

Applications of the Likelihood Theory in Finance: Modelling and Pricing

Arnold Janssen (joint work with Martin Tietje)

Heinrich-Heine-Universität Düsseldorf

Warsaw, June 13th 2013

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

International Statistical Review (2013), 81, 1, 107-133 doi:10.1111/j.1751-5823.2012.00197.x

Applications of the Likelihood Theory in Finance: Modelling and Pricing

Arnold Janssen and Martin Tietje

Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany E-mails: janssena@math.uni-duesseldorf.de, tietje@math.uni-duesseldorf.de

Summary

This paper discusses the connection between mathematical finance and statistical modelling which turns out to be more than a formal mathematical correspondence. We like to figure out how common results and notions in statistics and their meaning can be translated to the world of mathematical finance and vice versa. A lot of similarities can be expressed in terms of LeCam's theory for statistical experiments which is the theory of the behaviour of likelihood processes. For positive prices the

Outline

- 1. Motivation
- 2. Representation of financial models as statistical experiments
- 3. Option prices as functions of power functions of tests

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• 4. Convergence of option prices

1. Motivation

Goal:

- 1. Application of statistical results in finance.
- 2. Review parallel working in finance and statistical modelling (Le Cam theory).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Similarities:

- Filtered likelihood processes
- Regression models
- Contiguity
- Completeness

• ...

1. Motivation

Goal:

- 1. Application of statistical results in finance.
- 2. Review parallel working in finance and statistical modelling (Le Cam theory).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Similarities:

- Filtered likelihood processes
- Regression models
- Contiguity
- Completeness

• ...

References for Le Cam theory:

L. LeCam.

Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, 1986.

- L. LeCam and G.L.Yang. Asymptotics in statistics. Springer-Verlag, 2000.

A. N. Shiryaev and V. G. Spokoiny. Statistical Experiments and Decisions: Asymptotic Theory. World Scientific, 2000.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

H. Strasser. Mathematical Theory of Statistics.

de Gruyter, 1985.

Examples of statistical concepts in finance

- geometric Brownian motion
- Contiguity: asymptotic arbitrage Kabanov / Kramkov, Hubalek / Schachermeyer
- Neyman Pearson tests
 Föllmer / Leukert, Schied, Rudloff / Karatzas

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- binary experiments Gushin / Mordecki
- Le Cam's third Lemma in finance Shiryaev

2. Representation of financial models as statistical experiments

Filtered statistical experiment:

- $\boldsymbol{E} = (\Omega, \mathcal{F}, \{\boldsymbol{P}_{\vartheta} : \vartheta \in \Theta\})$
- Filtration $(\mathcal{F}_t)_{t\geq 0}$.

Financial model:

- Time intervall: $I \subset [0, T]$ with $T < \infty$, $\{0, T\} \subset I$,
- Filtered probability space (Ω, F, P) with filtration (F_t)_{t∈l}, F = F_T, F₀ = {N : P(N) = 0 or P(N) = 1}
- Adapted, positive, discounted price processes (Xⁱ_t)_{t∈l}, 1 ≤ i ≤ d.

2. Representation of financial models as statistical experiments

Filtered statistical experiment:

- $\boldsymbol{E} = (\Omega, \mathcal{F}, \{\boldsymbol{P}_{\vartheta} : \vartheta \in \Theta\})$
- Filtration $(\mathcal{F}_t)_{t\geq 0}$.

Financial model:

- Time intervall: $I \subset [0, T]$ with $T < \infty$, $\{0, T\} \subset I$,
- Filtered probability space (Ω, \mathcal{F}, P) with filtration $(\mathcal{F}_t)_{t \in I}$, $\mathcal{F} = \mathcal{F}_T, \mathcal{F}_0 = \{N : P(N) = 0 \text{ or } P(N) = 1\}$
- Adapted, positive, discounted price processes (Xⁱ_t)_{t∈l}, 1 ≤ i ≤ d.

Martingale measure:

Q Martingale measure, if $(X_t^i)_{t \in I}$ *Q*-martingale $\forall 1 \le i \le d$.

