Convex hedging of non-superreplicable contingent claims in general semimartingale models

Tomasz Tkaliński

Faculty of Mathematics, Informatics and Mechanics Warsaw University

6th General AMaMeF Conference, 10.06.2013

Tomasz Tkaliński (Warsaw University)

Convex hedging...

AMaMeF 1/21

Overview

Market model

- Pedging of contingent claims
- Idea of solution
 - Overview of the literature
- 5 Examples beyond the scope...
- 6 Approximative approach

Time horizon: T > 0

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $(\mathcal{F}_t)_{t \in [0,T]}$ satisfying usual conditions,

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \mathcal{F}.$$

- *S* = (*S*¹,..., *S^k*) nonnegative adapted semimartingale (discounted asset prices),
- Φ admissible trading strategies, i.e. pairs $\xi = (x, \pi), x \ge 0$, π - predictable \mathbb{R}^{k} -valued process such that **the value process** of ξ given by $V_{t}(\xi) = x + \int_{0}^{t} \pi_{u} dS_{u}$ is nonnegative

Time horizon: T > 0

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $(\mathcal{F}_t)_{t \in [0,T]}$ satisfying usual conditions,

 $\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \mathcal{F}.$

Consider

• *S* = (*S*¹,..., *S^k*) - nonnegative adapted semimartingale (discounted asset prices),

• Φ - admissible trading strategies, i.e. pairs $\xi = (x, \pi), x \ge 0$, π - predictable \mathbb{R}^k -valued process such that **the value process** of ξ given by $V_t(\xi) = x + \int_0^t \pi_u dS_u$ is nonnegative

Time horizon: T > 0

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $(\mathcal{F}_t)_{t \in [0,T]}$ satisfying usual conditions,

```
\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \mathcal{F}.
```

- *S* = (*S*¹,..., *S^k*) nonnegative adapted semimartingale (discounted asset prices),
- Φ admissible trading strategies, i.e. pairs $\xi = (x, \pi), x \ge 0$, π - predictable \mathbb{R}^k -valued process such that **the value process** of ξ given by $V_t(\xi) = x + \int_0^t \pi_u dS_u$ is nonnegative

Time horizon: T > 0

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $(\mathcal{F}_t)_{t \in [0,T]}$ satisfying usual conditions,

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \mathcal{F}.$$

Consider

• *S* = (*S*¹,..., *S^k*) - nonnegative adapted semimartingale (discounted asset prices),

• Φ - admissible trading strategies, i.e. pairs $\xi = (x, \pi), x \ge 0$, π - predictable \mathbb{R}^k -valued process such that **the value process** of ξ given by $V_t(\xi) = x + \int_0^t \pi_u dS_u$ is nonnegative

Time horizon: T > 0

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $(\mathcal{F}_t)_{t \in [0,T]}$ satisfying usual conditions,

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \mathcal{F}.$$

Consider

• *S* = (*S*¹,..., *S*^k) - nonnegative adapted semimartingale (discounted asset prices),

• Φ - admissible trading strategies, i.e. pairs $\xi = (x, \pi), x \ge 0$, π - predictable \mathbb{R}^k -valued process such that **the value process** of ξ given by $V_t(\xi) = x + \int_0^t \pi_u dS_u$ is nonnegative

Time horizon: T > 0

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $(\mathcal{F}_t)_{t \in [0,T]}$ satisfying usual conditions,

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \mathcal{F}.$$

- *S* = (*S*¹,..., *S*^k) nonnegative adapted semimartingale (discounted asset prices),
- Φ admissible trading strategies, i.e. pairs $\xi = (x, \pi), x \ge 0$, π - predictable \mathbb{R}^k -valued process such that **the value process** of ξ given by $V_t(\xi) = x + \int_0^t \pi_u dS_u$ is nonnegative

Time horizon: T > 0

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $(\mathcal{F}_t)_{t \in [0,T]}$ satisfying usual conditions,

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \mathcal{F}.$$

Consider

• *S* = (*S*¹,..., *S*^k) - nonnegative adapted semimartingale (discounted asset prices),

 Φ - admissible trading strategies, i.e. pairs ξ = (x, π), x ≥ 0, π - predictable ℝ^k-valued process such that the value process of ξ given by V_t(ξ) = x + ∫₀^t π_udS_u is nonnegative

Time horizon: T > 0

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $(\mathcal{F}_t)_{t \in [0,T]}$ satisfying usual conditions,

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \mathcal{F}.$$

- S = (S¹,...,S^k) nonnegative adapted semimartingale (discounted asset prices),
- Φ admissible trading strategies, i.e. pairs $\xi = (x, \pi), x \ge 0$, π - predictable \mathbb{R}^k -valued process such that **the value process** of ξ given by $V_t(\xi) = x + \int_0^t \pi_u dS_u$ is nonnegative

Time horizon: T > 0

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $(\mathcal{F}_t)_{t \in [0,T]}$ satisfying usual conditions,

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \mathcal{F}.$$

- S = (S¹,..., S^k) nonnegative adapted semimartingale (discounted asset prices),
- Φ admissible trading strategies, i.e. pairs ξ = (x, π), x ≥ 0, π - predictable ℝ^k-valued process such that the value process of ξ given by V_t(ξ) = x + ∫₀^t π_udS_u is nonnegative

Time horizon: T > 0

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $(\mathcal{F}_t)_{t \in [0,T]}$ satisfying usual conditions,

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \mathcal{F}.$$

- S = (S¹,...,S^k) nonnegative adapted semimartingale (discounted asset prices),
- Φ admissible trading strategies, i.e. pairs $\xi = (x, \pi), x \ge 0$, π - predictable \mathbb{R}^k -valued process such that **the value process** of ξ given by $V_t(\xi) = x + \int_0^t \pi_u dS_u$ is nonnegative

