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Goals

Our main goals are:
1 to examine equilibria for certain multi-player stochastic games,
2 to find explicit algorithm for finding the value process for a class of

multi-player stopping games,
3 to examine the multi-dimensional reflected backward stochastic difference

equation for the value process of the multi-player stopping game,
4 to find arbitrage prices and super-hedging strategies for a multi-person game

option in discrete time,
5 to propose an extension to the continuous-time setup via multi-dimensional

reflected backward stochastic differential equation.
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Two-Person Game Options

REMINDER: TWO-PERSON GAME OPTIONS
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Two-Person Game Options

Two-Person Zero-Sum Game Options

Definition
A game option is a contract where each party has the right to exercise at any time
before expiry T according to the following rules:

The holder can exercise the option at any time t < T for the payoff Lt .
The isssuer can cancel the option at any time t < T for the cancellation fee
of Ut .
If the option is not exercised then it expires at time T and the terminal
payoff for the holder equals ξ.
The assumption that Lt ≤ Ut for every t will ensure that the outcome of the
contract is always well defined.

We denote by Yt the arbitrage price of the game option at time t.

The game option is closely related to the zero-sum Dynkin (stopping) game.
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Two-Person Game Options
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Two-Person Game Options

Value Process via Reflected BSDE

Consider a complete and arbitrage-free market model with the unique martingale
measure P∗ for the discounted prices S . We denote ∆Yt+1 = Yt+1 −Yt .

Definition
A solution to the reflected BSDE (L,U , ξ,S) is a quadruplet (Y ,Z ,K1,K2) of
processes that satisfy for t = 0, 1, . . . ,T

Yt +
T−1∑
u=t

Zu ·∆Su+1 − (K1
T −K1

t ) + (K2
T −K2

t ) = ξ

Lt ≤ Yt ≤ Ut
T−1∑
t=0

1{Yt>Lt}∆K1
t+1 = 0

T−1∑
t=0

1{Yt<Ut}∆K2
t+1 = 0

where K1 and K2 are F-predictable and non-decreasing processes.
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Two-Person Game Options

Value Process via Projection

Proposition
The unique solution to reflected BSDE (L,U , ξ,S) equals YT = ξ and

Yt = min
(

Ut , max
(
Lt , EP∗(Yt+1 | Ft)

))
.

for t = 0, 1, . . . ,T − 1. Equivalently, YT = ξ and for t = 0, . . . ,T − 1

Yt = π[Lt ,Ut ]
(
EP∗
(
Yt+1

∣∣Ft
))
.

The arbitrage price process of the zero-sum two-person game option equals Y .
The rational exercise time for the buyer equals

τ1 = min
{

t ∈ {0, . . . ,T − 1} |∆K1
t+1 > 0

}
and the rational exercise time for the seller equals

τ2 = min
{

t ∈ {0, . . . ,T − 1} |∆K2
t+1 > 0

}
.
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Equilibria of Multi-Player Stopping Games

EQUILIBRIA OF MULTI-PLAYER STOPPING GAMES
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Equilibria of Multi-Player Stopping Games

Equilibria of Multi-Player Stopping Games

Consider an m-person stochastic stopping game in which to goal of each player is
to maximise his expected payoff. Let s = (s1, . . . , sm) be an m-tuple of exercise
times. The expected payoff of the kth player is denoted by Jk(s1, . . . , sm) or
Jk(sk , s−k) where s−k = (s1, . . . , sk−1, sk+1, . . . , sm).

Definition
A family (τ1, . . . , τm) of stopping times is said to be a Nash equilibrium if

Jk(τk , τ−k) ≥ Jk(sk , τ
−k), ∀ sk .

A family (τ1, . . . , τm) of stopping times is called an optimal equilibrium when
it is a Nash equilibrium and

Jk(τk , s−k) ≥ Jk(τk , τ−k), ∀ s−k .

For zero-sum stopping games any Nash equilibrium is also an optimal equilibrium.
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Equilibria of Multi-Player Stopping Games

Maximin and Minimax Values

Definition
The lower value (or maximin value) V l

k for player k is defined by

V l
k = sup

sk
inf
s−k

Jk(sk , s−k).

A maximin strategy is any sk such that Jk(sk , s−k) ≥ V l
k for all s−k .

Definition
The upper value (or minimax value) V u

k for player k is defined by

V u
k = inf

s−k
sup

sk
Jk(sk , s−k).