Theorem 1

Let Q be a probability measure equivalent to P. The following assertions are equivalent:

There are probability measures Q₁, ..., Q_d on (Ω, F) satisfying

$$\frac{d\mathbf{Q}_{i|\mathcal{F}_{t}}}{d\mathbf{Q}_{|\mathcal{F}_{t}}} = \frac{\mathbf{X}_{t}^{i}}{\mathbf{X}_{0}^{i}}, \quad t \in \mathbf{I}. \tag{1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

and $Q_i \ll Q$ for all $1 \leq i \leq d$.

(2) *Q* is a martingale measure.

From now on: financial models which allow a martingale measure

Notation:

- $(\Omega, \mathcal{F}, \{Q_1, ..., Q_d, Q, P\})$ together with $(\mathcal{F}_t)_{t \in I}$ is called a financial experiment.

• The processes $\left(\frac{dQ_{i|\mathcal{F}_t}}{dQ_{i\mathcal{T}}}\right)$ are called filtered likelihood

(日) (日) (日) (日) (日) (日) (日)

processes.

Dictionary

Finance	Statistics
price process	filtered likelihood process

Example (Cox-Ross-Rubinstein model)

- Q, Q_1 products of Bernoulli distributions (parameters τ, κ)
- $Q := ((1 \tau)\varepsilon_0 + \tau\varepsilon_1)^N$ and $Q_1 := ((1 \kappa)\varepsilon_0 + \kappa\varepsilon_1)^N$

• Result:

$$\frac{dQ_{1|\mathcal{F}_n}}{dQ_{|\mathcal{F}_n}}(k_n) = \left(\frac{\kappa}{\tau}\right)^{k_n} \left(\frac{1-\kappa}{1-\tau}\right)^{n-k_n} = \tilde{u}^{k_n} \tilde{d}^{n-k_n} = \frac{X_n(k_n)}{X_0(k_n)}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Dictionary

Finance	Statistics
price process	filtered likelihood process

Example (Cox-Ross-Rubinstein model)

- Q, Q_1 products of Bernoulli distributions (parameters τ, κ)
- $Q := ((1 \tau)\varepsilon_0 + \tau \varepsilon_1)^N$ and $Q_1 := ((1 \kappa)\varepsilon_0 + \kappa \varepsilon_1)^N$
- Result:

$$\frac{dQ_{1|\mathcal{F}_n}}{dQ_{|\mathcal{F}_n}}(k_n) = \left(\frac{\kappa}{\tau}\right)^{k_n} \left(\frac{1-\kappa}{1-\tau}\right)^{n-k_n} = \tilde{u}^{k_n} \tilde{d}^{n-k_n} = \frac{X_n(k_n)}{X_0(k_n)}.$$

(日) (日) (日) (日) (日) (日) (日)

Example (Itô type price processes) Discounted price processes:

$$\mathbf{X}_{\mathbf{t}}^{\mathbf{i}} = \mathbf{X}_{\mathbf{0}}^{\mathbf{i}} \exp(\int_{\mathbf{0}}^{\mathbf{t}} \sigma_{\mathbf{i}}'(\mathbf{s}) \mathrm{d}\mathbf{W}(\mathbf{s}) + \int_{\mathbf{0}}^{\mathbf{t}} \left(\mu_{\mathbf{i}}(\mathbf{s}) - \rho(\mathbf{s}) - \frac{\|\sigma_{\mathbf{i}}(\mathbf{s})\|^{2}}{2} \right) \mathrm{d}\mathbf{s})$$

where W is a d-dimensional Brownian motion Usual assumptions:

• Parameter space Θ : space of volatility matrices $\sigma = (\sigma_{ij})_{i,j=1,...,d}$ which are progressively measurable, uniformly positive definite processes such that an integrability condition holds.

$$\sigma_i := (\sigma_{i1}, ..., \sigma_{id})'$$

 Interest rate and drift: ρ and μ = (μ₁,..., μ_d)' progressively measurable processes

