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Market model

Probabilistic setup

Time horizon: T > 0

Complete probability space: (Ω,F ,P),

Filtration: (Ft )t∈[0,T ] satisfying usual conditions,

F0 = {∅,Ω}, FT = F .

Consider
S = (S1, . . . ,Sk ) - nonnegative adapted semimartingale
(discounted asset prices),

Φ - admissible trading strategies, i.e. pairs ξ = (x , π),x ≥ 0,
π - predictable Rk -valued process such that
the value process of ξ given by Vt (ξ) = x +

∫ t
0 πudSu is

nonnegative
Tomasz Tkaliński (Warsaw University) Convex hedging... AMaMeF 3 / 21



Market model

Probabilistic setup

Time horizon: T > 0

Complete probability space: (Ω,F ,P),

Filtration: (Ft )t∈[0,T ] satisfying usual conditions,

F0 = {∅,Ω}, FT = F .

Consider
S = (S1, . . . ,Sk ) - nonnegative adapted semimartingale
(discounted asset prices),

Φ - admissible trading strategies, i.e. pairs ξ = (x , π),x ≥ 0,
π - predictable Rk -valued process such that
the value process of ξ given by Vt (ξ) = x +

∫ t
0 πudSu is

nonnegative
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Tomasz Tkaliński (Warsaw University) Convex hedging... AMaMeF 3 / 21



Market model

Probabilistic setup

Time horizon: T > 0

Complete probability space: (Ω,F ,P),

Filtration: (Ft )t∈[0,T ] satisfying usual conditions,

F0 = {∅,Ω}, FT = F .

Consider
S = (S1, . . . ,Sk ) - nonnegative adapted semimartingale
(discounted asset prices),

Φ - admissible trading strategies, i.e. pairs ξ = (x , π),x ≥ 0,
π - predictable Rk -valued process such that
the value process of ξ given by Vt (ξ) = x +

∫ t
0 πudSu is

nonnegative
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Market model

No arbitrage assumption

Definition 1 (sigma-martingale)

Rk -valued process Y is a sigma-martingale if there exists an Rd

-value martingale M and M-integrable predictable R+-valued process η
such that Yt =

∫ t
0 ηudMu.

Let Pσ denote the set of equivalent probability measures Q such that S
is a sigma-martingale under Q.

NFLVR
Pσ 6= ∅
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Hedging of contingent claims

The hedging problem

European contingent claims: L1
+(Ω,F ,P)

For ξ ∈ Φ and a contingent claim H

L(ξ,H) := −(VT (ξ)− H)−

the loss resulting from hedging H with ξ.

Hedging:

minimize L(ξ,H) over ξ satisfying some budget constraint.
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Tomasz Tkaliński (Warsaw University) Convex hedging... AMaMeF 5 / 21



Hedging of contingent claims

The hedging problem

European contingent claims: L1
+(Ω,F ,P)

For ξ ∈ Φ and a contingent claim H

L(ξ,H) := −(VT (ξ)− H)−

the loss resulting from hedging H with ξ.

Hedging:

minimize L(ξ,H) over ξ satisfying some budget constraint.
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Hedging of contingent claims

Superhedging

Consider:

Condition 1 (superhedging)

U0 := supP∗∈Pσ
EP∗H <∞.

Theorem 2.1
Under Condition 1 there exists ξ ∈ Φ with V0(ξ) = U0 for which
L(ξ,H) = 0 P-a.s.

Brilliant ... but
this might be unacceptably expensive (Gushchin and Mordecki
(2002)),
what about the case U0 =∞.

IDEA: Fix Ṽ0 < U0 and (in some sense) minimize L(ξ,H) over ξ
satisfying V0(ξ) ≤ Ṽ0.
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Hedging of contingent claims

Superhedging

Consider:

Condition 1 (superhedging)

U0 := supP∗∈Pσ
EP∗H <∞.

Theorem 2.1
Under Condition 1 there exists ξ ∈ Φ with V0(ξ) = U0 for which
L(ξ,H) = 0 P-a.s.