Time horizon: T > 0

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $(\mathcal{F}_t)_{t \in [0,T]}$ satisfying usual conditions,

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \ \mathcal{F}_T = \mathcal{F}.$$

- S = (S¹,...,S^k) nonnegative adapted semimartingale (discounted asset prices),
- Φ admissible trading strategies, i.e. pairs $\xi = (x, \pi), x \ge 0$, π - predictable \mathbb{R}^k -valued process such that **the value process** of ξ given by $V_t(\xi) = x + \int_0^t \pi_u dS_u$ is nonnegative

No arbitrage assumption

Definition 1 (sigma-martingale)

 \mathbb{R}^k -valued process Y is a **sigma-martingale** if there exists an \mathbb{R}^d -value martingale M and M-integrable predictable \mathbb{R}_+ -valued process η such that $Y_t = \int_0^t \eta_u dM_u$.

Let \mathcal{P}_{σ} denote the set of equivalent probability measures \mathbb{Q} such that *S* is a sigma-martingale under \mathbb{Q} .

No arbitrage assumption

Definition 1 (sigma-martingale)

 \mathbb{R}^k -valued process Y is a **sigma-martingale** if there exists an \mathbb{R}^d -value martingale M and M-integrable predictable \mathbb{R}_+ -valued process η such that $Y_t = \int_0^t \eta_u dM_u$.

Let \mathcal{P}_{σ} denote the set of equivalent probability measures \mathbb{Q} such that *S* is a sigma-martingale under \mathbb{Q} .

No arbitrage assumption

Definition 1 (sigma-martingale)

 \mathbb{R}^k -valued process Y is a **sigma-martingale** if there exists an \mathbb{R}^d -value martingale M and M-integrable predictable \mathbb{R}_+ -valued process η such that $Y_t = \int_0^t \eta_u dM_u$.

Let \mathcal{P}_{σ} denote the set of equivalent probability measures \mathbb{Q} such that *S* is a sigma-martingale under \mathbb{Q} .

The hedging problem

European contingent claims: $L^1_+(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim *H*

 $L(\xi, H) := -(V_T(\xi) - H)^{-1}$

the loss resulting from hedging *H* with ξ .

Hedging:

minimize $L(\xi, H)$ over ξ satisfying some budget constraint.

イロト イポト イヨト イヨト 二日

The hedging problem

European contingent claims: $L^1_+(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim H

 $L(\xi, H) := -(V_T(\xi) - H)^{-1}$

the loss resulting from hedging *H* with ξ .

Hedging:

minimize $L(\xi, H)$ over ξ satisfying some budget constraint.

イロト 不得 トイヨト イヨト ニヨー

The hedging problem

European contingent claims: $L^1_+(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim H

 $L(\xi, H) := -(V_T(\xi) - H)^-$

the loss resulting from hedging *H* with ξ .

Hedging:

minimize $L(\xi, H)$ over ξ satisfying some budget constraint.

イロト イポト イヨト イヨト 二日

The hedging problem

European contingent claims: $L^1_+(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim H

 $L(\xi, H) := -(V_T(\xi) - H)^-$

the loss resulting from hedging *H* with ξ .

Hedging:

minimize $L(\xi, H)$ over ξ satisfying some budget constraint.

The hedging problem

European contingent claims: $L^1_+(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim H

 $L(\xi, H) := -(V_T(\xi) - H)^-$

the loss resulting from hedging *H* with ξ .

Hedging:

minimize $L(\xi, H)$ over ξ satisfying some budget constraint.

The hedging problem

European contingent claims: $L^1_+(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim H

 $L(\xi, H) := -(V_T(\xi) - H)^-$

the loss resulting from hedging *H* with ξ .

Hedging:

minimize $L(\xi, H)$ over ξ satisfying some budget constraint.

Consider:

Condition 1 (superhedging)

 $U_0:=\sup_{\mathbb{P}^*\in\mathcal{P}_{\sigma}}E_{\mathbb{P}^*}H<\infty.$

Theorem 2.1

Under Condition 1 there exists $\xi \in \Phi$ with $V_0(\xi) = U_0$ for which $L(\xi, H) = 0 \mathbb{P}$ -a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_0 = \infty$.

IDEA: Fix $\tilde{V}_0 < U_0$ and (in some sense) minimize $L(\xi, H)$ over ξ satisfying $V_0(\xi) \leq \tilde{V}_0$.

Consider:

Condition 1 (superhedging)

$$U_0:=\sup_{\mathbb{P}^*\in\mathcal{P}_{\sigma}}E_{\mathbb{P}^*}H<\infty.$$

Theorem 2.1

Under Condition 1 there exists $\xi \in \Phi$ with $V_0(\xi) = U_0$ for which $L(\xi, H) = 0 \mathbb{P}$ -a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_0 = \infty$.

IDEA: Fix $\tilde{V}_0 < U_0$ and (in some sense) minimize $L(\xi, H)$ over ξ satisfying $V_0(\xi) \leq \tilde{V}_0$.

Consider:

Condition 1 (superhedging)

$$U_0 := \sup_{\mathbb{P}^* \in \mathcal{P}_\sigma} E_{\mathbb{P}^*} H < \infty.$$

Theorem 2.1

Under Condition 1 there exists $\xi \in \Phi$ with $V_0(\xi) = U_0$ for which $L(\xi, H) = 0 \mathbb{P}$ -a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_0 = \infty$.

IDEA: Fix $\tilde{V}_0 < U_0$ and (in some sense) minimize $L(\xi, H)$ over ξ satisfying $V_0(\xi) \leq \tilde{V}_0$.