• Bond price:

$$V_t^0 = \exp\left(\int_0^t
ho(s) ds\right), \quad 0 \le t \le T$$

$$\frac{\mathbf{X}_{\mathsf{T}}^{i}}{\mathbf{X}_{\mathbf{0}}^{i}} = \frac{\mathsf{d}\mathbf{Q}_{i}}{\mathsf{d}\mathbf{Q}} := \exp\left(\int_{\mathbf{0}}^{\mathsf{T}} \sigma_{i}'(\mathbf{s})\mathsf{d}\overline{\mathsf{W}}(\mathbf{s}) - \frac{1}{2}\int_{\mathbf{0}}^{\mathsf{T}} \|\sigma_{i}(\mathbf{s})\|^{2}\mathsf{d}\mathbf{s}\right)$$

Changing martingale measure:

 $\mathbf{1} = (1, ..., 1)' \in \mathbb{R}^d \text{ and } \theta(s) := \sigma^{-1}(s)[\rho(s)\mathbf{1} - \mu(s)]$

• Set $\frac{dQ}{dP} := \exp\left(\int_0^T \theta'(s) dW(s) - \frac{1}{2} \int_0^T \|\theta(s)\|^2 ds\right)$

By Girsanov's Theorem $\overline{W}(t) = W(t) - \int_0^t \theta(s) ds$ is a *d*-dimensional Brownian motion with respect to *Q*

Statistical meaning: regression model in survival analysis

- $\xi(t) = W(t) + \int_0^t (\tau(s) \theta(s)) ds = \overline{W}(t) + \int_0^t \tau(s) ds$ 0 $\leq t \leq T$
- $\mathbf{Q} = \mathcal{L}((\xi(\mathbf{t}))_{\mathbf{t} \le \mathbf{T}} | \tau = \mathbf{0})$
- $\mathbf{Q}_{\mathbf{i}} = \mathcal{L}\left((\xi(\mathbf{t}))_{\mathbf{t} \leq \mathbf{T}} | \tau = \sigma_{\mathbf{i}}\right), \ \sigma_{\mathbf{i}} := (\sigma_{\mathbf{i}1}, ..., \sigma_{\mathbf{i}d})'$

$$\frac{\mathbf{X}_{\mathsf{T}}^{i}}{\mathbf{X}_{\mathbf{0}}^{i}} = \frac{\mathsf{d}\mathbf{Q}_{i}}{\mathsf{d}\mathbf{Q}} := \exp\left(\int_{\mathbf{0}}^{\mathsf{T}} \sigma_{i}'(\mathbf{s})\mathsf{d}\overline{\mathsf{W}}(\mathbf{s}) - \frac{1}{2}\int_{\mathbf{0}}^{\mathsf{T}} \|\sigma_{i}(\mathbf{s})\|^{2}\mathsf{d}\mathbf{s}\right)$$

Changing martingale measure:

 $\mathbf{1} = (1, ..., 1)' \in \mathbb{R}^d \text{ and } \theta(s) := \sigma^{-1}(s)[\rho(s)\mathbf{1} - \mu(s)]$

• Set $\frac{dQ}{dP} := \exp\left(\int_0^T \theta'(s) dW(s) - \frac{1}{2} \int_0^T \|\theta(s)\|^2 ds\right)$ By Girsanov's Theorem $\bar{W}(t) = W(t) - \int_0^t \theta(s) ds$ is a

d-dimensional Brownian motion with respect to Q

Statistical meaning: regression model in survival analysis

•
$$\xi(\mathbf{t}) = \mathbf{W}(\mathbf{t}) + \int_{\mathbf{0}}^{\mathbf{t}} (\tau(\mathbf{s}) - \theta(\mathbf{s})) d\mathbf{s} = \overline{\mathbf{W}}(\mathbf{t}) + \int_{\mathbf{0}}^{\mathbf{t}} \tau(\mathbf{s}) d\mathbf{s}$$

 $\mathbf{0} \le \mathbf{t} \le \mathbf{T}$

•
$$\mathbf{Q} = \mathcal{L}\left((\xi(\mathbf{t}))_{\mathbf{t} \leq \mathbf{T}} | \tau = \mathbf{0}\right)$$

