Convex hedging of non-superreplicable contingent claims in general semimartingale models

Tomasz Tkaliński

Faculty of Mathematics, Informatics and Mechanics
Warsaw University

6th General AMaMeF Conference, 10.06.2013

Overview

(1) Market model
(2) Hedging of contingent claims
(3) Idea of solution

4 Overview of the literature
(5) Examples beyond the scope...

6 Approximative approach

Probabilistic setup

Time horizon: $T>0$

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying usual conditions,
$\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{T}=\mathcal{F}$.

Consider

- $S=\left(S^{1}, \ldots . S^{k}\right)$ - nonnegative adapted semimartingale (discounted asset prices),
- Φ - admissible trading strategies, i.e. pairs $\xi=(x, \pi), x \geq 0$, π - predictable \mathbb{R}^{k}-valued process such that
the value process of ξ given by $V_{t}(\xi)=x+\int_{0}^{t} \pi_{u} d S_{u}$ is nonnegative

Probabilistic setup

Time horizon: $T>0$

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying usual conditions,

$\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{T}=\mathcal{F}$.

Consider

- $S=\left(S^{1} \ldots . S^{k}\right)$ - nonnegative adapted semimartingale (discounted asset prices),
- Φ - admissible trading strategies, i.e. pairs $\xi=(x, \pi), x \geq 0$, π - predictable \mathbb{R}^{k}-valued process such that
the value process of ξ given by $V_{t}(\xi)=x+\int_{0}^{i} \pi_{u} d S_{u}$ is nonnegative

Probabilistic setup

Time horizon: $T>0$
Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,
Filtration: $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying usual conditions,

Consider

- $S=\left(S^{1}, \ldots . S^{k}\right)$ - nonnegative adapted semimartingale (discounted asset prices),
- Φ - admissible trading strategies, i.e. pairs $\xi=(x, \pi), x \geq 0$, π - predictable \mathbb{R}^{k}-valued process such that
the value process of ξ given by $V_{t}(\xi)=x+\int_{0}^{i} \pi_{u} d S_{u}$ is nonnegative

Probabilistic setup

Time horizon: $T>0$

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying usual conditions,
$\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{T}=\mathcal{F}$.

Consider

- $S=\left(S^{1}, \ldots, S^{k}\right)$ - nonnegative adapted semimartingale (discounted asset prices),
- ϕ - admissible trading strategies, i.e. pairs $\xi=(x, \pi), x \geq 0$, π - predictable \mathbb{R}^{k}-valued process such that
the value process of ξ given by $V_{t}(\xi)=x+\int_{0}^{t} \pi_{u} d S_{u}$ is
nonnegative

Probabilistic setup

Time horizon: $T>0$

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying usual conditions,
$\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{T}=\mathcal{F}$.

Consider

- $S=\left(S^{1}, \ldots, S^{k}\right)$ - nonnegative adapted semimartingale (discounted asset prices),
- Φ - admissible trading strategies, i.e. pairs $\xi=(x, \pi), x \geq 0$, π - predictable \mathbb{R}^{k}-valued process such that
the value process of ξ given by $V_{t}(\xi)=x+\int_{0}^{t} \pi_{u} d S_{u}$ is nonnegative

Probabilistic setup

Time horizon: $T>0$

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying usual conditions,
$\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{T}=\mathcal{F}$.

Consider

- $S=\left(S^{1}, \ldots, S^{k}\right)$ - nonnegative adapted semimartingale (discounted asset prices),
- Φ - admissible trading strategies,
π - predictable \mathbb{R}^{k}-valued process such that
the value process of ξ given by $V_{t}(\xi)=x+\int_{0}^{t} \pi_{u} d S_{u}$ is
nonnegative

Probabilistic setup

Time horizon: $T>0$

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying usual conditions,
$\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{T}=\mathcal{F}$.

Consider

- $S=\left(S^{1}, \ldots, S^{k}\right)$ - nonnegative adapted semimartingale (discounted asset prices),
- Φ - admissible trading strategies, i.e. pairs $\xi=(x, \pi)$,
π - predictable \mathbb{R}^{k}-valued process such that
the value process of ξ given by $V_{t}(\xi)=x+\int_{0}^{t} \pi_{u} d S_{u}$ is
nonnegative

Probabilistic setup

Time horizon: $T>0$

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying usual conditions,
$\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{T}=\mathcal{F}$.

Consider

- $S=\left(S^{1}, \ldots, S^{k}\right)$ - nonnegative adapted semimartingale (discounted asset prices),
- Φ - admissible trading strategies, i.e. pairs $\xi=(x, \pi), x \geq 0$,
π - predictable \mathbb{R}^{k}-valued process such that
the value process of ξ given by $V_{t}(\xi)=x+\int_{0}^{t} \pi_{u} d S_{u}$ is
nonnegative

Probabilistic setup

Time horizon: $T>0$

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying usual conditions,
$\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{T}=\mathcal{F}$.

Consider

- $S=\left(S^{1}, \ldots, S^{k}\right)$ - nonnegative adapted semimartingale (discounted asset prices),
- Φ - admissible trading strategies, i.e. pairs $\xi=(x, \pi), x \geq 0$, π - predictable \mathbb{R}^{k}-valued process such that

Probabilistic setup

Time horizon: $T>0$

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying usual conditions,
$\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{T}=\mathcal{F}$.