Consider:

Condition 1 (superhedging)

$$U_0 := \sup_{\mathbb{P}^* \in \mathcal{P}_\sigma} E_{\mathbb{P}^*} H < \infty.$$

Theorem 2.1

Under Condition 1 there exists $\xi \in \Phi$ with $V_0(\xi) = U_0$ for which $L(\xi, H) = 0 \mathbb{P}$ -a.s.

Brilliant ... but

this might be unacceptably expensive (Gushchin and Mordecki (2002)),

• what about the case $U_0 = \infty$.

IDEA: Fix $\tilde{V}_0 < U_0$ and (in some sense) minimize $L(\xi, H)$ over ξ satisfying $V_0(\xi) \leq \tilde{V}_0$.

Consider:

Condition 1 (superhedging)

$$U_0 := \sup_{\mathbb{P}^* \in \mathcal{P}_\sigma} E_{\mathbb{P}^*} H < \infty.$$

Theorem 2.1

Under Condition 1 there exists $\xi \in \Phi$ with $V_0(\xi) = U_0$ for which $L(\xi, H) = 0 \mathbb{P}$ -a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_0 = \infty$.

IDEA: Fix $\tilde{V}_0 < U_0$ and (in some sense) minimize $L(\xi, H)$ over ξ satisfying $V_0(\xi) \leq \tilde{V}_0$.

Consider:

Condition 1 (superhedging)

$$U_0 := \sup_{\mathbb{P}^* \in \mathcal{P}_\sigma} E_{\mathbb{P}^*} H < \infty.$$

Theorem 2.1

Under Condition 1 there exists $\xi \in \Phi$ with $V_0(\xi) = U_0$ for which $L(\xi, H) = 0 \mathbb{P}$ -a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_0 = \infty$.

IDEA: Fix $\tilde{V}_0 < U_0$ and (in some sense) minimize $L(\xi, H)$ over ξ satisfying $V_0(\xi) \leq \tilde{V}_0$.

Consider:

Condition 1 (superhedging)

$$U_0 := \sup_{\mathbb{P}^* \in \mathcal{P}_\sigma} E_{\mathbb{P}^*} H < \infty.$$

Theorem 2.1

Under Condition 1 there exists $\xi \in \Phi$ with $V_0(\xi) = U_0$ for which $L(\xi, H) = 0 \mathbb{P}$ -a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_0 = \infty$.

IDEA: Fix $\tilde{V}_0 < U_0$ and (in some sense) minimize $L(\xi, H)$ over ξ satisfying $V_0(\xi) \leq \tilde{V}_0$.

Consider:

Condition 1 (superhedging)

$$U_0:=\sup_{\mathbb{P}^*\in\mathcal{P}_{\sigma}}E_{\mathbb{P}^*}H<\infty.$$

Theorem 2.1

Under Condition 1 there exists $\xi \in \Phi$ with $V_0(\xi) = U_0$ for which $L(\xi, H) = 0 \mathbb{P}$ -a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_0 = \infty$.

IDEA: Fix $\tilde{V}_0 < U_0$ and (in some sense) minimize $L(\xi, H)$ over ξ satisfying $V_0(\xi) \leq \tilde{V}_0$.

How to quantify risk of a loss $L(\xi, H)$?

• Quantile hedging (Föllmer and Leukert (1999)):

 $\mathbb{P}(L(\xi, H) < 0) \rightarrow min.$

• Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007, 09))

 $\rho(L(\xi, H)) \rightarrow min,$

where ρ is some risk measure (coherent or more generally convex...)

How to quantify risk of a loss $L(\xi, H)$?

• Quantile hedging (Föllmer and Leukert (1999)):

 $\mathbb{P}(L(\xi, H) < 0) \rightarrow min.$

• Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007, 09))

 $\rho(L(\xi, H)) \rightarrow min,$

where ρ is some risk measure (coherent or more generally convex...)

How to quantify risk of a loss $L(\xi, H)$?

• Quantile hedging (Föllmer and Leukert (1999)):

 $\mathbb{P}(L(\xi, H) < 0) \rightarrow \textit{min}.$

• Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007, 09))

 $\rho(L(\xi, H)) \rightarrow min,$

where ρ is some risk measure (coherent or more generally convex...)

DQC

How to quantify risk of a loss $L(\xi, H)$?

• Quantile hedging (Föllmer and Leukert (1999)):

 $\mathbb{P}(L(\xi, H) < 0) \rightarrow \textit{min.}$

• Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007, 09))

 $\rho(L(\xi, H)) \rightarrow min,$

where ρ is some risk measure (coherent or more generally convex...)

DQC

How to quantify risk of a loss $L(\xi, H)$?

• Quantile hedging (Föllmer and Leukert (1999)):

 $\mathbb{P}(L(\xi, H) < 0) \rightarrow \textit{min.}$

Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007, 09))

 $\rho(L(\xi, H)) \rightarrow min,$

where ρ is some risk measure (coherent or more generally convex...)

イロト イポト イヨト イヨト 二日

How to quantify risk of a loss $L(\xi, H)$?

• Quantile hedging (Föllmer and Leukert (1999)):

 $\mathbb{P}(L(\xi, H) < 0) \rightarrow \textit{min.}$

Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007, 09))

 $\rho(L(\xi, H)) \rightarrow min,$

where ρ is some risk measure (coherent or more generally convex...)

(日)

Definition 2

- A function $\rho: L^p \to \mathbb{R} \cup \{\infty\}, \ 1 \le p \le \infty$ is a convex measure of risk if:
 - it is convex, i.e.

 $\rho(\lambda X + (1 - \lambda)Y) \le \lambda \rho(X) + (1 - \lambda)\rho(Y), \qquad \lambda \in [0, 1], \ X, Y \in L^{p}$

• monotone, i.e.