A minimax strategy is any s−k such that Jk(sk , s−k) ≤ V u
k for all sk .
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Equilibria of Multi-Player Stopping Games

Value of the Game

Lemma
In any m-person stochastic stopping game the following holds:

1 if (τ1, . . . , τm) is an optimal equilibrium then it is an optimal strategy,
in the sense that

inf
s−k

Jk(τk , s−k) = Jk(τk , τ−k) = sup
sk

Jk(sk , τ−k),

2 the inequality V u
k ≥ V l

k is valid,
3 If (τ1, . . . , τm) is an optimal equilibrium then V u

k = V l
k = Jk(τk , τ−k).

Definition
If V l

k = V u
k then V ∗k := V l

k = V u
k is called the value of the game for player k.

The value of the game is the vector (V ∗1 , . . . ,V ∗m), provided that it is well defined.
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Equilibria of Multi-Player Stopping Games

Weakly Unilaterally Competitive Games

Definition (Kats and Thisse (1992))
An m-player game is said to be weakly unilaterally competitive (WUC) if for every
k, l = 1, . . . ,m, k 6= l and all sk , ŝk , s−k the following implications hold

Jk(sk , s−k) > Jk(ŝk , s−k) ⇒ Jl(sk , s−k) ≤ Jl(ŝk , s−k)

Jk(sk , s−k) = Jk(ŝk , s−k) ⇒ Jl(sk , s−k) = Jl(ŝk , s−k).

Proposition (Kats and Thisse (1992), De Wolf (1999))
If (τ1, . . . , τm) is a Nash equilibrium for a WUC game then is also an optimal
equilibrium and:

1 mins−k Jk(τk , s−k) = Jk(τk , τ−k) for every k = 1, . . . ,m,
2 the equality Jk(τk , τ−k) = V u

k = V l
k is valid and for every player the

strategies τk and τ−k are maximin and minimax strategies, respectively,
3 (sk , τ−k) is an optimal equilibrium if and only if sk is a maximin strategy.
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Multi-Player Single-Period Games

MULTI-PLAYER SINGLE-PERIOD GAMES
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Multi-Player Single-Period Games

Deterministic Single-Period WUC Game

We first focus on the single-period game where exercise is only allowed at t = 0.
Players: M = {1, 2, . . . ,m}.
Exercise payoff: x = (x1, . . . , xm) where xk is the amount received by player
k if he exercises at time 0.
Terminal payoff: p = (p1, . . . , pm) where pk is the amount received by player
k if no player exercises at time 0.∑

k∈M pk = c.∑
k∈M xk ≤ c.

c is the total value of the contract.
Redistribution of losses:

In the two player case, when one player exercises, the payoff, or ‘burden’ of
this action is paid entirely by the other player.
In the multi-player case, when someone exercises, this ‘burden’ should be
split among non-exercising players according to some predetermined rule.
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Multi-Player Single-Period Games

Strategies and Exercise

The strategy sk ∈ Sk = {0, 1} of player k specifies if he will exercise at t = 0.
Then any s = (s1, . . . , sm) ∈ {0, 1}m is a strategy set.
Given a strategy set s, the exercise set E(s) is the set of players who
exercised at time 0.

Definition
For a strategy set s, the modified payoff v(s) = (v1(s), . . . , vm(s)) is the actual
payoff received by the players if a strategy set s is carried out. We set

vk(s) =
{

xk k ∈ E(s),
pk − wk(s)

∑
j∈E(s)(xj − pj) k ∈M \ E(s).

This means that
exercising players receive their exercise payoffs,
non-exercising payoffs receive their terminal payoffs diminished by their
allocated ‘burdens’.
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Multi-Player Single-Period Games

Weights of Strategy Sets

This is a constant-sum game:
∑

k∈M vk(s) =
∑

k∈M pk = c, except when all
players exercise.
Weights are used to determine how the burden of exercising is split between
the non-exercising players. They depend on strategy sets.
For any strategy set s, wk(s) is defined for all non-exercising players, that is,
for all k ∈M \ E(s).
We assume wk(E) 6= 0 for any non-empty subset E ⊂M, E 6=M and k /∈ E .

Proposition
The game G is WUC for all choices x and p if and only if the weights can be
written in the following form:

wk(E) = αk

1−
∑

i∈E αi

where αk > 0 and
∑

i 6=k αi < 1 for all k.
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Multi-Player Single-Period Games

Vector Space and Projection

Definition
The modified payoff v(s∗) corresponding to an optimal equilibrium s∗ is called the
value of the game.

The value v∗ = v(s∗) is unique. We will now address the following question: how
to express the value v∗ in terms of vectors v and x?

