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Introduction

An ambit �eld is a stochastic tempo-spatial random �eld.

Very general
Initially in turbulence context
Has been employed to model tumor growth.

Power markets display various idiosyncratic features that ambit �elds can be
used to catch.

Dramatic spikes.
No buy-and-hold hedging.
Complex noise structure
Semimartingale / Non-semimartingale setting.

We develop an incremental approximation scheme for general ambit �elds.

Integrand depends on tempo-spatial position.
Useful for pricing in power markets.
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Lévy bases

Let (Ω,F ,P) be a probability space, S ∈ B(Rn) for n ≥ 1 and let S = B(S).

De�nition

A Lévy basis on (S ,S) is a family {L(A)}A∈Bb(S) of random variables on (Ω,F ,P)
such that

L(∪n∈NAn) =
∑

n∈N L(An) a.s. for disjoint {An} ⊂ Bb(S).

L(A1), L(A2), . . . are independent for disjoint {An} ⊂ Bb(S).

For any A ∈ Bb(S) if µ is the law of L(A), then there exists a law µn that
satis�es µ = µ∗nn for any n ≥ 1.

A Lévy basis has Lévy-Kinchin representation

log(E[exp(iζL(A))]) = iζa∗(A)−1

2
ζ2b∗(A)+

∫
R

(
e
iζx − 1− iζx1[−1,1](x)

)
n(dx ,A),

where a∗ is a signed measure on Bb(S), b∗ is a measure on Bb(S) and n(dx ,A) is
a Lévy measure on R for �xed A ∈ Bb(S) and a measure on Bb(S) for �xed dx .
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Ambit �elds

De�nition

An ambit �eld is a tempo-spatial stochastic model on the form

Y (x , t) =

∫
A(x,t)

g(x , t; ξ, s)σ(ξ, s)L(dξ, ds),

where

(x , t) ∈ Rd × R,
A(x , t) ⊂ Rd × R,
g : Rd × R× Rd × R→ R,
σ is a non-negative stochastic space-time volatility �eld,

L is a square integrable Lévy basis on (S ,S), where S ⊂ Rd × R.

A general class of models, including null-spatial (d = 0) temporal models.

Initially suggested in the context of turbulence.

Suggested as a general framework in the energy setting.
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A few special cases

Time stationarity and nonanticipative and homogeneous in space

Y (x , t) =

∫
A(x,t)

g(x − ξ, t − s)σ(ξ, s)L(dξ, ds),

where A(x , t) = A + (x , t) and A only involves negative time coordinates.

VMV processes

A volatility modulated (VMV) process is a process

X (t) =

∫ t

−∞
g(t, s)σ(s−)dL(s),

for t ∈ R, where {L(t)}t∈R is a (two-sided) square integrable Lévy process.

LSS processes

If g(t, s) = h(t − s), a VMV process is called a Lévy semistationary (LSS) process.
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Lévy semistationary processes
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Figure: Above: The process σ2(t), where σ2(t) =
∫ t

0
e
−(t−s)dU(s) on the interval [0, 10]

and U is a inverse Gaussian Lévy process. Below: The LSS process
X (t) =

∫ t

0
e
−(t−s)σ(s−)dB(s) on [0, 10], where B is a standard Wiener process.
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Ambit �eld application in energy I

Deseasonalised spot by means of VMV processes

Barndor�-Nielsen et al. [2] propose modelling the spot by means of both
arithmetic and geometric models of the types

S(t) = Λ(t) + X (t) and S(t) = Λ(t) exp(X (t)),

where Λ : [0,∞)→ [0,∞) is a deterministic seasonality and trend function.

Forward price dynamics, f (t,T ), may be derived as an expression involving
the VMV process∫ t

−∞
g(T , s)σ(s−)dL(s) =

∫ t

−∞
g(t + x , s)σ(s−)dL(s),

where x = T − t denotes time-to-maturity.

A contract delivering electricity over [T1,T2], is priced by

F (t,T1,T2) =
1

T2 − T1

∫ T2

T1

f (t, u)du.
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Ambit �eld application in energy II

Forward dynamics modelled directly by ambit �elds

Barndor�-Nielsen et al. [1] suggest using ambit �elds of the type

f (t, x) =

∫
A(x,t)

k(x , t − s, ξ)σ(ξ, s)L(dξ, ds),

where (d = 1 and)

A(x , t) = {(ξ, s) ∈ R2 : ξ ≥ 0, s ≤ t},

as a general modelling framework for electricity forwards.