• $\mathbf{Q}_{\mathbf{i}} = \mathcal{L}\left(\left(\xi(\mathbf{t})\right)_{\mathbf{t} \leq \mathbf{T}} | \tau = \sigma_{\mathbf{i}}\right), \ \sigma_{\mathbf{i}} := (\sigma_{\mathbf{i}1}, ..., \sigma_{\mathbf{id}})'$

Finance	Statistics
Itô process models	regression models
of Black-Scholes type	
volatility	hazard parameters

Definition

 $\{P_{\vartheta} : \vartheta \in \Theta\}$ is \mathcal{G} -complete w.r.t. some class of function \mathcal{G} , if for $g \in \mathcal{G}$ we have $\int g \, dP_{\vartheta} = \text{constant}$ for all P_{ϑ} implies g = constant a.e.

・ コット (雪) (小田) (コット 日)

Finance	Statistics
complete markets	completeness of experiments

Finance	Statistics
Itô process models	regression models
of Black-Scholes type	
volatility	hazard parameters

Definition $\{P_{\vartheta} : \vartheta \in \Theta\}$ is \mathcal{G} -complete w.r.t. some class of function \mathcal{G} , if for $g \in \mathcal{G}$ we have $\int g \, dP_{\vartheta} = \text{constant for all } P_{\vartheta}$ implies g = constant a.e.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Finance	Statistics
complete markets	completeness of
	experiments

3. Option prices as functions of power functions of tests

Example (European Call option)

• Payoff European Call:

$$H_{C} = (X_{T}^{1} - K)^{+} = (X_{T}^{1} - K)\mathbf{1}_{\{X_{T}^{1} > K\}} = (X_{T}^{1} - K)\phi_{C}\left(\frac{dQ_{1}}{dQ}\right)$$

where $\phi_{C}\left(\frac{dQ_{1}}{dQ}\right) = \mathbf{1}_{\left\{\frac{dQ_{1}}{dQ} > \frac{K}{X_{0}^{1}}\right\}}$ is a Neyman Pearson test
for the null hypothesis $\{Q\}$ versus $\{Q_{1}\}$

• Fair price:

$$p(H_C) = X_0^1 E_{Q_1} \left(\phi_C \left(\frac{dQ_1}{dQ} \right) \right) - K E_Q \left(\phi_C \left(\frac{dQ_1}{dQ} \right) \right)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

p(*H_C*) + *K* Bayes risk of the test φ_C with respect to the prior Λ₀ = X₀¹ and Λ₁ = K

3. Option prices as functions of power functions of tests

Example (European Call option)

• Payoff European Call:

$$H_{C} = (X_{T}^{1} - K)^{+} = (X_{T}^{1} - K)\mathbf{1}_{\{X_{T}^{1} > K\}} = (X_{T}^{1} - K)\phi_{C}\left(\frac{dQ_{1}}{dQ}\right)$$

where $\phi_{C}\left(\frac{dQ_{1}}{dQ}\right) = \mathbf{1}_{\left\{\frac{dQ_{1}}{dQ} > \frac{K}{X_{0}^{1}}\right\}}$ is a Neyman Pearson test
for the null hypothesis $\{Q\}$ versus $\{Q_{1}\}$

• Fair price:

$$p(H_C) = X_0^1 E_{Q_1} \left(\phi_C \left(\frac{dQ_1}{dQ} \right) \right) - K E_Q \left(\phi_C \left(\frac{dQ_1}{dQ} \right) \right)$$

p(*H_C*) + *K* Bayes risk of the test φ_C with respect to the prior Λ₀ = X₀¹ and Λ₁ = K

Option: Random payoff H at time T. Assumption (A): H is of the form

$$H = \sum_{j=1}^{m} \sum_{i=1}^{d} [a_{ij}X_T^i - K_{ij}]\phi_{ij}\left(\left(\frac{X_t^i}{X_0^i}\right)_{t \in I}\right),$$

where $\phi_{ij} : \mathbb{R}^{l} \to [0, 1]$ tests and a_{ij} , K_{ij} real coefficients $1 \le i \le d, 1 \le j \le m$.