Proposition
If
∑

k∈M xk = c then the unique value satisfies v∗ = x. Moreover, the strategy
set s∗ = (0, . . . , 0) is an optimal equilibrium.

We endow the space Rm with the norm ‖ · ‖ generated by the inner product

〈y, z〉 =
m∑

k=1

(
ykzk

αk

)
.

M. Rutkowski (USydney) Multi-Person Game Options 19 / 54



Multi-Player Single-Period Games

Hyperplanes and Modified Payoffs

For any vector p and any closed convex set K in Rm, there exists a unique
projection πK (p) of p onto K such that: πK (p) ∈ K and

‖πK (p)− p‖ ≤ ‖q − p‖ ∀ q ∈ K.

For any proper subset E ⊂M, we define the hyperplane

HE =
{

y ∈ Rm : yi = xi for all i ∈ E and
m∑

k=1
yk = c

}
.

Lemma
Let s be any strategy set such that E(s) is a proper subset ofM. Then the vector
v(s) of modified payoffs equals

v(s) = πHE(s) (p) .

M. Rutkowski (USydney) Multi-Person Game Options 20 / 54



Multi-Player Single-Period Games

Modified Payoff as Projection: Suboptimal

p

S

x1

x2

x3

M. Rutkowski (USydney) Multi-Person Game Options 21 / 54



Multi-Player Single-Period Games

Modified Payoff as Projection: Suboptimal

p
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Multi-Player Single-Period Games

Modified Payoff as Projection: Suboptimal

p

S

v(0, 0, 1)v(1, 0, 0)

v(0, 1, 0)
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Multi-Player Single-Period Games

Existence and Uniqueness of the Value

Consider the simplex S given by

S =
{

y ∈ Rm : yk ≥ xk , 1 ≤ k ≤ m and
m∑

k=1
yk = c

}
.

Proposition
Assume that

∑m
k=1 xk < c. Then:

1 a strategy set s∗ is an optimal equilibrium for the game if and only if the set
of exercising players E(s∗) is such that

πHE(s∗) (p) = πS (p) , (∗)

2 a strategy set s∗ satisfying (∗) always exists and the unique value of the
game equals

v∗ = v(s∗) = (v1(s∗), . . . , vm(s∗)) = πS (p) .
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Multi-Player Single-Period Games

Value of the Game: Optimal Equilibrium
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Multi-Player Single-Period Games

Multi-Period Zero-Sum Extension

One possible formulation is the compound game approach: for t = T we set
V ∗(T ) = XT . For each t = 0, . . . ,T − 1, we consider the game with modified
payoffs:

Vk(t) =
{

Xk(t), k ∈ Et ,

V ∗k (t + 1)− wk(Et)
∑

j∈Et
(Xj(t)−V ∗j (t + 1)), k /∈ Et .

According to this specification of a multi-period game at each time t player k
can either

stop (or exercise) the game for Xk,t or
receive a suitably adjusted amount based on the value of the subgame
starting at time t + 1.

Let us first assume that the multi-period game happens to be a zero-sum game
at each stage. Then it can be solved using the method developed for the
single-period game.

M. Rutkowski (USydney) Multi-Person Game Options 24 / 54



Multi-Player Single-Period Games

Multi-Period Zero-Sum Extension: T = 4
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Multi-Player Single-Period Games
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Multi-Player Single-Period Games

Multi-Period Zero-Sum Extension: T = 4
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Multi-Player Single-Period Games

Multi-Period Zero-Sum Extension: T = 4

p = v∗(4)

S0

v∗(3)

v∗(2)

v∗(1) = v∗(0)
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Multi-Player Single-Period Games

Non-Zero-Sum Multi-Period Stopping Game

The assumption that the game is zero-sum has essential drawbacks:
It is not suitable to impose this condition in the multi-period stochastic case,
One has to decide how the game is settled when everyone decides to exercise
prematurely.

To overcome this difficulty, we propose to introduce a dummy player m + 1 who
does not has the right to exercise the game,
covers a possible shortfall when all other players decide to exercise
simultaneously.

Then the non-zero-sum game can be solved using similar techniques as for the
zero-sum case.
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Multi-Player Stochastic Stopping Games

MULTI-PLAYER STOCHASTIC STOPPING GAMES
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Multi-Player Stochastic Stopping Games

Multi-Player Stochastic Stopping Game

The following building blocks are used to construct the multi-period stochastic
stopping game:

The setM = {1, 2, . . . ,m} of players.
The probability space (Ω,F,P) with the filtration F = (Ft)T

t=0 representing
the information flow available to all players.
The class St of all F-stopping times taking values in {t, . . . ,T}.
The F-adapted exercise payoff Xt = (X1

t , . . . ,Xm
t ) for t = 0, 1, . . . ,T .