 $X \ge Y \Rightarrow \rho(X) \le \rho(Y), \ X, Y \in L^p$

• translation invariant , i.e.

$$\rho(X+c) = \rho(X) - c, \qquad c \in \mathbb{R}, \ X \in L^{p}.$$

< (1) > < = >

Definition 2

A function $\rho: L^p \to \mathbb{R} \cup \{\infty\}, \ 1 \le p \le \infty$ is a convex measure of risk if:

• it is convex, i.e.

 $\rho(\lambda X + (1 - \lambda)Y) \le \lambda \rho(X) + (1 - \lambda)\rho(Y), \qquad \lambda \in [0, 1], \ X, Y \in L^p$

• monotone, i.e.

 $X \ge Y \Rightarrow \rho(X) \le \rho(Y), \ X, Y \in L^p$

• translation invariant , i.e.

 $\rho(X+c) = \rho(X) - c, \qquad c \in \mathbb{R}, \ X \in L^{p}.$

Tomasz Tkaliński (Warsaw University)

ヘロマ ヘビマ ヘビマ

Definition 2

A function $\rho: L^p \to \mathbb{R} \cup \{\infty\}, \ 1 \le p \le \infty$ is a convex measure of risk if:

• it is convex, i.e.

$$ho(\lambda X + (1 - \lambda)Y) \leq \lambda
ho(X) + (1 - \lambda)
ho(Y), \qquad \lambda \in [0, 1], \; X, Y \in L^p$$

• monotone, i.e.

$$X \ge Y \Rightarrow \rho(X) \le \rho(Y), \ X, Y \in L^p$$

• translation invariant , i.e.

$$\rho(X+c) = \rho(X) - c, \qquad c \in \mathbb{R}, \ X \in L^{p}.$$

Tomasz Tkaliński (Warsaw University)

Definition 2

A function $\rho: L^p \to \mathbb{R} \cup \{\infty\}, \ 1 \le p \le \infty$ is a convex measure of risk if:

• it is convex, i.e.

$$ho(\lambda X + (1 - \lambda)Y) \leq \lambda
ho(X) + (1 - \lambda)
ho(Y), \qquad \lambda \in [0, 1], \ X, Y \in L^p$$

• monotone, i.e.

$$X \ge Y \Rightarrow \rho(X) \le \rho(Y), \ X, Y \in L^p$$

• translation invariant , i.e.

$$\rho(X+c) = \rho(X) - c, \qquad c \in \mathbb{R}, \ X \in L^{p}.$$

Tomasz Tkaliński (Warsaw University)

Definition 2

A function $\rho: L^p \to \mathbb{R} \cup \{\infty\}, \ 1 \le p \le \infty$ is a convex measure of risk if:

• it is convex, i.e.

$$ho(\lambda X + (1 - \lambda)Y) \leq \lambda
ho(X) + (1 - \lambda)
ho(Y), \qquad \lambda \in [0, 1], \; X, Y \in L^p$$

• monotone, i.e.

$$X \ge Y \Rightarrow \rho(X) \le \rho(Y), \ X, Y \in L^p$$

• translation invariant , i.e.

$$\rho(\mathbf{X} + \mathbf{c}) = \rho(\mathbf{X}) - \mathbf{c}, \qquad \mathbf{c} \in \mathbb{R}, \, \mathbf{X} \in L^{p}.$$

ヘロマ ヘビマ ヘビマ

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^1 ,
- $0 \leq H \in L^1(\mathbb{P})$
- $\tilde{V}_0 > 0$
- $\mathcal{V}_{\tilde{V}_0} = \{\xi \in \Phi : V(\xi) \ge 0, V_0(\xi) \le \tilde{V}_0\}$

The convex hedging problem:

$$\inf_{\xi \in \mathcal{V}_{\tilde{V}_0}} \rho(L(\xi, H)) \tag{1}$$

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^1 ,
- $0 \leq H \in L^1(\mathbb{P})$
- $\tilde{V}_0 > 0$
- $\mathcal{V}_{\tilde{V}_0} = \{\xi \in \Phi : V(\xi) \ge 0, V_0(\xi) \le \tilde{V}_0\}$

The convex hedging problem:

$$\inf_{\xi \in \mathcal{V}_{\tilde{V}_0}} \rho(L(\xi, H)) \tag{1}$$

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^1 ,
- $0 \leq H \in L^1(\mathbb{P})$
- $\tilde{V}_0 > 0$
- $\mathcal{V}_{\tilde{V}_0} = \{\xi \in \Phi : V(\xi) \ge 0, V_0(\xi) \le \tilde{V}_0\}$

The convex hedging problem:

$$\inf_{\xi \in \mathcal{V}_{\vec{V}_0}} \rho(L(\xi, H)) \tag{1}$$

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^1 ,
- $0 \leq H \in L^1(\mathbb{P})$
- $\tilde{V}_0 > 0$
- $\mathcal{V}_{\widetilde{V}_0} = \{\xi \in \Phi : V(\xi) \ge 0, V_0(\xi) \le \widetilde{V}_0\}$

The convex hedging problem:

$$\inf_{\xi \in \mathcal{V}_{\bar{V}_0}} \rho(L(\xi, H)) \tag{1}$$

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^1 ,
- $0 \leq H \in L^1(\mathbb{P})$
- $\tilde{V}_0 > 0$
- $\mathcal{V}_{\widetilde{V}_0} = \{\xi \in \Phi : V(\xi) \ge 0, V_0(\xi) \le \widetilde{V}_0\}$