Examples:

- European Call, European Put
- Strangle Option, Straddle Option, Bull-Spread Option

(ロ) (同) (三) (三) (三) (○) (○)

Digital Option

Option: Random payoff H at time T. Assumption (A): H is of the form

$$H = \sum_{j=1}^{m} \sum_{i=1}^{d} [a_{ij}X_T^i - K_{ij}]\phi_{ij}\left(\left(\frac{X_t^i}{X_0^i}\right)_{t \in I}\right),$$

where $\phi_{ij} : \mathbb{R}^{l} \to [0, 1]$ tests and a_{ij} , K_{ij} real coefficients $1 \le i \le d, 1 \le j \le m$.

Examples:

- European Call, European Put
- Strangle Option, Straddle Option, Bull-Spread Option
- Digital Option

Theorem 2 Under assumption (A) and for a fixed martingale measure Qthe option price p(H) of H is given by

$$p(H) = \sum_{j=1}^{m} \sum_{i=1}^{d} \left[a_{ij} X_0^i E_{Q_i} \left(\phi_{ij} \left(\left(\frac{dQ_{i|\mathcal{F}_t}}{dQ_{|\mathcal{F}_t}} \right)_{t \le T} \right) \right) - \mathcal{K}_{ij} E_Q \left(\phi_{ij} \left(\left(\frac{dQ_{i|\mathcal{F}_t}}{dQ_{|\mathcal{F}_t}} \right)_{t \le T} \right) \right) \right].$$

• $E_Q\left(\phi_{ij}\left(\left(\frac{dQ_{i|\mathcal{F}_t}}{dQ_{|\mathcal{F}_t}}\right)_{t\leq T}\right)\right)$ level of the test ϕ_{ij} • $E_{Q_i}\left(\phi_{ij}\left(\left(\frac{dQ_{i|\mathcal{F}_t}}{dQ_{|\mathcal{F}_t}}\right)_{t\leq T}\right)$ power of the test ϕ_{ij}

Theorem 2 Under assumption (A) and for a fixed martingale measure Qthe option price p(H) of H is given by

$$p(H) = \sum_{j=1}^{m} \sum_{i=1}^{d} \left[a_{ij} X_0^i E_{Q_i} \left(\phi_{ij} \left(\left(\frac{dQ_{i|\mathcal{F}_t}}{dQ_{|\mathcal{F}_t}} \right)_{t \le T} \right) \right) - \mathcal{K}_{ij} E_Q \left(\phi_{ij} \left(\left(\frac{dQ_{i|\mathcal{F}_t}}{dQ_{|\mathcal{F}_t}} \right)_{t \le T} \right) \right) \right].$$

•
$$E_Q\left(\phi_{ij}\left(\left(\frac{dQ_{i|\mathcal{F}_t}}{dQ_{|\mathcal{F}_t}}\right)_{t\leq T}\right)\right)$$
 level of the test ϕ_{ij}
• $E_{Q_i}\left(\phi_{ij}\left(\left(\frac{dQ_{i|\mathcal{F}_t}}{dQ_{|\mathcal{F}_t}}\right)_{t\leq T}\right)$ power of the test ϕ_{ij}

Dictionary

Finance	Statistics
options	tests
option price	by power functions of test
European call option	Neyman Pearson test
Black-Scholes price	Bayes risk

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

4. Convergence of option prices

Le Cam: Convergence of experiments (likelihood processes) Consequences: Convergence of Neyman Pearson Tests Convergence of Bayes risks

- $E_n = \{P_{n,\vartheta} : \vartheta \in \Theta\}$ sequence of experiments
- weak convergence of experiments E_n → E = {P_ϑ : ϑ ∈ Θ} weak convergence of all finite dimensional likelihood ratio processes

$$\mathcal{L}\left(\left(\frac{dP_{n,\vartheta}}{dP_{n,\vartheta_0}}\right)_{\vartheta} \Big| P_{n,\tau}\right) \longrightarrow \mathcal{L}\left(\left(\frac{dP_{\vartheta}}{dP_{\vartheta_0}}\right)_{\vartheta} \Big| P_{\tau}\right) \quad \text{for all } \tau$$

