor $q \in(0,1)$ and $M+1$ time steps $I_{m}, m=1, \ldots, M+1$ is given by the nodes

$$
t_{0}=0, \quad t_{m}=T q^{M+1-m}, \quad 1 \leq m \leq M+1 .
$$

Geometric Timesteps/ linear order vector

\square A geometric time partition $\mathcal{M}_{M, q}=\left\{I_{m}\right\}_{m=1}^{M+1}$ with grading factor $q \in(0,1)$ and $M+1$ time steps $I_{m}, m=1, \ldots, M+1$ is given by the nodes

$$
t_{0}=0, \quad t_{m}=T q^{M+1-m}, \quad 1 \leq m \leq M+1 .
$$

- A polynomial degreee vector $\underline{r}=\left\{r_{m}\right\}_{m=1}^{M+1}$ is called linear with slope $\nu>0$ on the geometric partition $\mathcal{M}_{M, q}$ on $(0, T)$ of

$$
r_{1}=0 \text { and } r_{m}=\lfloor\nu m\rfloor \text { for } 2 \leq m \leq M+1 \text {. }
$$

Discontinuous Galerkin timestepping II

Theorem (V. Kazeev, OR, Ch. Schwab 2012)

Consider the time-inhomogeneous forward problem on $J=(0,1)$ with initial data $u_{0} \in H_{\theta}$ for some $\theta \in(0,1]$ and right hand side f. Discretize in time using dGFEM on a geometric partition $\mathcal{M}_{M, q}$. Then for all degree vectors $\underline{r}=\left(r_{1}, \ldots, r_{M}\right)$ with slope $\nu \geq \nu_{0}>0$ the semidiscrete dGFEM solution U obtained in $\mathcal{V}^{\underline{r}}\left(\mathcal{M}_{M, q}, V\right)$ converges exponentially w.r. to N, No. of "time-DOFs":

$$
\|u-U\|_{L_{t^{\gamma / 2}}^{2}(J ; V)} \leq C\left(q, \nu_{0}\right) \exp \left(-b N^{-1 / 2}\right)
$$

Curse of dimension

\square Spatial discretization using finite elements or finite differences suffers from the "curse of dimension"

Curse of dimension

\square Spatial discretization using finite elements or finite differences suffers from the "curse of dimension"
\square Sparse grids can be used

Figure: Sparse grid in two dimensions

TT-format I

■ Here we use the TT/QTT formats developed by Oseledets and Tyrtyshnikov.

TT-format I

■ Here we use the TT/QTT formats developed by Oseledets and Tyrtyshnikov.
\square We say that $A \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}, n_{k} \geq 1, k \in\{1, \ldots, d\}, d \geq 1$ is represented in the TT-format if

$$
A\left(i_{1}, \ldots, i_{d}\right)=G_{1}\left(i_{1}\right) G_{2}\left(i_{2}\right) \ldots G_{d}\left(i_{d}\right)
$$

where $G_{k}\left(i_{k}\right) \in \mathbb{R}^{r_{k-1} \times r_{k}}$.

TT-format I

■ Here we use the TT/QTT formats developed by Oseledets and Tyrtyshnikov.
\square We say that $A \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}, n_{k} \geq 1, k \in\{1, \ldots, d\}, d \geq 1$ is represented in the TT-format if

$$
A\left(i_{1}, \ldots, i_{d}\right)=G_{1}\left(i_{1}\right) G_{2}\left(i_{2}\right) \ldots G_{d}\left(i_{d}\right)
$$

where $G_{k}\left(i_{k}\right) \in \mathbb{R}^{r_{k-1} \times r_{k}}$.
\square Storage cost: $\mathcal{O}\left(d r^{2} n\right)$, where $n_{k} \leq n$ and $r_{k} \leq r$, $k=1, \ldots, d$