The convex hedging problem:

$$\inf_{\xi \in \mathcal{V}_{\bar{V}_0}} \rho(L(\xi, H)) \tag{1}$$

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^1 ,
- $0 \leq H \in L^1(\mathbb{P})$
- $\tilde{V}_0 > 0$
- $\mathcal{V}_{\widetilde{V}_0} = \{\xi \in \Phi : V(\xi) \ge 0, V_0(\xi) \le \widetilde{V}_0\}$

The convex hedging problem:

$$\inf_{\xi \in \mathcal{V}_{\widetilde{V}_0}} \rho(L(\xi, H)) \tag{1}$$

Tomasz Tkaliński (Warsaw University)

Key concept

Let

• $\mathcal{R} = \{ \phi : \Omega \rightarrow [0, 1] : \phi - \mathcal{F} - measurable \},\$

•
$$\mathcal{R}_0 = \{ \phi \in \mathcal{R} : sup_{\mathbb{P}^* \in \mathcal{P}_\sigma} E_{\mathbb{P}^*} \phi H \leq \tilde{V}_0 \},$$

Theorem 3.1

If $ilde{\phi} \in \mathcal{R}_{\mathbf{0}}$ solves the static problem

$$\inf_{\phi \in \mathcal{R}_0} \rho(H(\phi - 1)), \tag{2}$$

the strategy ($ilde{V}_0, ilde{\xi}$) superreplicating $ilde{\phi} H$ solves the efficient hedging problem (1).

Tomasz Tkaliński (Warsaw University)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

Key concept

Let

• $\mathcal{R} = \{ \phi : \Omega \rightarrow [0, 1] : \phi - \mathcal{F} - measurable \},\$

•
$$\mathcal{R}_0 = \{ \phi \in \mathcal{R} : sup_{\mathbb{P}^* \in \mathcal{P}_\sigma} E_{\mathbb{P}^*} \phi H \leq \tilde{V}_0 \},$$

Theorem 3.1

If $ilde{\phi} \in \mathcal{R}_0$ solves the static problem

$$\inf_{\phi \in \mathcal{R}_0} \rho(H(\phi - 1)), \tag{2}$$

the strategy ($\tilde{V}_0, \tilde{\xi}$) superreplicating $\tilde{\phi} H$ solves the efficient hedging problem (1).

Tomasz Tkaliński (Warsaw University)

Selected results obtained so far (1)

Overview of the literature

- (Föllmer, Leukert (2000)), ρ = expectation existence and structure of the solution,
- (Nakano (2004)), ρ coherent measure of risk on L^1 existence, structure in particular cases,
- (Rudloff (2007)), ρ convex, l.s.c. measure of risk on L¹ satisfying some continuity assumption - existence and structure of the solution.

Selected results obtained so far (1)

Overview of the literature

- (Föllmer, Leukert (2000)), ρ = expectation existence and structure of the solution,
- (Nakano (2004)), ρ coherent measure of risk on L^1 existence, structure in particular cases,
- ③ (Rudloff (2007)), ρ convex, l.s.c. measure of risk on L¹ satisfying some continuity assumption - existence and structure of the solution.

Selected results obtained so far (1)

Overview of the literature

- (Föllmer, Leukert (2000)), ρ = expectation existence and structure of the solution,
- (Nakano (2004)), ρ coherent measure of risk on L^1 existence, structure in particular cases,
- (Rudloff (2007)), ρ convex, l.s.c. measure of risk on L¹ satisfying some continuity assumption existence and structure of the solution.

Overview of the literature

Selected results obtained so far (2)

Standard assumptions:

Assumption 1

 $sup_{\mathbb{P}^*\in\mathcal{P}_\sigma}E_{\mathbb{P}^*}H<\infty$

For a convex measures of risk ρ :

Assumption 2

 $ho : L^1 \to \mathbb{R} \cup \{\infty\}$ finite and continuous at $H(\phi_0 - 1)$ with some $\phi_0 \in \mathcal{R}_0$.

Tomasz Tkaliński (Warsaw University)

イロト 不得 トイヨト イヨト ニヨー

Overview of the literature

Selected results obtained so far (2)

Standard assumptions:

Assumption 1

 $sup_{\mathbb{P}^*\in\mathcal{P}_\sigma}E_{\mathbb{P}^*}H<\infty$

For a convex measures of risk ρ :

Assumption 2

 $\rho: L^1 \to \mathbb{R} \cup \{\infty\}$ finite and continuous at $H(\phi_0 - 1)$ with some $\phi_0 \in \mathcal{R}_0$.

Call on the non-traded securities/ risk factors(1)

Consider standard BS model:

$$S_t = exp\left(W_t - \frac{1}{2}\right), \qquad B_t = 1 \qquad t \in [0, 1]$$

on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which supports infinite iid sequence of standard Gaussian random variables X_1, X_2, \ldots (independent of W) and an independent $U \sim U[0, 1]$.

For n = 1, 2, ... define R^n (quoted at discrete times: t = 0, 1):

$$R_0^n = 1, \quad R_1^n = \exp\left[\rho_n W_1 + \sqrt{1 - \rho_n^2} n X_n - \frac{1}{2}(\rho_n^2 + n^2(1 - \rho_n^2))\right].$$

Assume correlation $\rho_n \in (-1, 1)$ decays to 0 with *n*, i.e. $\lim_{n\to\infty} \rho_n = 0$. Now consider a hedging problem of a call option with the payoff

$$H = \left(\sum_{n=1}^{\infty} \frac{1}{2^n} R_1^n - K\right)^+,$$
 (3)

for some K > 0.