Consider

- $S=\left(S^{1}, \ldots, S^{k}\right)$ - nonnegative adapted semimartingale (discounted asset prices),
- Φ - admissible trading strategies, i.e. pairs $\xi=(x, \pi), x \geq 0$, π - predictable \mathbb{R}^{k}-valued process such that the value process of ξ given by $V_{t}(\xi)=x+\int_{0}^{t} \pi_{u} d S_{u}$ is nonnegative

Probabilistic setup

Time horizon: $T>0$

Complete probability space: $(\Omega, \mathcal{F}, \mathbb{P})$,

Filtration: $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ satisfying usual conditions,
$\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{T}=\mathcal{F}$.

Consider

- $S=\left(S^{1}, \ldots, S^{k}\right)$ - nonnegative adapted semimartingale (discounted asset prices),
- Φ - admissible trading strategies, i.e. pairs $\xi=(x, \pi), x \geq 0$, π - predictable \mathbb{R}^{k}-valued process such that the value process of ξ given by $V_{t}(\xi)=x+\int_{0}^{t} \pi_{u} d S_{u}$ is nonnegative

No arbitrage assumption

Definition 1 (sigma-martingale)
\mathbb{R}^{k}-valued process Y is a sigma-martingale if there exists an \mathbb{R}^{d} -value martingale M and M-integrable predictable \mathbb{R}_{+}-valued process η such that $Y_{t}=\int_{0}^{t} \eta_{u} d M_{u}$.

Let \mathcal{P}_{σ} denote the set of equivalent probability measures \mathbb{Q} such that S is a sigma-martingale under \mathbb{Q}.

No arbitrage assumption

Definition 1 (sigma-martingale)

\mathbb{R}^{k}-valued process Y is a sigma-martingale if there exists an \mathbb{R}^{d} -value martingale M and M-integrable predictable \mathbb{R}_{+}-valued process η such that $Y_{t}=\int_{0}^{t} \eta_{u} d M_{u}$.

Let \mathcal{P}_{σ} denote the set of equivalent probability measures \mathbb{Q} such that S is a sigma-martingale under \mathbb{Q}.

No arbitrage assumption

Definition 1 (sigma-martingale)

\mathbb{R}^{k}-valued process Y is a sigma-martingale if there exists an \mathbb{R}^{d} -value martingale M and M-integrable predictable \mathbb{R}_{+}-valued process η such that $Y_{t}=\int_{0}^{t} \eta_{u} d M_{u}$.

Let \mathcal{P}_{σ} denote the set of equivalent probability measures \mathbb{Q} such that S is a sigma-martingale under \mathbb{Q}.

NFLVR

$\mathcal{P}_{\sigma} \neq \emptyset$

The hedging problem

European contingent claims: $L_{+}^{1}(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim H

 the loss resulting from hedging H with ξ.

Hedging:

minimize $L(\xi, H)$ over \leqslant satisfying some budget constraint.

The hedging problem

European contingent claims: $L_{+}^{1}(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim H

$$
\begin{aligned}
& \qquad L(\xi, H):=-\left(V_{T}(\xi)-H\right)^{-} \\
& \text {the loss resulting from hedging } H \text { with } \xi \text {. }
\end{aligned}
$$

Hedging:

minimize $L(\xi, H)$ over \leqslant satisfying some budget constraint.

The hedging problem

European contingent claims: $L_{+}^{1}(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim H

$$
L(\xi, H):=-\left(V_{T}(\xi)-H\right)^{-}
$$

the loss resulting from hedging H with ξ.

Hedging:

minimize $L(\xi, H)$ over \leqslant satisfying some budget constraint.

The hedging problem

European contingent claims: $L_{+}^{1}(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim H

$$
L(\xi, H):=-\left(V_{T}(\xi)-H\right)^{-}
$$

the loss resulting from hedging H with ξ.

Hedging:

minimize $L(\xi, H)$ over § satisfying some budget constraint.

The hedging problem

European contingent claims: $L_{+}^{1}(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim H

$$
L(\xi, H):=-\left(V_{T}(\xi)-H\right)^{-}
$$

the loss resulting from hedging H with ξ.

Hedging:

minimize $L(\xi, H)$ over ξ satisfying some budget constraint.

The hedging problem

European contingent claims: $L_{+}^{1}(\Omega, \mathcal{F}, \mathbb{P})$

For $\xi \in \Phi$ and a contingent claim H

$$
L(\xi, H):=-\left(V_{T}(\xi)-H\right)^{-}
$$

the loss resulting from hedging H with ξ.

Hedging:

minimize $L(\xi, H)$ over ξ satisfying some budget constraint.

Superhedging

Consider:

Theorem 2.1

Under Condition 1 there exists $\xi \in \Phi$ with $V_{0}(\xi)=U_{0}$ for which

 $L(\xi, H)=0 \mathbb{P}-a . s$.
Brilliant ... but

- this miaht be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_{0}=\infty$.

Superhedging

Consider:

Condition 1 (superhedging)
$U_{0}:=\sup _{\mathbb{P}^{*} \in \mathcal{P}_{\sigma}} E_{\mathbb{P}^{*}} H<\infty$.

Theorem 2.1
Under Condition 1 there exists $\xi \in \Phi$ with $V_{0}(\xi)=U_{0}$ for which
$L(\xi, H)=0 \mathbb{P}$-a.s.
Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_{0}=\infty$.