TT-format I

■ Here we use the TT/QTT formats developed by Oseledets and Tyrtyshnikov.
\square We say that $A \in \mathbb{R}^{n_{1} \times \ldots \times n_{d}}, n_{k} \geq 1, k \in\{1, \ldots, d\}, d \geq 1$ is represented in the TT-format if

$$
A\left(i_{1}, \ldots, i_{d}\right)=G_{1}\left(i_{1}\right) G_{2}\left(i_{2}\right) \ldots G_{d}\left(i_{d}\right)
$$

where $G_{k}\left(i_{k}\right) \in \mathbb{R}^{r_{k-1} \times r_{k}}$.
\square Storage cost: $\mathcal{O}\left(d r^{2} n\right)$, where $n_{k} \leq n$ and $r_{k} \leq r$, $k=1, \ldots, d$
■ Operations such as addition, matrix-matrix multiplication, matrix-vector multiplication available in the format
\square Solver for linear equations available based on alternating least squares

TT-format II

■ Certain finite element discretizations of reaction-diffusion equations under certain assumptions on the coefficients can be shown to admit a TT-representation with "small" r.

TT-format II

■ Certain finite element discretizations of reaction-diffusion equations under certain assumptions on the coefficients can be shown to admit a TT-representation with "small" r.
\square Non-uniform meshes are required in order to resolve incompatible initial data appropriately, the solution has boundary layers for small times t.

TT-format II

■ Certain finite element discretizations of reaction-diffusion equations under certain assumptions on the coefficients can be shown to admit a TT-representation with "small" r.
\square Non-uniform meshes are required in order to resolve incompatible initial data appropriately, the solution has boundary layers for small times t.
\square Shishkin meshes employed here.

Figure: A Shishkin mesh in 1D. The meshwidths are h and \tilde{h}, the width of the boundary zone is ρ.

Test problem

Find $u \in \mathcal{X}$ such that for all $v \in \mathcal{Y}$,

$$
\begin{gathered}
\int_{J}\left[\langle\dot{u}(t), v(t)\rangle_{L^{2}(D)}+t^{\gamma}\langle\nabla u(t), \nabla v(t)\rangle_{L^{2}(D)}\right] \mathrm{d} t=0 \\
u(0)=u_{0} \\
J=(0,1], D=(0,1)^{d}, \mathcal{Y}=L_{t^{\gamma / 2}}^{2}\left(J ; H_{0}^{1}(D)\right) \\
\mathcal{X}=H_{t^{-\gamma / 2}}^{1}\left(J ; H^{-1}(D)\right) \cap L_{t^{\gamma / 2}}^{2}\left(J ; H_{0}^{1}(D)\right) .
\end{gathered}
$$

Test problem

Find $u \in \mathcal{X}$ such that for all $v \in \mathcal{Y}$,

$$
\begin{aligned}
& \quad \int_{J}\left[\langle\dot{u}(t), v(t)\rangle_{L^{2}(D)}+t^{\gamma}\langle\nabla u(t), \nabla v(t)\rangle_{L^{2}(D)}\right] \mathrm{d} t=0 \\
& u(0)=u_{0}, \\
& J=(0,1], D=(0,1)^{d}, \mathcal{Y}=L_{t^{\gamma / 2}}^{2}\left(J ; H_{0}^{1}(D)\right), \\
& \mathcal{X}=H_{t-\gamma / 2}^{1}\left(J ; H^{-1}(D)\right) \cap L_{t \gamma / 2}^{2}\left(J ; H_{0}^{1}(D)\right) . \\
& \text { Compatible initial data: }
\end{aligned}
$$

$$
u_{0}\left(x_{1}, \ldots, x_{d}\right)=\prod_{k=1}^{d} \sin \pi x_{k} \quad \text { for } \quad x_{k} \in(0,1), \quad 1 \leq k \leq d
$$

Test problem

Find $u \in \mathcal{X}$ such that for all $v \in \mathcal{Y}$,

$$
\begin{aligned}
& \quad \int_{J}\left[\langle\dot{u}(t), v(t)\rangle_{L^{2}(D)}+t^{\gamma}\langle\nabla u(t), \nabla v(t)\rangle_{L^{2}(D)}\right] \mathrm{d} t=0 \\
& u(0)=u_{0}, \\
& J=(0,1], D=(0,1)^{d}, \mathcal{Y}=L_{t^{\gamma / 2}}^{2}\left(J ; H_{0}^{1}(D)\right), \\
& \mathcal{X}=H_{t-\gamma / 2}^{1}\left(J ; H^{-1}(D)\right) \cap L_{t \gamma / 2}^{2}\left(J ; H_{0}^{1}(D)\right) . \\
& \text { Compatible initial data: }
\end{aligned}
$$

$$
u_{0}\left(x_{1}, \ldots, x_{d}\right)=\prod_{k=1}^{d} \sin \pi x_{k} \quad \text { for } \quad x_{k} \in(0,1), \quad 1 \leq k \leq d
$$