The random subsets Et ⊂M of exercising players.
For every k ∈M and every non-empty subset E ⊂M such that k /∈ E
the real-valued, F-adapted non-exercise payoff process

X̃k
t = X̃k

t (E), t = 0, 1, . . . ,T − 1.

The random variable X̃k
t is the payoff received by player k when all players

from E exercise at t assuming that the game was not yet stopped.
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Multi-Player Stochastic Stopping Games

Multi-Player Stochastic Stopping Game

The m-player stochastic stopping game G = (G0, . . . ,GT) is defined recursively:
All players are assumed to exercise at time T . The game GT is trivial with
the value V ∗T = XT .
Assuming that the games Gt+1, . . . ,GT were already defined, the game Gt is
specified as follows.
The game starts at time t and each player can exercise at any time in the
interval [t,T ]. The game stops as soon as anyone exercises.
The strategy sk

t of player k is a stopping time from the space St , so that the
strategy profile st = (s1

t , . . . , sm
t ) ∈ Sm

t .
Let ŝt = s1

t ∧ . . . ∧ sm
t ∈ St . The exercise set

E(st) = {i ∈M : si
t = ŝt}

is the FT -measurable random set of earliest exercising players.
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Multi-Player Stochastic Stopping Games

Multi-Player Stochastic Stopping Game

For each strategy profile st , the expected payoff at time t

Vt(st) = (V 1
t (st), . . . ,V m

t (st))

is defined by

V k
t (st) = EP

(
Xk

ŝt
1{k∈E(st)} + X̃k

ŝt
1{k/∈E(st)}

∣∣Ft
)
.

In general, the non-exercise payoffs are given by

X̃k
ŝt

= gk
E(st)(Xŝt

,V ∗ŝt+1, ŝt)1{̂st<T}

for a family of functions gk
E : R2m × [0,T ]→ R where we denote by

V ∗u = (V 1∗
u , . . . ,V m∗

u ) the value of the game Gu for u = t + 1, . . . ,T .
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Multi-Player Stochastic Stopping Games

Multi-Player Stochastic Stopping Game

To summarize, for any strategy profile st

V k
t (st) = EP

( T∑
u=t

Xk
u1{k∈Eu(st)}1{̂st=u}

∣∣∣Ft

)
+ EP

(T−1∑
u=t

X̃k
u (Eu(st))1{k /∈Eu(st)}1{̂st=u}

∣∣∣Ft

)
.

where
Eu(st) = {i ∈M : si

t = ŝt = u}

is the Fu-measurable random subset of earliest exercising players who decide
to exercise at time u.

M. Rutkowski (USydney) Multi-Person Game Options 31 / 54



Multi-Player Stochastic Stopping Games

Candidate for the Value Process

We will now search for the candidate for the value process of the game.
Let U = (U 1, . . . ,U m) be an arbitrary F-adapted, Rm-valued process such
that UT = XT .
We define the family τt = (τ1

t , . . . , τ
m
t ) ∈ Sm

t of stopping times

τk
t := inf

{
u ≥ t : U k

u = Xk
u
}
.

Let E(τt) stand for the following random set

E(τt) := {k ∈M : U k
t = Xk

t } = {k ∈M : τk
t = t} = {i ∈M : τk

t = τ̂t}

where τ̂t := τ1
t ∧ · · · ∧ τm

t . We write

τ̂−k
t := τ1

t ∧ · · · ∧ τk−1
t ∧ τk+1

t ∧ · · · ∧ τm
t .

For brevity, we denote Pt = EP
(
Ut+1

∣∣Ft
)
.
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Multi-Player Stochastic Stopping Games

Value Process: Sufficient Conditions

Proposition

Let U = (U 1, . . . ,U m) be an arbitrary F-adapted, Rm-valued process such that
UT = XT . Assume that for all k ∈M and t = 0, 1, . . . ,T − 1,

1 U k
t ≥ Xk

t ,
2 U k

t ≤ Pk
t on the event {τk

t > t},
3 U k

t ≥ Pk
t on the event {τ̂−k

t > t},
4 U k

t ≥ X̃k
t on the event {τ̂−k

t = t < sk
t } for every sk

t ∈ St ,
5 U k

t ≤ X̃k
t on the event {ŝ−k

t = t < τk
t } for every s−k

t ∈ Sm−1
t .