Tomasz Tkaliński (Warsaw University)

Call on the non-traded securities/ risk factors(1)

Consider standard BS model:

$$S_t = exp\left(W_t - \frac{1}{2}\right), \qquad B_t = 1 \qquad t \in [0, 1]$$

on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which supports infinite iid sequence of standard Gaussian random variables X_1, X_2, \ldots (independent of W) and an independent $U \sim U[0, 1]$.

For n = 1, 2, ... define R^n (quoted at discrete times: t = 0, 1):

$$R_0^n = 1, \quad R_1^n = \exp\left[\rho_n W_1 + \sqrt{1 - \rho_n^2} n X_n - \frac{1}{2}(\rho_n^2 + n^2(1 - \rho_n^2))\right].$$

Assume correlation $\rho_n \in (-1, 1)$ decays to 0 with *n*, i.e. $\lim_{n\to\infty} \rho_n = 0$. Now consider a hedging problem of a call option with the payoff

$$H = \left(\sum_{n=1}^{\infty} \frac{1}{2^n} R_1^n - K\right)^+,$$
 (3)

Tomasz Tkaliński (Warsaw University)

Call on the non-traded securities/ risk factors(1)

Consider standard BS model:

$$S_t = exp\left(W_t - \frac{1}{2}\right), \qquad B_t = 1 \qquad t \in [0, 1]$$

on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which supports infinite iid sequence of standard Gaussian random variables X_1, X_2, \ldots (independent of W) and an independent $U \sim U[0, 1]$.

For n = 1, 2, ... define R^n (quoted at discrete times: t = 0, 1):

$$R_0^n = 1, \quad R_1^n = \exp\left[\rho_n W_1 + \sqrt{1 - \rho_n^2} n X_n - \frac{1}{2}(\rho_n^2 + n^2(1 - \rho_n^2))\right].$$

Assume correlation $\rho_n \in (-1, 1)$ decays to 0 with *n*, i.e. $\lim_{n\to\infty} \rho_n = 0$. Now consider a hedging problem of a call option with the payoff

$$H = \left(\sum_{n=1}^{\infty} \frac{1}{2^n} R_1^n - K\right)^+,\tag{3}$$

for some K > 0.

Tomasz Tkaliński (Warsaw University)

Call on the non-traded securities/ risk factors(2)

Proposition 1

1. H is a well-defined and integrable contingent claim. 2. For $n \in \mathbb{N}$

$$\sqrt{2\pi} \cdot (2^n)^2 \cdot \exp\left(\frac{X_n^2}{2}\right) \cdot \mathbf{1}_{\{|X_n - \sqrt{1 - \rho_n^2}n| \le 2^{-2n-1}\}}$$

is a density of a martingale measure \mathbb{Q}_n . 3. $\sup_{n \in \mathbb{N}} E_{\mathbb{Q}_n} H = \infty$.

Convex risk measure violating continuity assumption(1)

Define $g : [0, 1] \rightarrow \mathbb{R}$:

$$g(x) = \begin{cases} \frac{3}{4}x^{-\frac{1}{4}} & \text{for } x \in (0,1], \\ 0 & gdy \ x = 0. \end{cases}$$

For $n \in \mathbb{N}$ define $g_n : [0, 1] \to \mathbb{R}$:

$$g_n(x) = c_n \mathbf{1}_{[\frac{1}{n+1},1]}(x)g(x), \qquad x \in [0,1],$$

where $c_n^{-1} := 1 - (\frac{1}{n+1})^{\frac{3}{4}}$ is a normalizing constant (such that $E[g_n(U)] = 1$ for $U \sim U[0, 1]$).

Fix $U \sim U[0, 1]$ and let $\mathcal{Q} = \{g_n(U) : n \in \mathbb{N}\}.$

Tomasz Tkaliński (Warsaw University)

Convex risk measure violating continuity assumption(1)

Define $g : [0, 1] \rightarrow \mathbb{R}$:

$$g(x) = \left\{ egin{array}{ccc} rac{3}{4}x^{-rac{1}{4}} & \textit{for } x \in (0,1], \ 0 & \textit{gdy } x = 0. \end{array}
ight.$$

For $n \in \mathbb{N}$ define $g_n : [0, 1] \to \mathbb{R}$:

$$g_n(x) = c_n \mathbf{1}_{[\frac{1}{n+1},1]}(x)g(x), \qquad x \in [0,1],$$

where $c_n^{-1} := 1 - (\frac{1}{n+1})^{\frac{3}{4}}$ is a normalizing constant (such that $E[g_n(U)] = 1$ for $U \sim U[0, 1]$).

Fix $U \sim U[0, 1]$ and let $\mathcal{Q} = \{g_n(U) : n \in \mathbb{N}\}$.

Tomasz Tkaliński (Warsaw University)

Convex risk measure violating continuity assumption(1)

Define $g : [0, 1] \rightarrow \mathbb{R}$:

$$g(x) = \left\{ egin{array}{ccc} rac{3}{4}x^{-rac{1}{4}} & \textit{for } x \in (0,1], \ 0 & \textit{gdy } x = 0. \end{array}
ight.$$

For $n \in \mathbb{N}$ define $g_n : [0, 1] \to \mathbb{R}$:

$$g_n(x) = c_n \mathbf{1}_{[\frac{1}{n+1},1]}(x)g(x), \qquad x \in [0,1],$$

where $c_n^{-1} := 1 - (\frac{1}{n+1})^{\frac{3}{4}}$ is a normalizing constant (such that $E[g_n(U)] = 1$ for $U \sim U[0, 1]$).

Fix $U \sim U[0, 1]$ and let $\mathcal{Q} = \{g_n(U) : n \in \mathbb{N}\}.$

Convex risk measure violating continuity assumption(2)

Define
$$\bar{\rho}: L^1 \to \mathbb{R} \cup \{\infty\}$$
: $\bar{\rho}(Y) := \sup_{\mathbb{Q} \in \mathcal{Q}} E_{\mathbb{Q}}(-Y)$.