Here the forward is modelled directly under the risk neutral measure.
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Parameter dependece of model integrands

Tempo-spatial dependency of the integral kernel

For general ambit �elds

Y (x , t) =

∫
A(x,t)

g(x , t; ξ, s)σ(ξ, s)L(dξ, ds),

the tempo-spatial dependency of the kernel means that for given (∆x ,∆t) ≥ 0

one can not use the value of Y (x , t) together with an increment to obtain the
value of

Y (x + ∆x , t + ∆t).

Ambit �elds in the �Fourier domain�

To get around this problem we suggest approximating g by means of a linear
comibination of complex exponential functions, which accommodate incremental
approximation.
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Approximating general kernel functions

For a general kernel g : Rn → R, where n ≥ 1, we proceed as follows.

Approximate g in L2 by a continuous and compactly supported function h,
such that

h(u1, . . . , uk , . . . , un) = h(u1, . . . ,−uk , . . . , un),

for all 1 ≤ k ≤ n.

For λ > 0, introduce hλ(u) := h(u)eλ·|u|, where |u| = (|u1|, . . . , |un|) in the
case of multivariate h.

Represent hλ by its inverse Fourier transform

hλ(u) =
1

(2π)n

∫
Rn

ĥλ(v)eiu·vdv ,

where ĥλ(v) =
∫
Rn hλ(u)e−iu·vdu.

Multiply both sides with e
−λ·|u| to obtain

h(u) ≈
∑
α∈I

cαe
(−λ+ivα)·u ,

for u ≥ 0, where I ⊂ Zn is a �nite set, and {cα}α∈I and {vα}α∈I are
appropriately selected coe�cients.
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Ambit �elds approximated by a linear combination of

complex ambit �elds driven by exponential kernels

Linear combination of complex ambit �elds

For an ambit �eld driven by h we �nd that∫
A(x,t)

h(x , t; ξ, s)σ(ξ, s)L(dξ, ds) ≈
∑
α∈I

cαŶλ(x , t, vα), (1)

where

Ŷλ(x , t, vα) =

∫
A(x,t)

e
(−λ+ivα)·p(x,t;ξ,s)σ(ξ, s)L(dξ, ds)

and p : Rd × R× Rd × R→ Rn with 1 ≤ n ≤ 2d + 2 is a linear map that
represents a possible dimension reduction.

One can quantify the approximation (1) in L2 by a constant, depending on the
model parameters, times ∑

α∈Zn\I

|ĥλ(vα)|.
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Incremental property of ambit �elds driven by complex

exponential kernels

Incremental property

If ∆x ≥ 0 and ∆t ≥ 0 denote increments in space and time respectively, then

Ŷλ(x + ∆x , t + ∆t, v) = Cλ(∆x ,∆t, v)
(
Ŷλ(x , t, v) + ελ(x ,∆x , t,∆t, v)

)
holds, where

Cλ(∆x ,∆t, v) = e
(−λ+iv)·p(∆x,∆t;0,0)

and

ελ(x ,∆x , t,∆t, v) =

∫
A(x+∆x,t+∆t)\A(x,t)

e
(−λ+iv)·p(x,t;ξ,s)σ(ξ, s)L(dξ, ds).

One can further approximate ελ by

ελ(x ,∆x , t,∆t, v) ≈ e
(−λ+iv)·p(x,t;x∗,t∗)σ(x∗, t∗)∆L(x , t),

where (x∗, t∗) ∈ A(x + ∆x , t + ∆t) \ A(x , t).
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Incremental property bound

Proposition

Let {(x j , tj)}Jj=0 ⊂ Rd × R be a space time grid and denote by

(∆x j ,∆tj) := (x j − x j−1, tj − tj−1) where j = 1, . . . , J the increments in the

space time domain, where (∆x j ,∆tj) ≥ (0, 0) holds for all j = 1, . . . , J. For a
given I ⊂ Zn, it holds that