Then, for every k ∈M, t = 0, 1, . . . ,T − 1, and s1
t , . . . , sm

t in St ,

EP
(
Z k(sk

t , τ
−k
t ) | Ft

)
≤ U k

t ≤ EP
(
Z k(τk

t , s−k
t ) | Ft

)
and thus

EP
(
Z k(sk

t , τ
−k
t ) | Ft

)
≤ EP

(
Z k(τk

t , τ
−k
t ) | Ft

)
≤ EP

(
Z k(τk

t , s−k
t ) | Ft

)
.
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Multi-Player Stochastic Stopping Games

Value Process: Sufficient Conditions

Proposition

Consequently:
1 The process U is the value process of the m-player stopping game, that is,

for all k ∈M and t = 0, 1, . . . ,T ,

U k
t = inf

s−k
t ∈S

m−1
t

sup
sk

t∈St

EP
(
Z k(sk

t , s−k
t ) | Ft

)
= EP

(
Z k(τk

t , τ
−k
t ) | Ft

)
= sup

sk
t∈St

inf
s−k

t ∈S
m−1
t

EP
(
Z k(sk

t , s−k
t ) | Ft

)
= V k∗

t .

2 For every t = 0, 1, . . . ,T , the family τt = (τ1
t , . . . , τ

m
t ) ∈ Sm

t is an optimal
equilibrium for the game Gt .

3 For all t = 0, 1, . . . ,T − 1, the stopped process (U τ̂t
u )T

u=t is an F-martingale.
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Multi-Player Stochastic Stopping Games

Affine Stopping Games

Definition

The m-player stochastic stopping game G = (G0, . . . ,GT) is said to be affine
whenever:

1 For any E ⊂M, we are given the set of weights

wk(E) = αk

1−
∑

i∈E αi

for k ∈M \ E where αi > 0 and
∑

i∈M αi < 1.
2 The non-exercise payoff on the event {ŝt < T} is given by

X̃k
ŝt

= V k∗
ŝt+1 − wk(E(st))

∑
i∈E(st)

(
X i

ŝt
−V i∗

ŝt+1

)
where V ∗u = (V 1∗

u , . . . ,V m∗
u ) is the value of the game Gu.
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Multi-Player Stochastic Stopping Games

Expected Payoff as Projection

Given the vector α = (α1, . . . , αm), we endow Rm with the inner product 〈·, ·〉a

〈x, y〉α =
m∑

i=1

xiyi

αi
+

(
∑m

i=1 xi) (
∑m

i=1 yi)
1−

∑m
i=1 αi

.

Proposition

The expected payoff Vt(st) = (V 1
t (st), . . . ,V m

t (st)) can be represented as follows

Vt(st) = EP

(
1{̂st<T}πHE(st )

(
V ∗ŝt+1

)
+ 1{̂st=T}XT

∣∣∣Ft

)
where HE(st) is the Fŝt

-measurable random hyperplane

HE(st) :=
{

y ∈ Rm : yi = X i
ŝt
, ∀ i ∈ E(st)

}
.
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Multi-Player Stochastic Stopping Games

Value Process via Projection

Definition

Let the F-adapted payoff processes be given. The F-adapted, Rm-valued process
U = (U 1, . . . ,U m) is defined by setting UT := XT and for t = 0, 1, . . . ,T − 1

Ut := πO(Xt)
(
EP
(
Ut+1

∣∣Ft
))

where O(Xt) is the Ft-measurable orthant

O(Xt(ω)) :=
{

y ∈ Rm : yi ≥ X i
t (ω), ∀ i ∈M

}
.

We define the strategy set τt = (τ1
t , . . . , τ

m
t ) ∈ Sm

t by setting

τk
t := inf

{
u ≥ t : U k

u = Xk
u
}
.
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Multi-Player Stochastic Stopping Games

Value Process via Projection

Lemma

Recall that we set UT = XT

Ut = πO(Xt)
(
EP
(
Ut+1

∣∣Ft
))
, t = 0, 1, . . . ,T − 1,

and

τk
t := inf

{
u ≥ t : U k

u = Xk
u
}
.