Brilliant ... but
this might be unacceptably expensive (Gushchin and Mordecki
(2002)),
what about the case U0 =∞.
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Hedging of contingent claims

How to quantify risk of a loss L(ξ,H)?

Quantile hedging (Föllmer and Leukert (1999)):

P(L(ξ,H) < 0)→ min.

Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007,
09))

ρ(L(ξ,H))→ min,

where ρ is some risk measure (coherent or more generally
convex...)
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Hedging of contingent claims

Convex measures of risk

Definition 2
A function ρ : Lp → R∪ {∞}, 1 ≤ p ≤ ∞ is a convex measure of risk if:

it is convex, i.e.

ρ(λX + (1−λ)Y ) ≤ λρ(X ) + (1−λ)ρ(Y ), λ ∈ [0,1], X ,Y ∈ Lp

monotone, i.e.

X ≥ Y ⇒ ρ(X ) ≤ ρ(Y ), X ,Y ∈ Lp

translation invariant , i.e.

ρ(X + c) = ρ(X )− c, c ∈ R, X ∈ Lp.
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Hedging of contingent claims

Convex hedging problem formulation

Let
ρ be a convex measure of risk on L1,
0 ≤ H ∈ L1(P)

Ṽ0 > 0
VṼ0

= {ξ ∈ Φ : V (ξ) ≥ 0, V0(ξ) ≤ Ṽ0}

The convex hedging problem:

inf
ξ∈VṼ0

ρ(L(ξ,H)) (1)
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Hedging of contingent claims

Convex hedging problem formulation

Let
ρ be a convex measure of risk on L1,
0 ≤ H ∈ L1(P)
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Idea of solution

Key concept

Let
R = {φ : Ω→ [0,1] : φ − F −measurable},
R0 = {φ ∈ R : supP∗∈PσEP∗φH ≤ Ṽ0},

Theorem 3.1

If φ̃ ∈ R0 solves the static problem

inf
φ∈R0

ρ(H(φ− 1)), (2)

the strategy (Ṽ0, ξ̃) superreplicating φ̃H solves the efficient hedging
problem (1).
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Overview of the literature

Selected results obtained so far (1)

1 (Föllmer, Leukert (2000)), ρ = expectation - existence and
structure of the solution,

2 (Nakano (2004)), ρ - coherent measure of risk on L1 - existence,
structure in particular cases,

3 (Rudloff (2007)), ρ - convex, l.s.c. measure of risk on L1 satisfying
some continuity assumption - existence and structure of the
solution.
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Overview of the literature

Selected results obtained so far (2)

Standard assumptions:

Assumption 1

supP∗∈PσEP∗H <∞

For a convex measures of risk ρ:

Assumption 2

ρ : L1 → R ∪ {∞} finite and continuous at H(φ0 − 1) with some
φ0 ∈ R0.
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Examples beyond the scope...

Call on the non-traded securities/ risk factors(1)

Consider standard BS model:

St = exp
(

Wt −
1
2

)
, Bt = 1 t ∈ [0,1]

on a probability space (Ω,F ,P) which supports infinite iid sequence of
standard Gaussian random variables X1,X2, . . . (independent of W )
and an independent U ∼ U[0,1].
For n = 1,2, . . . define Rn (quoted at discrete times: t = 0,1):

Rn
0 = 1, Rn

1 = exp
[
ρnW1 +

√
1− ρ2

nnXn −
1
2

(ρ2
n + n2(1− ρ2

n))

]
.

Assume correlation ρn ∈ (−1,1) decays to 0 with n, i.e. limn→∞ ρn = 0.
Now consider a hedging problem of a call option with the payoff

H =

( ∞∑
n=1

1
2n Rn

1 − K
)+

, (3)

for some K > 0.
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Examples beyond the scope...