Proposition 2

 $\bar{\rho}$ is a $\sigma(L^1, L^\infty)$ -l.s.c, coherent measure of risk.

Consider the static problem:

$$\inf_{\phi\in\mathcal{R}_0}\bar{\rho}((\phi-1)H),$$

Proposition 3

Let H be and arbitrary contingent claim for which $\bar{\rho}((\phi - 1)H) < \infty$ with some $\hat{\phi} \in \mathcal{R}_0$. 1. The function $\bar{\rho} : L^1 \to \mathbb{R} \cup \{\infty\}$ is not continuous at $(\phi_0 - 1)H$ for any $\phi_0 \in \mathcal{R}_0$ satisfying $\bar{\rho}((\phi_0 - 1)H) < \infty$. 2. $\bar{\rho}|_{L^2} < \infty$

Convex risk measure violating continuity assumption(2)

Define
$$\bar{\rho}: L^1 \to \mathbb{R} \cup \{\infty\}$$
: $\bar{\rho}(Y) := \sup_{\mathbb{Q} \in \mathcal{Q}} E_{\mathbb{Q}}(-Y)$.

Proposition 2

 $\bar{\rho}$ is a $\sigma(L^1, L^\infty)$ -l.s.c, coherent measure of risk.

Consider the static problem:

$$\inf_{\phi\in\mathcal{R}_0}\bar{\rho}((\phi-1)H),$$

Proposition 3

Let H be and arbitrary contingent claim for which $\bar{\rho}((\phi - 1)H) < \infty$ with some $\hat{\phi} \in \mathcal{R}_0$. 1. The function $\bar{\rho} : L^1 \to \mathbb{R} \cup \{\infty\}$ is not continuous at $(\phi_0 - 1)H$ for any $\phi_0 \in \mathcal{R}_0$ satisfying $\bar{\rho}((\phi_0 - 1)H) < \infty$. 2. $\bar{\rho}|_{L^2} < \infty$

Convex risk measure violating continuity assumption(2)

Define
$$\bar{\rho}: L^1 \to \mathbb{R} \cup \{\infty\}$$
: $\bar{\rho}(Y) := \sup_{\mathbb{Q} \in \mathcal{Q}} E_{\mathbb{Q}}(-Y)$.

Proposition 2

 $\bar{\rho}$ is a $\sigma(L^1, L^\infty)$ -l.s.c, coherent measure of risk.

Consider the static problem:

$$\inf_{\phi\in\mathcal{R}_0}\bar{\rho}((\phi-1)H),$$

Proposition 3

Let H be and arbitrary contingent claim for which $\bar{\rho}((\hat{\phi} - 1)H) < \infty$ with some $\hat{\phi} \in \mathcal{R}_0$. 1. The function $\bar{\rho} : L^1 \to \mathbb{R} \cup \{\infty\}$ is not continuous at $(\phi_0 - 1)H$ for any $\phi_0 \in \mathcal{R}_0$ satisfying $\bar{\rho}((\phi_0 - 1)H) < \infty$. 2. $\bar{\rho}|_{L^2} < \infty$

) For
$$n = 1, 2, 3, ...$$
 let $H_n := H \land n$.

2 Consider problems

$$\inf_{\phi \in \mathcal{R}_0} \rho(H_n(\phi - 1)). \tag{4}$$

3 We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_n of (5) for $n \in \mathbb{N}$.

Some argument: there exists a sequence φ̃_n ∈ conv(φ_n, φ_{n+1}, φ_{n+2},...) and φ̃ ∈ R such that lim_{m→∞} φ̃_n = φ̃ ℙ − a.s. and in L¹.

- $\ \, \tilde{\phi} \in \mathcal{R}_{\mathsf{0}}$
-) $ilde{\phi}$ solves the static problem.

) For
$$n = 1, 2, 3, ...$$
 let $H_n := H \land n$.

Consider problems

$$\inf_{\phi\in\mathcal{R}_0}\rho(H_n(\phi-1)). \tag{4}$$

3 We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_n of (5) for $n \in \mathbb{N}$.

Some argument: there exists a sequence φ̃_n ∈ conv(φ_n, φ_{n+1}, φ_{n+2},...) and φ̃ ∈ R such that lim_{m→∞} φ̃_n = φ̃ ℙ − a.s. and in L¹.

- $\ \, \tilde{\phi} \in \mathcal{R}_{\mathsf{0}}$
-) $ilde{\phi}$ solves the static problem.

A > + = + + =

) For
$$n = 1, 2, 3, ...$$
 let $H_n := H \land n$.

Consider problems

$$\inf_{\phi\in\mathcal{R}_0}\rho(H_n(\phi-1)). \tag{4}$$

• We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_n of (5) for $n \in \mathbb{N}$.

Somios' type argument: there exists a sequence φ̃_n ∈ conv(φ_n, φ_{n+1}, φ_{n+2},...) and φ̃ ∈ R such that lim_{m→∞} φ̃_n = φ̃ ℙ − a.s. and in L¹.

 $\ \, \tilde{\phi} \in \mathcal{R}_{\mathsf{0}}$

 \bullet ϕ solves the static problem.

) For
$$n = 1, 2, 3, ...$$
 let $H_n := H \land n$.

Onsider problems

$$\inf_{\phi \in \mathcal{R}_0} \rho(H_n(\phi - 1)). \tag{4}$$

- We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_n of (5) for $n \in \mathbb{N}$.
- 4 Komlos' type argument:

there exists a sequence $\tilde{\phi}_n \in conv(\phi_n, \phi_{n+1}, \phi_{n+2}, ...)$ and $\tilde{\phi} \in \mathcal{R}$ such that $\lim_{m\to\infty} \tilde{\phi}_n = \tilde{\phi} \mathbb{P} - a.s.$ and in L^1 .