Then for every k ∈M and t = 0, 1, . . . ,T − 1:
1 U k

t ≥ Xk
t ; moreover, U k

t = Pk
t on the event {τ̂t > t},

2 U k
t ≤ Pk

t on the event {τk
t > t},

3 U k
t ≥ Pk

t on the event {τ̂−k
t > t},

4 U k
t ≥ X̃k

t on the event {τ̂−k
t = t < sk

t } for every sk
t ∈ St ,

5 U k
t ≤ X̃k

t on the event {ŝ−k
t = t < τk

t } for every s−k
t ∈ Sm−1

t .
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Multi-Player Stochastic Stopping Games

Value Process via Projection

The main result for the affine stopping game is the following corollary.

Corollary

Consider the m-person affine stopping game G = (G0, . . . ,GT) with the vector of
powers α = (α1, . . . , αm) such that

∑m
i=1 αi < 1. The game is solvable with the

value process V ∗ given by the recursive formula: V ∗T = XT and

V ∗t := πO(Xt)
(
EP
(
V ∗t+1

∣∣Ft
))

= πO(Xt) (Pt) .

The sequence of optimal equilibria (τ0, . . . , τT) is given by

τk
t := inf

{
u ≥ t : V k∗

u = Xk
u
}
.
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Multi-Player Stochastic Stopping Games

Value Process via Reflected BSDE

Assume that
∑m

i=1 αi < 1. Recall that we endowed Rm with the following inner
product

〈y, z〉 =
m∑

i=1

(
yizi

αi

)
+

(
∑m

i=1 yi) (
∑m

i=1 zi)
1−

∑m
i=1 αi

=: yTDz.

It can be shown that D̂ := D−1 equals

D̂ =


α1 − α2

1 −α1α2 . . . −α1αm
−α2α1 α2 − α2

2 . . . −α2αm
...

...
. . .

...
−αmα1 −αmα2 . . . αm − α2

m

 .

The matrix D̂ will be used to derive the reflected BSDE.
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Multi-Player Stochastic Stopping Games

Affine Variational Inequality

Lemma
A vector v∗ = ΠO(x)(p) if there exists a vector µ∗ such that (v∗, µ∗) is a solution
to the following affine variational inequality (AVI)

v∗ − D̂µ∗ = p,
v∗ ≥ x, µ∗ ≥ 0,
〈v∗ − x, µ∗〉 = 0,

or, more explicitly, for all i = 1, . . . ,m,

v∗i = pi +
m∑

j=1
D̂ijµ

∗
j ,

v∗i ≥ xi , µ∗i ≥ 0, (v∗i − xi)µ∗i = 0,

where D̂i = (D̂i1, . . . , D̂im) is the ith row of the matrix D̂.
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Multi-Player Stochastic Stopping Games

Value Process via Reflected Backward Equation

Corollary
Assume that the pair (v∗, µ∗) solves the AVI. Then (v∗, µ∗) solves the following
reflected backward equation (RBE)

v∗i + αi

m∑
l=1, l 6=i

αlµ
∗
l 1{v∗l =xl} − αi(1− αi)µ∗i 1{v∗i =xi} = pi ,

v∗i − xi ≥ 0, µ∗i ≥ 0,

or, equivalently,

v∗i + αi

m∑
l=1, l 6=i

αlµ
∗
l − αi(1− αi)µ∗i = pi ,

v∗i − xi ≥ 0, µ∗i ≥ 0, (v∗i − xi)µ∗i = 0.
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Multi-Player Stochastic Stopping Games

Classes of Players

We can identify three classes of players:
1 Players for whom it is optimal to exercise since their continuation payoff is

strictly below their exercise payoff: pi < xi = v∗i and µ∗i ≥ xi − pi > 0,
2 Players who are forced to exercise: pi ≥ xi = v∗i and µ∗i > 0,
3 Players who do not exercise: pi ≥ xi and µ∗i = 0.

To simplify the reflected backward equation, we denote k l := αlµ
∗
l .

Then we obtain the following equation for vectors v = (v1, . . . , vm)T ∈ Rm

and k = (k1, . . . , km)T ∈ Rm
+

vi + αi

m∑
l=1, l 6=i

kl1{vl=xl} − (1− αi)ki1{vi=xi} = pi ,

vi ≥ xi , ki ≥ 0.
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CONTINUOUS-TIME MULTI-PERSON STOPPING GAMES
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Continuous-Time Multi-Person Stopping Games

Continuous-Time Multi-Person Stopping Game

The continuous-time multi-person stopping game is given by its terminal value ξ,
the exercise payoffs X i and the redistribution rule (α1, . . . , αm) upon stopping.
The randomness is introduced via the Brownian motion B = (B1, . . . ,Bd).