E

∣∣∣∣∣∑
α∈I

cα

(
Ŷλ(xJ , tJ , vα)− ηJ(vα)

)∣∣∣∣∣
2


≤ C1 max
1≤j≤J

||(∆x j ,∆tj)||2 + C2 max
1≤j≤J

E
[
|σ(x j−1, tj−1)− σ(x j , tj)|2

]
,

where C1,C2 ≥ 0 are model dependent constants and || · || is the Euclidian norm

on Rn, where Aj := A(xJ−j+1, tJ−j+1) \ A(xJ−j , tJ−j) and

ηJ(v) :=
J∑

j=1

e
(−λ+iv)·p(xJ ,tJ ;x∗

J−j ,t
∗
J−j )σ(x∗J−j , t

∗
J−j)∆L(Aj).
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Fourier method - Summary

Fourier method

To simulate a discrete �eld Y (x0, t0),Y (x1, t1), . . . ,Y (xJ , tJ) given all
information available at (x0, t0), we do the following: For each (x j , tj) where
j = 1, . . . , J.

1 Simulate the increment in the Lévy basis.

2 For each α ∈ I, simulate Ŷλ(x j , tj , vα) from Ŷλ(x j−1tj−1, vα) and the Lévy
basis increment.

3 Compute numerically the inverse Fourier transform∫
A(x,t)

h(x , t; ξ, s)σ(ξ, s)L(dξ, ds) ≈
∑
α∈I

cαŶλ(x , t, vα).
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Example - Application to forward pricing

Given {xj}Jj=0 and {tk}Kk=0, consider simulating

Y (x , t) =

∫ t

−∞

∫ ∞
0

g(t − s + x)ϕ(ξ)σs(ξ)L(dξ, ds).

If I = {n ∈ Z : |n| ≤ N}, 0 < τ0 < τ are constants such that tK + xJ ≤ τ0 and

h|(0,τ0) = g |(0,τ0), a.e., we employ that ĥλ is symmetric around 0 to write

Y (x , t) ≈ c0

2
Ŷλ(x , t, 0) + Re

N∑
n=1

cnŶλ(x , t, nπ/τ),

where cn = ĥλ(nπ/τ)/τ for n = 0, . . . ,N. Furthermore

Ŷλ(xj , tk , v) = e
(−λ+iv)∆t

(
Ŷλ(xj , tk−1, v) +

∫ tk

tk−1

∫ ∞
0

e
(−λ+iv)(tk−1

−s+xj )σs(ξ)Lϕ(dξ, ds)

)

for all j = 0, . . . , J and k = 1, . . . ,K , and

Ŷλ(xj , tk , v) = e
(−λ+iv)∆x Ŷλ(xj−1, tk , v).
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Example - Asian options

As an application consider

P(T ) = f

(∫ T

0

X (t)dt

)
,

where f is Lipschitz and X is an LSS process. E.g. f (x) = max(x/T − K , 0) or
f (x) = max(K − x/T , 0) (Asian call/put). For a constant C > 0 it holds that

E

[∣∣∣∣∣f
(∫ T

0

X (t)dt

)
− f

(∫ T

0

X̃ (t)dt

)∣∣∣∣∣
]
≤ C

(∫ T

0

E
[
|X (t)− X̃ (t)|2

]
dt

)1/2

.

Can utilise our approximation on X to simulate option price

P(T ) = e
−r(T−t)E

[
f

(∫ T

0

X (t)dt

)
|Ft

]
.
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Gamma driven Asian option

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

T

P
ric

e

 

 
Exact
FourierMC
MC

Figure: The price curve T 7→ E[max(A(T )− K , 0)|Ft ], where A(T ) = 1

T

∫ T

0
X (t)dt,

K = 1, t = 0, L = W on [0, 10] and L = 0 on (−∞, 0), σ = 1 and g(x) = Cxν−1e−αx ,
where C = 10, α = 1 and ν = 0.55. As obtained by the explicit Gaussian calculations,
numerical integration to evaluate X (t) and the Fourier approximation method, with
λ = 1.9, ∆t = 0.05 and N = 30, where the expectations are obtained by averaging over
1000 Brownian motion paths.
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