IDEA: Fix $\tilde{V}_{0}<U_{0}$ and (in some sense) minimize $L(\xi, H)$ over ξ satisfying $V_{0}(\xi) \leq \tilde{V}_{0}$.

Superhedging

Consider:
Condition 1 (superhedging)
$U_{0}:=\sup _{\mathbb{P}^{*} \in \mathcal{P}_{\sigma}} E_{\mathbb{P}^{*}} H<\infty$.
Theorem 2.1
Under Condition 1 there exists $\xi \in \Phi$ with $V_{0}(\xi)=U_{0}$ for which $L(\xi, H)=0 \mathbb{P}$-a.s.

Brilliant

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case U_{0}

IDEA: Fix $\tilde{V}_{0}<U_{0}$ and (in some sense) minimize $L(\xi, H)$ over ξ
satisfying $V_{0}(\xi) \leq \tilde{V}_{0}$.

Superhedging

Consider:
Condition 1 (superhedging)
$U_{0}:=\sup _{\mathbb{P}^{*} \in \mathcal{P}_{\sigma}} E_{\mathbb{P}^{*}} H<\infty$.
Theorem 2.1
Under Condition 1 there exists $\xi \in \Phi$ with $V_{0}(\xi)=U_{0}$ for which $L(\xi, H)=0 \mathbb{P}$-a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case U_{0}

IDEA: Fix $\tilde{V}_{0}<U_{0}$ and (in some sense) minimize $L(\xi, H)$ over ξ
satisfying $V_{0}(\xi) \leq \tilde{V}_{0}$.

Superhedging

Consider:
Condition 1 (superhedging)
$U_{0}:=\sup _{\mathbb{P}^{*} \in \mathcal{P}_{\sigma}} E_{\mathbb{P}^{*}} H<\infty$.

Theorem 2.1
Under Condition 1 there exists $\xi \in \Phi$ with $V_{0}(\xi)=U_{0}$ for which $L(\xi, H)=0 \mathbb{P}$-a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),

IDEA: Fix $\tilde{V}_{0}<U_{0}$ and (in some sense) minimize $L(\xi, H)$ over ξ satisfying $V_{0}(\xi) \leq V_{0}$.

Superhedging

Consider:
Condition 1 (superhedging)
$U_{0}:=\sup _{\mathbb{P}^{*} \in \mathcal{P}_{\sigma}} E_{\mathbb{P}^{*}} H<\infty$.

Theorem 2.1
Under Condition 1 there exists $\xi \in \Phi$ with $V_{0}(\xi)=U_{0}$ for which $L(\xi, H)=0 \mathbb{P}$-a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_{0}=\infty$.

Superhedging

Consider:
Condition 1 (superhedging)
$U_{0}:=\sup _{\mathbb{P}^{*} \in \mathcal{P}_{\sigma}} E_{\mathbb{P}^{*}} H<\infty$.

Theorem 2.1
Under Condition 1 there exists $\xi \in \Phi$ with $V_{0}(\xi)=U_{0}$ for which $L(\xi, H)=0 \mathbb{P}$-a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_{0}=\infty$.

Superhedging

Consider:
Condition 1 (superhedging)
$U_{0}:=\sup _{\mathbb{P}^{*} \in \mathcal{P}_{\sigma}} E_{\mathbb{P}^{*}} H<\infty$.

Theorem 2.1
Under Condition 1 there exists $\xi \in \Phi$ with $V_{0}(\xi)=U_{0}$ for which $L(\xi, H)=0 \mathbb{P}$-a.s.

Brilliant ... but

- this might be unacceptably expensive (Gushchin and Mordecki (2002)),
- what about the case $U_{0}=\infty$.

IDEA: Fix $\tilde{V}_{0}<U_{0}$ and (in some sense) minimize $L(\xi, H)$ over ξ satisfying $V_{0}(\xi) \leq \tilde{V}_{0}$.

How to quantify risk of a loss $L(\xi, H)$?

- Quantile hedging (Föllmer and Leukert (1999)):

$$
\mathbb{P}(L(\xi, H)<0) \rightarrow \text { min. }
$$

- Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007, 09))

$$
\rho(L(\xi, H)) \rightarrow \text { min },
$$

where ρ is some risk measure (coherent or more generally convex...)

How to quantify risk of a loss $L(\xi, H)$?

- Quantile hedging (Föllmer and Leukert (1999)):

$$
\mathbb{P}(L(\xi, H)<0) \rightarrow \min
$$

- Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007, 09))

$$
\rho(L(\xi, H)) \rightarrow \text { min },
$$

where ρ is some risk measure (coherent or more generally convex...)

How to quantify risk of a loss $L(\xi, H)$?

- Quantile hedging (Föllmer and Leukert (1999)):

$$
\mathbb{P}(L(\xi, H)<0) \rightarrow \text { min. }
$$

- Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007,
$\rho(L(\xi, H)) \rightarrow$ min,
where ρ is some risk measure (coherent or more generally convex...)

How to quantify risk of a loss $L(\xi, H)$?

- Quantile hedging (Föllmer and Leukert (1999)):

$$
\mathbb{P}(L(\xi, H)<0) \rightarrow \min .
$$

- Efficient hedging

$$
\rho(L(\xi, H)) \rightarrow \text { min },
$$

where ρ is some risk measure (coherent or more generally convex...)

How to quantify risk of a loss $L(\xi, H)$?