Definition
The m-dimensional RBSDE corresponding to the continuous-time multi-person
stopping game reads: for all t ∈ [0,T ],

Y i
t = ξi −

∑m
j 6=i,j=1 ri,j(K j

T −K j
t )− (K i

T −K i
t )−

∫ T

t

∑d
l=1 Z i,l

s dBl
s,

Y i
t ≥ X i

t ,∫ t
0 1{Y i

s>X i
s} dK i

s = 0, 1 ≤ i ≤ m,

where ri,j = αi
1−αj

for i 6= j, and αi > 0 are such that
∑m

i=1 αi < 1.
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Continuous-Time Multi-Person Stopping Games

Multi-Reflected BSDE

In general, we consider the following multi-reflected BSDE (ξ,X , f ,R)
Y i

t = ξi +
∫ T

t fi(s,Ys) ds +
∑m

j 6=i,j=1
∫ T

t ri,j(s,Ys) dK j
s + K i

T −K i
t

−
∫ T

t
∑d

l=1 Z i,l
s dBl

s,

Y i
t ≥ X i

t and K i
t =

∫ t
0 1{Y i

s =X i
s} dK i

s , 1 ≤ i ≤ m.

where
ξ = (ξ1, . . . , ξm) is an FT -measurable bounded random variable
such that ξi ≥ X i

T , for each 1 ≤ i ≤ m,
the process X = (X1, . . . ,Xm) is a continuous semimartingale,
the map f = (f1, . . . , fm) : Ω× [0,T ]× Rm → Rm and the map
R = (ri,j)1≤i,j≤m : Ω× [0,T ]× Rm →Mm(R) are both bounded
measurable functions,
Mm(R) denotes the class of m ×m matrices with real entries.
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Continuous-Time Multi-Person Stopping Games

Solution to Multi-Reflected BSDE

Definition
A pair (Y ,K ) of F-progressively measurable and continuous processes is a
solution to RBSDE (ξ,X , f ,R) if there exists an F-progressively measurable,
square-integrable process Zt = (Z i,j

t )1≤i,j≤m such that:
the following equality is satisfied, for all 1 ≤ i ≤ m and 0 ≤ t ≤ T ,

Y i
t =ξi +

∫ T

t
fi(s,Ys) ds +

m∑
j 6=i,j=1

∫ T

t
ri,j(s,Ys) dK j

s + K i
T −K i

t

−
∫ T

t

d∑
l=1

Z i,l
s dBl

s,

the inequality Y i
t ≥ X i

t holds for all 1 ≤ i ≤ m and t ∈ [0,T ],
for every 1 ≤ i ≤ m, the process K i is continuous, non-decreasing, with
K i

0 = 0 and K i
t =

∫ t
0 1{Y i

s =X i
s} dK i

s .
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Continuous-Time Multi-Person Stopping Games

Assumptions

(H1) The Rm-valued random variable ξ is FT -measurable and bounded.
(H2) For 1 ≤ i ≤ m, the mapping y 7→ fi(ω, t, y) : Rm → R is Lipschitz continuous,

uniformly with respect to (ω, t) and fi(·, ·, y) is an F-predictable process bounded
by βi for all fixed y ∈ Rm .

(H3) For i 6= j, the map y 7→ ri,j(ω, t, y) : Rm → R is Lipschitz-continuous, uniformly
with respect to (ω, t) and ri,j(·, ·, y) is an F-predictable process.

(H4) For i 6= j, there exists a constant λi,j ≥ 0 such that |ri,j(ω, t, y)| ≤ λi,j for all
(ω, t, y). Setting Λ = (λi,j)1≤i,j≤m with λi,i = 0, we assume that the spectral
radius ρ(Λ) < 1.

(H5) For 1 ≤ i ≤ m, the process X i satisfies

X i
t = X i

0 +
∫ t

0
Gi

s ds +
∫ t

0

d∑
l=1

H i,l
s dBl

s,

where Gi and H i,l are processes such that there exists a constant Li ≥ 0 such that
|Gi

t | ≤ Li for all (ω, t), and
∫ T

0 |H
i,l
s |2 ds <∞. Finally, ξi ≥ X i

T for 1 ≤ i ≤ m.
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Continuous-Time Multi-Person Stopping Games

Alternative Assumption

The following alternative assumption, weaker than (H4), will be sufficient:
(H ′4) For i 6= j, there exists a constant λi,j ≥ 0 such that for all (ω, t, y)

|ri,j(ω, t, y)| ≤ λi,j .