- $\ \, \tilde{\phi} \in \mathcal{R}_{\mathsf{0}}$
- \bullet ϕ solves the static problem.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

) For
$$n = 1, 2, 3, ...$$
 let $H_n := H \land n$.

Consider problems

$$\inf_{\phi\in\mathcal{R}_0}\rho(H_n(\phi-1)). \tag{4}$$

• We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_n of (5) for $n \in \mathbb{N}$.

Komlos' type argument: there exists a sequence φ̃_n ∈ conv(φ_n, φ_{n+1}, φ_{n+2},...) and φ̃ ∈ R such that lim_{m→∞} φ̃_n = φ̃ ℙ − a.s. and in L¹.

 $[] \ \, \widetilde{\phi} \in \mathcal{R}_{\mathsf{C}}$

• $\tilde{\phi}$ solves the static problem.

・ 伺 ト ・ ヨ ト ・ ヨ ト … ヨ

) For
$$n = 1, 2, 3, ...$$
 let $H_n := H \land n$.

Consider problems

$$\inf_{\phi\in\mathcal{R}_0}\rho(H_n(\phi-1)).$$
 (4)

• We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_n of (5) for $n \in \mathbb{N}$.

Womlos' type argument: there exists a sequence φ̃_n ∈ conv(φ_n, φ_{n+1}, φ_{n+2},...) and φ̃ ∈ R such that lim_{m→∞} φ̃_n = φ̃ ℙ − a.s. and in L¹.

$$\mathbf{5} \quad \tilde{\phi} \in \mathcal{R}_{\mathbf{0}}$$

) $ilde{\phi}$ solves the static problem.

) For
$$n = 1, 2, 3, ...$$
 let $H_n := H \land n$.

Onsider problems

$$\inf_{\phi\in\mathcal{R}_0}\rho(H_n(\phi-1)). \tag{4}$$

• We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_n of (5) for $n \in \mathbb{N}$.

Some of the exists a sequence φ̃_n ∈ conv(φ_n, φ_{n+1}, φ_{n+2},...) and φ̃ ∈ R such that lim_{m→∞} φ̃_n = φ̃ ℙ − a.s. and in L¹.

5
$$ilde{\phi} \in \mathcal{R}_{\mathsf{0}}$$

• $\tilde{\phi}$ solves the static problem.

The main result I

Let Λ_+ denote the set of measures of finite variation on \mathcal{P}_σ

Fix $\tilde{V}_0 > 0$ and let $\rho : L^1 \to \mathbb{R} \cup \{\infty\}$ be a convex measure of risk with a determining set Q.

Let *H* be an integrable contingent claim and denote $H_n := H \wedge n$.

Theorem 1

Assume: ρ is L^p -continuous for some $p \ge 1$ at $\phi_0(H-1)$ with some $\phi_0 \in \mathcal{R}_0$.

1. For every $n \in \mathbb{N}$ there exists a solution $(\lambda_n, \mathbb{Q}_n)$ to:

$$\inf_{(\lambda,\mathbb{Q})\in(\Lambda_+,\mathcal{Q})}\bigg\{E\bigg[H_nZ_{\mathbb{Q}}\wedge H_n\int_{\mathcal{P}_{\sigma}}Z_{\mathbb{P}^*}d\lambda\bigg]-\tilde{V}_0\lambda(\mathcal{P}_{\sigma})-\rho^*(-Z_{\mathbb{Q}})\bigg\}.$$

The main result

Theorem 1 (continued)

2. For every *n* there exists a solution ϕ_n to the static problem

$$\inf_{\phi\in\mathcal{R}_0}\rho(H_n(\phi-1))$$

satisfying

$$\phi_n(\omega) = \begin{cases} 1 : H_n(Z_{\mathbb{Q}_n} - \int_{\mathcal{P}_\sigma} Z_{\mathbb{P}^*} \lambda_n(d\mathbb{P}^*))(\omega) > 0, \\ 0 : H_n(Z_{\mathbb{Q}_n} - \int_{\mathcal{P}_\sigma} Z_{\mathbb{P}^*} \lambda_n(d\mathbb{P}^*))(\omega) < 0 \end{cases}$$

and $E_{\mathbb{P}^*}H_n\phi_n = \tilde{V}_0$ for $\lambda_n - a.e.\mathbb{P}^* \in \mathcal{P}_\sigma$ 3. Solution to the static problem

$$\inf_{\phi\in\mathcal{R}_0}\bar{\rho}((\phi-1)H),$$

is given by $\tilde{\phi} = \lim_{n \to \infty} \tilde{\phi}_n$, for some $\tilde{\phi}_n \in conv(\phi_n, \phi_{n+1}, \ldots)$.

(5)

The Bibliography I

H.Föllmer, P. Leukert Efficient hedging: Cost versus shortfall risk. Finance and Stochastics, 4 (2000), 117-146

Y. Nakano

Efficient hedging with coherent risk measure.

J. Math. Anal. Appl., 293 (2004), 345-354

B. Rudloff

Convex hedging in incomplete Markets. Applied Mathematical Finance 14 (2007), 437-452.

A. A. Gushchin, E. Mordecki Bounds on Option Prices for Semimartingale Market Models. Proc. Steklov Math. Inst 237 (2002), 73-113.

Thank you for your attention!

Tomasz Tkaliński (Warsaw University)

AMaMeF 21 / 21

DQC

イロト イポト イヨト イヨト 二日