- Quantile hedging (Föllmer and Leukert (1999)):

$$
\mathbb{P}(L(\xi, H)<0) \rightarrow \text { min. }
$$

- Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007, 09))
$\rho(L(\xi, H)) \rightarrow$ min,
where ρ is some risk measure (coherent or more generally convex...)

How to quantify risk of a loss $L(\xi, H)$?

- Quantile hedging (Föllmer and Leukert (1999)):

$$
\mathbb{P}(L(\xi, H)<0) \rightarrow \min .
$$

- Efficient hedging (FL (2000), Nakano (2003, 04), Rudloff (2007, 09))

$$
\rho(L(\xi, H)) \rightarrow \min ,
$$

where ρ is some risk measure (coherent or more generally convex...)

Convex measures of risk

Definition 2

A function $\rho: L^{p} \rightarrow \mathbb{R} \cup\{\infty\}, 1 \leq p \leq \infty$ is a convex measure of risk if:

- it is convex, i.e.
$\rho(\lambda X+(1-\lambda) Y) \leq \lambda \rho(X)+(1-\lambda) \rho(Y), \quad \lambda \in[0,1], X, Y \in L^{p}$
- monotone, i.e.

- translation invariant , i.e.

$$
\rho(X+c)=\rho(X)-c, \quad c \in \mathbb{R}, X \in L^{p} .
$$

Convex measures of risk

Definition 2
A function $\rho: L^{p} \rightarrow \mathbb{R} \cup\{\infty\}, 1 \leq p \leq \infty$ is a convex measure of risk if:

- it is convex, i.e.
$\rho(\lambda X+(1-\lambda) Y) \leq \lambda \rho(X)+(1-\lambda) \rho(Y), \quad \lambda \in[0,1], X, Y \in L^{\rho}$
- monotone, i.e.
- translation invariant , i.e.

Convex measures of risk

Definition 2

A function $\rho: L^{p} \rightarrow \mathbb{R} \cup\{\infty\}, 1 \leq p \leq \infty$ is a convex measure of risk if:

- it is convex, i.e.

$$
\rho(\lambda X+(1-\lambda) Y) \leq \lambda \rho(X)+(1-\lambda) \rho(Y), \quad \lambda \in[0,1], X, Y \in L^{p}
$$

- monotone, i.e.
- translation invariant , i.e.

Convex measures of risk

Definition 2

A function $\rho: L^{p} \rightarrow \mathbb{R} \cup\{\infty\}, 1 \leq p \leq \infty$ is a convex measure of risk if:

- it is convex, i.e.

$$
\rho(\lambda X+(1-\lambda) Y) \leq \lambda \rho(X)+(1-\lambda) \rho(Y), \quad \lambda \in[0,1], X, Y \in L^{p}
$$

- monotone, i.e.

$$
X \geq Y \Rightarrow \rho(X) \leq \rho(Y), X, Y \in L^{p}
$$

- translation invariant , i.e.

Convex measures of risk

Definition 2

A function $\rho: L^{p} \rightarrow \mathbb{R} \cup\{\infty\}, 1 \leq p \leq \infty$ is a convex measure of risk if:

- it is convex, i.e.

$$
\rho(\lambda X+(1-\lambda) Y) \leq \lambda \rho(X)+(1-\lambda) \rho(Y), \quad \lambda \in[0,1], X, Y \in L^{p}
$$

- monotone, i.e.

$$
X \geq Y \Rightarrow \rho(X) \leq \rho(Y), X, Y \in L^{p}
$$

- translation invariant , i.e.

$$
\rho(X+c)=\rho(X)-c, \quad c \in \mathbb{R}, X \in L^{p} .
$$

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^{1},
- $0 \leq H \in L^{1}(\mathbb{P})$

The convex hedging problem:

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^{1},
- $0 \leq H \in L^{1}(\mathbb{P})$

The convex hedging problem:

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^{1},
- $0 \leq H \in L^{1}(\mathbb{P})$
- $\tilde{V}_{0}>0$

The convex hedging problem:

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^{1},
- $0 \leq H \in L^{1}(\mathbb{P})$
- $\tilde{V}_{0}>0$
- $\mathcal{V}_{\tilde{V}_{0}}=\left\{\xi \in \Phi: V(\xi) \geq 0, V_{0}(\xi) \leq \tilde{V}_{0}\right\}$

The convex hedging problem:

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^{1},
- $0 \leq H \in L^{1}(\mathbb{P})$
- $\tilde{V}_{0}>0$
- $\mathcal{V}_{\tilde{V}_{0}}=\left\{\xi \in \Phi: V(\xi) \geq 0, V_{0}(\xi) \leq \tilde{V}_{0}\right\}$

The convex hedging problem:

Convex hedging problem formulation

Let

- ρ be a convex measure of risk on L^{1},
- $0 \leq H \in L^{1}(\mathbb{P})$
- $\tilde{V}_{0}>0$
- $\mathcal{V}_{\tilde{V}_{0}}=\left\{\xi \in \Phi: V(\xi) \geq 0, V_{0}(\xi) \leq \tilde{V}_{0}\right\}$

The convex hedging problem:

$$
\begin{equation*}
\inf _{\xi \in \mathcal{V}_{\tilde{V}_{0}}} \rho(L(\xi, H)) \tag{1}
\end{equation*}
$$

Key concept

Let

- $\mathcal{R}=\{\phi: \Omega \rightarrow[0,1]: \phi-\mathcal{F}$ - measurable $\}$,
- $\mathcal{R}_{0}=\left\{\phi \in \mathcal{R}: \sup _{\mathbb{P}^{*} \in \mathcal{P}_{\sigma}} E_{\mathbb{P}^{*}} \phi H \leq \tilde{V}_{0}\right\}$,

Theorem 3.1
 If $\tilde{\phi} \in \mathcal{R}_{0}$ solves the static problem

the strategy $\left(\tilde{V}_{0}, \tilde{\xi}\right)$ superreplicating $\tilde{\phi} H$ solves the efficient hedging problem (1).