■ Incompatible initial data:

$$
u_{0}\left(x_{1}, \ldots, x_{d}\right)=1 \quad \text { for } \quad x_{k} \in(0,1), \quad 1 \leq k \leq d
$$

Compatible initial conditions

	$\gamma=-\frac{1}{2}$		$\gamma=0$		$\gamma=\frac{1}{2}$	
	$M=30$		$M=10$		$M=10$	
d	$\operatorname{err}\left[u_{M}^{\delta}\right]$	time	$\operatorname{err}\left[u_{M}^{\delta}\right]$	time	$\operatorname{err}\left[u_{M}^{\delta}\right]$	time
5	$1.1 \cdot 10^{-8}$	12.2	$8.8 \cdot 10^{-10}$	3.9	$1.0 \cdot 10^{-11}$	4.1
10	$3.1 \cdot 10^{-8}$	24.2	$1.4 \cdot 10^{-9}$	7.5	$6.9 \cdot 10^{-11}$	7.5
20	$5.6 \cdot 10^{-8}$	47.4	$2.4 \cdot 10^{-9}$	15.2	$1.7 \cdot 10^{-10}$	14.6
30	$9.0 \cdot 10^{-8}$	71.8	$3.1 \cdot 10^{-9}$	23.1	$1.9 \cdot 10^{-10}$	21.6
40	$1.9 \cdot 10^{-7}$	96.4	$3.7 \cdot 10^{-9}$	31.6	$2.8 \cdot 10^{-10}$	29.3

Table: Compatible initial data in d dimensions: relative L^{2}-error (err $\left[u_{M}^{\delta}\right]$) at $t=T$ and computation times in seconds for $q=0.5$.

Incompatible initial conditions: time discretization

(a) Relative L^{2}-error vs. t_{m}

(b) Computation time vs. t_{m}

Figure: Comparison of DG-discretizations in time

Incompatible initial conditions: space discretization

(a) Relative L^{2}-error vs. t_{m}
(b) relative L^{2}-error (black) and total computation time (gray) vs. d

Figure: Multivariate problem with incompatible initial data

Conclusion

- Time-degenerate models using weighted spaces in time and a space-time approach were considered.
$■$ CG discretizations in space-time were analyzed.
■ DG in time for time-inhomogeneous models was discussed.
■ Spatial discretization using the TT-format was outlined.
\square Shishkin meshes for the resolution of boundary layers were used.

References:

■ Low-rank tensor structure of linear diffusion operators in the TT and QTT formats, with V. Kazeev and Ch. Schwab, LAA, 2013.
$\square h p$-DG-QTT solution of high-dimensional degenerate diffusion equations, with V. Kazeev and Ch. Schwab, 2012.
■ Optimal space-time adaptive wavelet methods for degenerate parabolic PDEs, Num. Math. 2012.

References:

- Low-rank tensor structure of linear diffusion operators in the TT and QTT formats, with V. Kazeev and Ch. Schwab, LAA, 2013.
$\square h p$-DG-QTT solution of high-dimensional degenerate diffusion equations, with V. Kazeev and Ch. Schwab, 2012.
■ Optimal space-time adaptive wavelet methods for degenerate parabolic PDEs, Num. Math. 2012.
Dziȩkujȩ bardzo!!

References:

■ Low-rank tensor structure of linear diffusion operators in the TT and QTT formats, with V. Kazeev and Ch. Schwab, LAA, 2013.
$\square h p$-DG-QTT solution of high-dimensional degenerate diffusion equations, with V. Kazeev and Ch. Schwab, 2012.
■ Optimal space-time adaptive wavelet methods for degenerate parabolic PDEs, Num. Math. 2012.
Dziȩkujȩ bardzo!!
Thank you very much!!