Call on the non-traded securities/ risk factors(2)

Proposition 1
1. H is a well-defined and integrable contingent claim.
2. For n ∈ N

√
2π · (2n)2 · exp

(
X 2

n
2

)
· 1{|Xn−

√
1−ρ2

nn|≤2−2n−1}

is a density of a martingale measure Qn.
3. supn∈N EQnH =∞.
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Examples beyond the scope...

Convex risk measure violating continuity
assumption(1)

Define g : [0,1]→ R:

g(x) =

{
3
4x−

1
4 for x ∈ (0,1],

0 gdy x = 0.

For n ∈ N define gn : [0,1]→ R:

gn(x) = cn1[ 1
n+1 ,1](x)g(x), x ∈ [0,1],

where c−1
n := 1− ( 1

n+1)
3
4 is a normalizing constant (such that

E [gn(U)] = 1 for U ∼ U[0,1]) .

Fix U ∼ U[0,1] and let Q = {gn(U) : n ∈ N}.
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Examples beyond the scope...

Convex risk measure violating continuity
assumption(2)

Define ρ̄ : L1 → R ∪ {∞}: ρ̄(Y ) := supQ∈Q EQ(−Y ).

Proposition 2

ρ̄ is a σ(L1,L∞)-l.s.c, coherent measure of risk.

Consider the static problem:

inf
φ∈R0

ρ̄((φ− 1)H),

Proposition 3

Let H be and arbitrary contingent claim for which ρ̄((φ̂− 1)H) <∞ with
some φ̂ ∈ R0.
1. The function ρ̄ : L1 → R ∪ {∞} is not continuous at (φ0 − 1)H for
any φ0 ∈ R0 satisfying ρ̄((φ0 − 1)H) <∞.
2. ρ̄|L2 <∞
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Tomasz Tkaliński (Warsaw University) Convex hedging... AMaMeF 16 / 21



Approximative approach

Overview

1 For n = 1,2,3, . . . let Hn := H ∧ n.
2 Consider problems

inf
φ∈R0

ρ(Hn(φ− 1)). (4)

3 We apply results of (Rudloff (2007)) to obtain the existence and
the structure of the solution φn of (5) for n ∈ N .

4 Komlos’ type argument:
there exists a sequence φ̃n ∈ conv(φn, φn+1, φn+2, . . .) and φ̃ ∈ R
such that limm→∞ φ̃n = φ̃ P− a.s. and in L1.

5 φ̃ ∈ R0

6 φ̃ solves the static problem.
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Approximative approach

The main result I

Let Λ+ denote the set of measures of finite variation on Pσ

Fix Ṽ0 > 0 and let ρ : L1 → R ∪ {∞} be a convex measure of risk with
a determining set Q.

Let H be an integrable contingent claim and denote Hn := H ∧ n.

Theorem 1
Assume: ρ is Lp-continuous for some p ≥ 1 at φ0(H − 1) with some
φ0 ∈ R0.
1. For every n ∈ N there exists a solution (λn,Qn) to:

inf
(λ,Q)∈(Λ+,Q)

{
E
[
HnZQ ∧ Hn

∫
Pσ

ZP∗dλ
]
− Ṽ0λ(Pσ)− ρ∗(−ZQ)

}
.
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Approximative approach

The main result

Theorem 1 (continued)
2. For every n there exists a solution φn to the static problem

inf
φ∈R0

ρ(Hn(φ− 1)) (5)

satisfying

φn(ω) =

{
1 : Hn(ZQn −

∫
Pσ

ZP∗λn(dP∗))(ω) > 0,
0 : Hn(ZQn −

∫
Pσ

ZP∗λn(dP∗))(ω) < 0

and EP∗Hnφn = Ṽ0 for λn − a.e.P∗ ∈ Pσ
3. Solution to the static problem

inf
φ∈R0

ρ̄((φ− 1)H),

is given by φ̃ = limn→∞ φ̃n, for some φ̃n ∈ conv(φn, φn+1, . . .).
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Approximative approach
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Approximative approach

Thank you for your attention!
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