Key concept

Let

- $\mathcal{R}=\{\phi: \Omega \rightarrow[0,1]: \phi-\mathcal{F}-$ measurable $\}$,
- $\mathcal{R}_{0}=\left\{\phi \in \mathcal{R}: \sup _{\mathbb{P}^{*} \in \mathcal{P}_{\sigma}} E_{\mathbb{P}^{*}} \phi H \leq \tilde{V}_{0}\right\}$,

Theorem 3.1
If $\tilde{\phi} \in \mathcal{R}_{0}$ solves the static problem

$$
\begin{equation*}
\inf _{\phi \in \mathcal{R}_{0}} \rho(H(\phi-1)), \tag{2}
\end{equation*}
$$

the strategy $\left(\tilde{V}_{0}, \tilde{\xi}\right)$ superreplicating $\tilde{\phi} H$ solves the efficient hedging problem (1).

Selected results obtained so far (1)

(1) (Föllmer, Leukert (2000)), $\rho=$ expectation - existence and structure of the solution,
(2) (Nakano (2004)), ρ - coherent measure of risk on L^{1} - existence, structure in particular cases,

- (Rudloff (2007)), p - convex, I.s.c. measure of risk on L¹ satisfying some continuity assumption - existence and structure of the solution.

Selected results obtained so far (1)

(1) (Föllmer, Leukert (2000)), $\rho=$ expectation - existence and structure of the solution,
(2) (Nakano (2004)), ρ - coherent measure of risk on L^{1} - existence, structure in particular cases,
(3) (Rudloff (2007)), ρ - convex, I.s.c. measure of risk on L^{1} satisfying some continuity assumption - existence and structure of the solution.

Selected results obtained so far (1)

(1) (Föllmer, Leukert (2000)), $\rho=$ expectation - existence and structure of the solution,
(2) (Nakano (2004)), ρ - coherent measure of risk on L^{1} - existence, structure in particular cases,
(3) (Rudloff (2007)), ρ - convex, l.s.c. measure of risk on L^{1} satisfying some continuity assumption - existence and structure of the solution.

Selected results obtained so far (2)

Standard assumptions:

Assumption 1

$$
\sup _{\mathbb{P}^{*} \in \mathcal{P}_{\sigma}} E_{\mathbb{P}^{*}} H<\infty
$$

For a convex measures of risk ρ :
Accumntion?

Selected results obtained so far (2)

Standard assumptions:

Assumption 1

$\sup _{\mathbb{P}^{*} \in \mathcal{P}_{\sigma}} E_{\mathbb{P}^{*}} H<\infty$

For a convex measures of risk ρ :

Assumption 2

$\rho: L^{1} \rightarrow \mathbb{R} \cup\{\infty\}$ finite and continuous at $H\left(\phi_{0}-1\right)$ with some $\phi_{0} \in \mathcal{R}_{0}$.

Call on the non-traded securities/ risk factors(1)

Consider standard BS model:

$$
S_{t}=\exp \left(W_{t}-\frac{1}{2}\right), \quad B_{t}=1 \quad t \in[0,1]
$$

on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which supports infinite iid sequence of standard Gaussian random variables X_{1}, X_{2}, \ldots (independent of W) and an independent $U \sim U[0,1]$.

Call on the non-traded securities/ risk factors(1)

Consider standard BS model:

$$
S_{t}=\exp \left(W_{t}-\frac{1}{2}\right), \quad B_{t}=1 \quad t \in[0,1]
$$

on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which supports infinite iid sequence of standard Gaussian random variables X_{1}, X_{2}, \ldots (independent of W) and an independent $U \sim U[0,1]$.
For $n=1,2, \ldots$ define R^{n} (quoted at discrete times: $t=0,1$):

$$
R_{0}^{n}=1, \quad R_{1}^{n}=\exp \left[\rho_{n} W_{1}+\sqrt{1-\rho_{n}^{2}} n X_{n}-\frac{1}{2}\left(\rho_{n}^{2}+n^{2}\left(1-\rho_{n}^{2}\right)\right)\right] .
$$

Assume correlation $\rho_{n} \in(-1,1)$ decays to 0 with n, i.e. $\lim _{n \rightarrow \infty} \rho_{n}=0$.

Call on the non-traded securities/ risk factors(1)

Consider standard BS model:

$$
S_{t}=\exp \left(W_{t}-\frac{1}{2}\right), \quad B_{t}=1 \quad t \in[0,1]
$$

on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which supports infinite iid sequence of standard Gaussian random variables X_{1}, X_{2}, \ldots (independent of W) and an independent $U \sim U[0,1]$.
For $n=1,2, \ldots$ define R^{n} (quoted at discrete times: $t=0,1$):

$$
R_{0}^{n}=1, \quad R_{1}^{n}=\exp \left[\rho_{n} W_{1}+\sqrt{1-\rho_{n}^{2}} n X_{n}-\frac{1}{2}\left(\rho_{n}^{2}+n^{2}\left(1-\rho_{n}^{2}\right)\right)\right] .
$$

Assume correlation $\rho_{n} \in(-1,1)$ decays to 0 with n, i.e. $\lim _{n \rightarrow \infty} \rho_{n}=0$. Now consider a hedging problem of a call option with the payoff

$$
\begin{equation*}
H=\left(\sum_{n=1}^{\infty} \frac{1}{2^{n}} R_{1}^{n}-K\right)^{+}, \tag{3}
\end{equation*}
$$

for some $K>0$.