We set Λ = (λi,j)1≤i,j≤d with λi,i = 0 and we assume that (I − Λ)−1 is a matrix
with nonnegative entries. Moreover, there are constants aj > 0, 1 ≤ j ≤ d and
0 < δ < 1 such that

m∑
i 6=j, i=1

ai |ri,j(ω, t, y)| ≤
m∑

i 6=j, i=1

aiλi,j ≤ δ

for all 1 ≤ j ≤ d and (ω, t, y) ∈ Ω× [0,T ]× Rm .

An analysis of the proof of the main result in Ramasubramanian (2002) shows that if we
replace (H4) by the weaker condition (H ′4) then the assertion of the theorem is still valid.
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Continuous-Time Multi-Person Stopping Games

Space of Solutions

Using the vector (a1, . . . , am) in assumption (H ′4), we introduce the space HX associated
with the semimartingale X as the space of all F-progressively measurable processes
(Y ,K) such that:

the inequality Y i
t ≥ X i

t holds for all 1 ≤ i ≤ d and t ∈ [0,T ],
for all 1 ≤ i ≤ m, the process K i is nondecreasing with K i

0 = 0,

EP

(∑m
i=1

∫ T
0 eθtai |Y i

t | dt
)
<∞,

EP

(∑m
i=1

∫ T
0 eθtai‖K i ‖[t,T] dt

)
<∞,

where θ is a constant and ‖K i ‖[t,T] denotes the total variation of the process K i over
[t,T ], that is, ‖K i ‖[t,T] =

∫ T
t |dK i

s |. If we define the metric on HX

d((Y ,K), (Ŷ , K̂)) := EP

( m∑
i=1

∫ T

0
eθtai |Y i

t − Ŷ i
t | dt

)
+ EP

( m∑
i=1

∫ T

0
eθtai‖K i − K̂ i ‖[t,T] dt

)
then (HX , d) is a complete metric space.
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Continuous-Time Multi-Person Stopping Games

Theorem of Ramasubramanian (2002)

Theorem (Ramasubramanian (2002))
Let the assumptions (H1)–(H4) hold. If ξi ≥ 0 for 1 ≤ i ≤ m then there exists a
unique solution (Y ,K ) ∈ H0 to the RBSDE (ξ, 0, f ,R)

Y i
t = ξi +

∫ T

t
fi(s,Ys) ds +

∑m
j 6=i,j=1

∫ T

t
ri,j(s,Ys) dK j

s + K i
T −K i

t

−
∫ T

t

∑d
l=1 Z i,l

s dBl
s,

Y i
t ≥ 0, 1 ≤ i ≤ m.

Moreover,
0 ≤ dK i

t ≤ ((I − Λ)−1β)i dt

for all t ∈ [0,T ] and 1 ≤ i ≤ m, where β = (β1, . . . , βm) satisfies (H3).
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Continuous-Time Multi-Person Stopping Games

Multi-Reflected BSDE for Affine Stopping Game

Recall that the Multi-Reflected BSDE corresponding to the continuous-time affine
stopping game reads: for all t ∈ [0,T ]

Y i
t = ξi −

∑m
j 6=i,j=1 ri,j(K j

T −K j
t )− (K i

T −K i
t )−

∫ T

t

∑d
l=1 Z i,l

s dBl
s,

Y i
t ≥ X i

t ,∫ t
0 1{Y i

s>Xi
s} dK i

s = 0, 1 ≤ i ≤ m,

where ri,j = αi
1−αj

for i 6= j, and αi > 0,
∑m

i=1 αi < 1. According to assumption (H ′4),
we can set λi,j = ri,j , for i 6= j, 1 ≤ i, j ≤ m and λi,i = 0. This means that

Λ =


0 α1

1−α2
. . . α1

1−αm
α2

1−α1
0 . . . α2

1−αm
...

...
. . .

...
αm

1−α1
αm

1−α2
. . . 0

 .
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Value Process for Continuous-Time Multi-Person Game

Lemma
Assume that αi > 0 and

∑m
i=1 αi < 1. Then Λ satisfies condition (H ′4).

The following result shows that the continuous-time multi-person stopping game
has the unique value process.

Theorem
Under assumptions (H1) and (H5), the Multi-Reflected BSDE associated with
the multi-person game has a unique solution (Y ,K ) ∈ HX . Moreover,

0 ≤ dK i
t ≤ ((I − Λ)−1L)i dt

for all i = 1, . . . ,m and t ∈ [0,T ], where L = (L1, . . . ,Lm).
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