(日) (日) (日) (日) (日) (日) (日)

compact topology (on the set of classes of experiments)

Example

Central limit Theorem for statistical experiments (LAN) "local asymptotic normality" under some condition:

•
$$E_n \rightarrow E = \{Q_{\vartheta g} : \vartheta \in \mathbb{R}\}$$
 weakly

•
$$rac{dQ_{artheta g}}{dQ_0} = \exp(artheta L(g) - artheta^2 \| \ g \ \|^2/2)$$
 Gaussian shift, $g \in L_2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- g → L(g) Gaussian process, mean zero and Cov(L(g₁), L(g₂)) = ⟨g₁, g₂⟩ under Q₀
- Covers the geometric Brownian motion

Example

Central limit Theorem for statistical experiments (LAN) "local asymptotic normality" under some condition:

•
$$E_n \rightarrow E = \{Q_{\vartheta g} : \vartheta \in \mathbb{R}\}$$
 weakly

•
$$rac{dQ_{artheta g}}{dQ_0} = \exp(artheta L(g) - artheta^2 \| \ g \ \|^2/2)$$
 Gaussian shift, $g \in L_2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $g \mapsto L(g)$ Gaussian process, mean zero and $Cov(L(g_1), L(g_2)) = \langle g_1, g_2 \rangle$ under Q_0
- Covers the geometric Brownian motion

Example (Brownian motion regression model)

•
$$g: [0, 1] \to \mathbb{R}, P_0 = \lambda_{|[0, 1]}$$

• $X_t = B(t) + \int_0^t g(u) du, \ 0 \le t \le 1$ noise + signal
• $Q_g = \mathcal{L}((X_t)_{t \le 1} \mid g)$
• $L(g) = \int_0^1 g B(dt)$
• $\frac{dQ_g}{dQ_0} = \exp\left(\int_0^1 g B(dt) - \frac{\|g\|^2}{2}\right)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

For simplicity, one asset d = 1

$$X_{n,t} = rac{dQ_{1,n|\mathcal{F}_{t,n}}}{dQ_{n|\mathcal{F}_{t,n}}}, \quad n \in \mathbb{N}_0$$

Theorem 3

Suppose that $X_{n,t}$ "converges weakly to" $X_{0,t}$ (in terms of financial experiments). $X_{0,t}$ is a price process iff $Q_{1,n} \triangleleft Q_n$ and $Q_n \triangleleft Q_{1,n}$ (Contiguity).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Contiguity $P_n \triangleleft Q_n$: When $Q_n(A_n) \rightarrow 0$ then $P_n(A_n) \rightarrow 0$ holds.

"Asymptotic arbitrage freeness"

For simplicity, one asset d = 1

$$X_{n,t} = rac{dQ_{1,n|\mathcal{F}_{t,n}}}{dQ_{n|\mathcal{F}_{t,n}}}, \quad n \in \mathbb{N}_0$$

Theorem 3

Suppose that $X_{n,t}$ "converges weakly to" $X_{0,t}$ (in terms of financial experiments). $X_{0,t}$ is a price process iff $Q_{1,n} \triangleleft Q_n$ and $Q_n \triangleleft Q_{1,n}$ (Contiguity).

(日) (日) (日) (日) (日) (日) (日)

Contiguity $P_n \triangleleft Q_n$: When $Q_n(A_n) \rightarrow 0$ then $P_n(A_n) \rightarrow 0$ holds.