Call on the non-traded securities/ risk factors(2)

Proposition 1

1. H is a well-defined and integrable contingent claim.
2. For $n \in \mathbb{N}$

$$
\sqrt{2 \pi} \cdot\left(2^{n}\right)^{2} \cdot \exp \left(\frac{X_{n}^{2}}{2}\right) \cdot \mathbf{1}_{\left\{\left|X_{n}-\sqrt{1-\rho_{n}^{2}} n\right| \leq 2^{-2 n-1}\right\}}
$$

is a density of a martingale measure \mathbb{Q}_{n}.
3. $\sup _{n \in \mathbb{N}} E_{\mathbb{Q}_{n}} H=\infty$.

Convex risk measure violating continuity assumption(1)

Define $g:[0,1] \rightarrow \mathbb{R}$:

$$
g(x)= \begin{cases}\frac{3}{4} x^{-\frac{1}{4}} & \text { for } x \in(0,1] \\ 0 & \text { gdy } x=0\end{cases}
$$

Convex risk measure violating continuity assumption(1)

Define $g:[0,1] \rightarrow \mathbb{R}$:

$$
g(x)= \begin{cases}\frac{3}{4} x^{-\frac{1}{4}} & \text { for } x \in(0,1], \\ 0 & \text { gdy } x=0\end{cases}
$$

For $n \in \mathbb{N}$ define $g_{n}:[0,1] \rightarrow \mathbb{R}$:

$$
g_{n}(x)=c_{n} 1_{\left[\frac{1}{n+1}, 1\right]}(x) g(x), \quad x \in[0,1],
$$

where $c_{n}^{-1}:=1-\left(\frac{1}{n+1}\right)^{\frac{3}{4}}$ is a normalizing constant (such that $E\left[g_{n}(U)\right]=1$ for $\left.U \sim U[0,1]\right)$.

Convex risk measure violating continuity assumption(1)

Define $g:[0,1] \rightarrow \mathbb{R}$:

$$
g(x)= \begin{cases}\frac{3}{4} x^{-\frac{1}{4}} & \text { for } x \in(0,1], \\ 0 & \text { gdy } x=0 .\end{cases}
$$

For $n \in \mathbb{N}$ define $g_{n}:[0,1] \rightarrow \mathbb{R}$:

$$
g_{n}(x)=c_{n} 1_{\left[\frac{1}{n+1}, 1\right]}(x) g(x), \quad x \in[0,1],
$$

where $c_{n}^{-1}:=1-\left(\frac{1}{n+1}\right)^{\frac{3}{4}}$ is a normalizing constant (such that $E\left[g_{n}(U)\right]=1$ for $\left.U \sim U[0,1]\right)$.

Fix $U \sim U[0,1]$ and let $\mathcal{Q}=\left\{g_{n}(U): n \in \mathbb{N}\right\}$.

Convex risk measure violating continuity assumption(2)

Define $\bar{\rho}: L^{1} \rightarrow \mathbb{R} \cup\{\infty\}: \bar{\rho}(Y):=\sup _{\mathbb{Q} \in \mathcal{Q}} E_{\mathbb{Q}}(-Y)$.

Proposition 2

$\bar{\rho}$ is a $\sigma\left(L^{1}, L^{\infty}\right)$-l.s.c, coherent measure of risk.
Consider the static problem:

Proposition 3
Let H be and arbitrary contingent claim for which $\bar{\rho}((\widehat{\phi}-1) H)<\infty$ with
some $\phi \in \mathcal{R}_{0}$.

1. The function $\bar{\rho}: L^{i} \rightarrow \mathbb{R} \cup\{\infty\}$ is not continuous at $\left(\phi_{0}-1\right) \mathrm{H}$ for
any $\phi_{0} \in \mathcal{R}_{0}$ satisfying $\bar{\rho}\left(\left(\phi_{0}-1\right) H\right)<\infty$

Convex risk measure violating continuity assumption(2)

Define $\bar{\rho}: L^{1} \rightarrow \mathbb{R} \cup\{\infty\}: \bar{\rho}(Y):=\sup _{\mathbb{Q} \in \mathcal{Q}} E_{\mathbb{Q}}(-Y)$.

Proposition 2

$\bar{\rho}$ is a $\sigma\left(L^{1}, L^{\infty}\right)$-l.s.c, coherent measure of risk.
Consider the static problem:

$$
\inf _{\phi \in \mathcal{R}_{0}} \bar{\rho}((\phi-1) H),
$$

Proposition 3
Let H be and arbitrary contingent claim for which $\bar{\rho}((\hat{\phi}-1) H)<\infty$ with
some $\phi \in \mathcal{R}_{0}$.

1. The function $\bar{\rho}: L^{1} \rightarrow \mathbb{R} \cup\{\infty\}$ is not continuous at $\left(\phi_{0}-1\right) H$ for
any $\phi_{0} \in \mathcal{R}_{0}$ satisfying $\bar{\rho}\left(\left(\phi_{0}-1\right) H\right)<\infty$

Convex risk measure violating continuity assumption(2)

Define $\bar{\rho}: L^{1} \rightarrow \mathbb{R} \cup\{\infty\}: \bar{\rho}(Y):=\sup _{\mathbb{Q} \in \mathcal{Q}} E_{\mathbb{Q}}(-Y)$.

Proposition 2

$\bar{\rho}$ is a $\sigma\left(L^{1}, L^{\infty}\right)$-l.s.c, coherent measure of risk.
Consider the static problem:

$$
\inf _{\phi \in \mathcal{R}_{0}} \bar{\rho}((\phi-1) H),
$$

Proposition 3

Let H be and arbitrary contingent claim for which $\bar{\rho}((\hat{\phi}-1) H)<\infty$ with some $\hat{\phi} \in \mathcal{R}_{0}$.

1. The function $\bar{\rho}: L^{1} \rightarrow \mathbb{R} \cup\{\infty\}$ is not continuous at $\left(\phi_{0}-1\right) H$ for any $\phi_{0} \in \mathcal{R}_{0}$ satisfying $\bar{\rho}\left(\left(\phi_{0}-1\right) H\right)<\infty$.
2. $\bar{\rho} L_{L^{2}}<\infty$

Overview

(1) For $n=1,2,3, \ldots$ let $H_{n}:=H \wedge n$.
(2) Consider problems

$$
\inf _{\phi \in \mathcal{R}_{0}} \rho\left(H_{n}(\phi-1)\right) .
$$

(3) We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_{n} of (5) for $n \in \mathbb{N}$.
(4) Komlos' type argument:
there exists a sequence $\tilde{\phi}_{n} \in \operatorname{conv}\left(\phi_{n}, \phi_{n+1}, \phi_{n+2}, \ldots\right)$ and $\tilde{\phi} \in \mathcal{R}$ such that $\lim _{m \rightarrow \infty} \tilde{\phi}_{n}=\tilde{\phi} \mathbb{P}-$ a.s. and in L^{1}.
(5) $\tilde{\phi} \in \mathcal{R}_{0}$
(6) $\tilde{\phi}$ solves the static problem.

Overview

(1) For $n=1,2,3, \ldots$ let $H_{n}:=H \wedge n$.
(2) Consider problems

$$
\begin{equation*}
\inf _{\phi \in \mathcal{R}_{0}} \rho\left(H_{n}(\phi-1)\right) . \tag{4}
\end{equation*}
$$

(8) We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_{n} of (5) for $n \in \mathbb{N}$.
(4) Komlos' type argument:
there exists a sequence $\tilde{\phi}_{n} \in \operatorname{conv}\left(\phi_{n}, \phi_{n+1}, \phi_{n+2}, \ldots\right)$ and $\tilde{\phi} \in \mathcal{R}$ such that $\lim _{m \rightarrow \infty} \tilde{\phi}_{n}=\tilde{\phi} \mathbb{P}-$ a.s. and in L^{1}.
(5) $\tilde{\phi} \in \mathcal{R}_{0}$
(6) $\tilde{\phi}$ solves the static problem.

Overview

(1) For $n=1,2,3, \ldots$ let $H_{n}:=H \wedge n$.
(2) Consider problems

$$
\begin{equation*}
\inf _{\phi \in \mathcal{R}_{0}} \rho\left(H_{n}(\phi-1)\right) . \tag{4}
\end{equation*}
$$

(3) We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_{n} of (5) for $n \in \mathbb{N}$.
(4) Komlos' type argument: there exists a sequence such that $\lim _{m \rightarrow \infty} \tilde{\phi}_{n}=\tilde{\phi} \mathbb{P}-$ a.s. and in L^{1}
(5) $\tilde{\phi} \in \mathcal{R}_{0}$
(6) $\tilde{\phi}$ solves the static problem.

Overview

(1) For $n=1,2,3, \ldots$ let $H_{n}:=H \wedge n$.
(2) Consider problems

$$
\begin{equation*}
\inf _{\phi \in \mathcal{R}_{0}} \rho\left(H_{n}(\phi-1)\right) . \tag{4}
\end{equation*}
$$

(3) We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_{n} of (5) for $n \in \mathbb{N}$.
(4) Komlos' type argument:
there exists a sequence such that $\lim _{m \rightarrow \infty} \tilde{\phi}_{n}=\tilde{\phi} \mathbb{P}-$ a.s. and in L^{1}.
(5) $\tilde{\phi} \in \mathcal{R}_{0}$
(6) $\tilde{\phi}$ solves the static problem.

Overview

(1) For $n=1,2,3, \ldots$ let $H_{n}:=H \wedge n$.
(2) Consider problems

$$
\begin{equation*}
\inf _{\phi \in \mathcal{R}_{0}} \rho\left(H_{n}(\phi-1)\right) \tag{4}
\end{equation*}
$$

(3) We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_{n} of (5) for $n \in \mathbb{N}$.
(4) Komlos' type argument:
there exists a sequence $\tilde{\phi}_{n} \in \operatorname{conv}\left(\phi_{n}, \phi_{n+1}, \phi_{n+2}, \ldots\right)$ and $\tilde{\phi} \in \mathcal{R}$ such that $\lim _{m \rightarrow \infty} \tilde{\phi}_{n}=\tilde{\phi} \mathbb{P}-$ a.s. and in L^{1}.
(6) $\tilde{\phi}$ solves the static problem.