"Asymptotic arbitrage freeness"

Example $t_k = \frac{k}{n}T$ discrete times

$$X_{n,t_k} = \prod_{j=1}^k Z_{n,j}, \quad Z_{n,j} - 1 = rac{X_{n,t_k} - X_{n,t_{k-1}}}{X_{n,t_{k-1}}} \; returns$$

Under regularity assumptions:

Convergence to the Gaussian shift (= geometric Brownian motion)

Concrete Example: Convergence of Cox-Ross-Rubinstein models

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (Le Cam) (Main Theorem of Testing)

Suppose that $\{P_{n,\vartheta} : \vartheta \in \Theta\} \to \{P_\vartheta : \vartheta \in \Theta\}$ weakly. $P_\vartheta \ll P_{\vartheta_0}$ Let $\varphi_n : \Omega_n \to [0, 1]$ be a sequence of tests with

$$\lim_{n\to\infty} E_{\mathcal{P}_{n,\vartheta}}(\varphi_n) = a_\vartheta \text{ exists.}$$

Then there exists a test φ for $(P_{\vartheta})_{\vartheta}$ with

$$E_{P_{\vartheta}}(\varphi) = a_{\vartheta}$$
 for all ϑ .

 φ is related to the option for the "limit model".

Theorem (Le Cam) (Main Theorem of Testing)

Suppose that $\{P_{n,\vartheta} : \vartheta \in \Theta\} \to \{P_\vartheta : \vartheta \in \Theta\}$ weakly. $P_\vartheta \ll P_{\vartheta_0}$ Let $\varphi_n : \Omega_n \to [0, 1]$ be a sequence of tests with

$$\lim_{n\to\infty} E_{\mathcal{P}_{n,\vartheta}}(\varphi_n) = a_\vartheta \text{ exists.}$$

Then there exists a test φ for $(P_{\vartheta})_{\vartheta}$ with

$$E_{P_{\vartheta}}(\varphi) = a_{\vartheta}$$
 for all ϑ .

(日) (日) (日) (日) (日) (日) (日)

 φ is related to the option for the "limit model".

All kind of convergence results are known in statistics.

Application in finance:

- Convergence of financial experiments (price processes)
- Convergence of power functions Neyman Pearson tests, Bayes risks
- Convergence of option prices
- Discrete approximation of complicated option prices

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Dictionary

Finance	Statistics
price process	filtered likelihood process
Itô process models	regression models
of Black-Scholes type	
volatility	hazard parameters
complete markets	completeness of
	experiments
options	tests
option price	by power functions of test
European call option	Neyman Pearson test
Black-Scholes price	Bayes risk
martingale measure	null hypothesis
approximation of continuous	convergence of
time price models	experiments
asymptotic arbitrage free models	contiguity

References

H. Föllmer and P. Leukert. Quantile Hedging. *Finance Stochast.*, 3:251–273, 1999.

A. A. Gushchin and E. Mordecki. Bounds on option prices for semimartingale market models. *Proc. Steklov Inst. Math.*, 273: 73–113, 2002.

F. Hubalek and W. Schachermayer

When does convergence of asset prices imply convergence of option prices?

Math. Finan., 8(4): 385–403, 1998.

A. Janssen and M. Tietje.

Applications of the Likelihood Theory in Finance: Modelling and Pricing. International Statistical Review, 2013.

References

Yu. M. Kabanov and D. O. Kramkov.

Large financial markets: Asymptotic arbitrage and contiguity. *Theory Probab. Appl.*, 39:182–187, 1994.

A. Schied.

On the Neyman-Pearson Problem for law-invariant risk measures and robust utility functionals.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Annals of Applied Probability., 14:1398–1423, 2004.

Thank you for your attention!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Appendix

$$X_{n,t_{k}} = \prod_{j=1}^{k} Z_{n,j}, \quad Z_{n,j} - 1 = \frac{X_{n,t_{k}} - X_{n,t_{k-1}}}{X_{n,t_{k-1}}} \text{ returns}$$
$$\frac{dQ_{1,n|\mathcal{F}_{t_{k},n}}}{dQ_{n|\mathcal{F}_{t_{k},n}}} = X_{n,t_{k}} = \prod_{j=1}^{k} Z_{n,j} = \frac{d\bigotimes_{j=1}^{k} Q_{1,n}(j)}{d\bigotimes_{j=1}^{k} Q_{n}(j)}$$

 $\frac{dQ_{1,n}(j)}{dQ_{n}(j)} - 1 = Z_{n,j} - 1$ "returns at stage $\frac{t_{j}}{n}$ for the *n*-th price process"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