Overview

(1) For $n=1,2,3, \ldots$ let $H_{n}:=H \wedge n$.
(2) Consider problems

$$
\begin{equation*}
\inf _{\phi \in \mathcal{R}_{0}} \rho\left(H_{n}(\phi-1)\right) \tag{4}
\end{equation*}
$$

(3) We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_{n} of (5) for $n \in \mathbb{N}$.
(4) Komlos' type argument:
there exists a sequence $\tilde{\phi}_{n} \in \operatorname{conv}\left(\phi_{n}, \phi_{n+1}, \phi_{n+2}, \ldots\right)$ and $\tilde{\phi} \in \mathcal{R}$ such that $\lim _{m \rightarrow \infty} \tilde{\phi}_{n}=\tilde{\phi} \mathbb{P}-$ a.s. and in L^{1}.
(5) $\tilde{\phi} \in \mathcal{R}_{0}$
(6) $\tilde{\phi}$ solves the static problem.

Overview

(1) For $n=1,2,3, \ldots$ let $H_{n}:=H \wedge n$.
(2) Consider problems

$$
\begin{equation*}
\inf _{\phi \in \mathcal{R}_{0}} \rho\left(H_{n}(\phi-1)\right) \tag{4}
\end{equation*}
$$

(3) We apply results of (Rudloff (2007)) to obtain the existence and the structure of the solution ϕ_{n} of (5) for $n \in \mathbb{N}$.
(4) Komlos' type argument:
there exists a sequence $\tilde{\phi}_{n} \in \operatorname{conv}\left(\phi_{n}, \phi_{n+1}, \phi_{n+2}, \ldots\right)$ and $\tilde{\phi} \in \mathcal{R}$ such that $\lim _{m \rightarrow \infty} \tilde{\phi}_{n}=\tilde{\phi} \mathbb{P}-$ a.s. and in L^{1}.
(5) $\tilde{\phi} \in \mathcal{R}_{0}$
(6) $\tilde{\phi}$ solves the static problem.

The main result I

Let Λ_{+}denote the set of measures of finite variation on \mathcal{P}_{σ}

Fix $\tilde{V}_{0}>0$ and let $\rho: L^{1} \rightarrow \mathbb{R} \cup\{\infty\}$ be a convex measure of risk with a determining set \mathcal{Q}.

Let H be an integrable contingent claim and denote $H_{n}:=H \wedge n$.
Theorem 1
Assume: ρ is L^{p}-continuous for some $p \geq 1$ at $\phi_{0}(H-1)$ with some $\phi_{0} \in \mathcal{R}_{0}$.

1. For every $n \in \mathbb{N}$ there exists a solution $\left(\lambda_{n}, \mathbb{Q}_{n}\right)$ to:

$$
\inf _{(\lambda, \mathbb{Q}) \in\left(\Lambda_{+}, \mathcal{Q}\right)}\left\{E\left[H_{n} Z_{\mathbb{Q}} \wedge H_{n} \int_{\mathcal{P}_{\sigma}} Z_{\mathbb{P}^{*}} d \lambda\right]-\tilde{V}_{0} \lambda\left(\mathcal{P}_{\sigma}\right)-\rho^{*}\left(-Z_{\mathbb{Q}}\right)\right\} .
$$

The main result

Theorem 1 (continued)

2. For every n there exists a solution ϕ_{n} to the static problem

$$
\begin{equation*}
\inf _{\phi \in \mathcal{R}_{0}} \rho\left(H_{n}(\phi-1)\right) \tag{5}
\end{equation*}
$$

satisfying

$$
\phi_{n}(\omega)= \begin{cases}1 & : H_{n}\left(Z_{\mathbb{Q}_{n}}-\int_{\mathcal{P}_{\sigma}} Z_{\mathbb{P}^{*}} \lambda_{n}\left(d \mathbb{P}^{*}\right)\right)(\omega)>0 \\ 0 & : H_{n}\left(Z_{\mathbb{Q}_{n}}-\int_{\mathcal{P}_{\sigma}} Z_{\mathbb{P}^{*}} \lambda_{n}\left(d \mathbb{P}^{*}\right)\right)(\omega)<0\end{cases}
$$

and $E_{\mathbb{P}^{*}} H_{n} \phi_{n}=\tilde{V}_{0} \quad$ for $\lambda_{n}-$ a.e. $\mathbb{P}^{*} \in \mathcal{P}_{\sigma}$
3. Solution to the static problem

$$
\inf _{\phi \in \mathcal{R}_{0}} \bar{\rho}((\phi-1) H),
$$

is given by $\tilde{\phi}=\lim _{n \rightarrow \infty} \tilde{\phi}_{n}$, for some $\tilde{\phi}_{n} \in \operatorname{conv}\left(\phi_{n}, \phi_{n+1}, \ldots\right)$.

The Bibliography I

T H.Föllmer, P. Leukert
Efficient hedging: Cost versus shortfall risk.
Finance and Stochastics, 4 (2000), 117-146
目 Y. Nakano
Efficient hedging with coherent risk measure.
J. Math. Anal. Appl., 293 (2004), 345-354
B. Rudloff

Convex hedging in incomplete Markets. Applied Mathematical Finance 14 (2007), 437-452.

R A. A. Gushchin, E. Mordecki Bounds on Option Prices for Semimartingale Market Models. Proc. Steklov Math. Inst 237 (2002), 73-113.

Thank you for your attention!

