Applications of the Likelihood Theory in Finance: Modelling and Pricing

Arnold Janssen (joint work with Martin Tietje)

Heinrich-Heine-Universität Düsseldorf

Warsaw, June 13th 2013
Applications of the Likelihood Theory in Finance: Modelling and Pricing

Arnold Janssen and Martin Tietje

Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
E-mails: janssena@math.uni-duesseldorf.de, tietje@math.uni-duesseldorf.de

Summary

This paper discusses the connection between mathematical finance and statistical modelling which turns out to be more than a formal mathematical correspondence. We like to figure out how common results and notions in statistics and their meaning can be translated to the world of mathematical finance and vice versa. A lot of similarities can be expressed in terms of LeCam’s theory for statistical experiments which is the theory of the behaviour of likelihood processes. For positive prices the
Outline

• 1. Motivation
• 2. Representation of financial models as statistical experiments
• 3. Option prices as functions of power functions of tests
• 4. Convergence of option prices
1. Motivation

Goal:
1. Application of statistical results in finance.
2. Review parallel working in finance and statistical modelling (Le Cam theory).

Similarities:
- Filtered likelihood processes
- Regression models
- Contiguity
-Completeness
-...
1. Motivation

Goal:

1. Application of statistical results in finance.
2. Review parallel working in finance and statistical modelling (Le Cam theory).

Similarities:

- Filtered likelihood processes
- Regression models
- Contiguity
- Completeness
- ...
References for Le Cam theory:

L. LeCam.
Asymptotic Methods in Statistical Decision Theory.
Springer-Verlag, 1986.

L. LeCam and G.L.Yang.
Asymptotics in statistics.

A. N. Shiryaev and V. G. Spokoiny.
Statistical Experiments and Decisions: Asymptotic Theory.

H. Strasser.
Mathematical Theory of Statistics.
Examples of statistical concepts in finance

- geometric Brownian motion
- Contiguity: asymptotic arbitrage
 Kabanov / Kramkov, Hubalek / Schachermeyer
- Neyman Pearson tests
 Föllmer / Leukert, Schied, Rudloff / Karatzas
- binary experiments
 Gushin / Mordecki
- Le Cam’s third Lemma in finance
 Shiryaev
2. Representation of financial models as statistical experiments

Filtered statistical experiment:

- \(E = (\Omega, \mathcal{F}, \{ P_\vartheta : \vartheta \in \Theta \}) \)
- Filtration \((\mathcal{F}_t)_{t \geq 0}\).

Financial model:

- Time interval: \(I \subset [0, T] \) with \(T < \infty \), \(\{0, T\} \subset I \),
- Filtered probability space \((\Omega, \mathcal{F}, P)\) with filtration \((\mathcal{F}_t)_{t \in I}\), \(\mathcal{F} = \mathcal{F}_T \), \(\mathcal{F}_0 = \{ N : P(N) = 0 \text{ or } P(N) = 1 \} \)
- Adapted, positive, discounted price processes \((X^i_t)_{t \in I}, 1 \leq i \leq d\).
2. Representation of financial models as statistical experiments

Filtered statistical experiment:
- \(E = (\Omega, \mathcal{F}, \{P_\vartheta : \vartheta \in \Theta\}) \)
- Filtration \((\mathcal{F}_t)_{t\geq 0}\).

Financial model:
- Time interval: \(I \subset [0, T] \) with \(T < \infty \), \(\{0, T\} \subset I \),
- Filtered probability space \((\Omega, \mathcal{F}, P)\) with filtration \((\mathcal{F}_t)_{t\in I}\), \(\mathcal{F} = \mathcal{F}_T \), \(\mathcal{F}_0 = \{N : P(N) = 0 \text{ or } P(N) = 1\} \)
- Adapted, positive, discounted price processes \((X^i_t)_{t\in I}, 1 \leq i \leq d\).
Martingale measure:
Q Martingale measure, if $(X^i_t)_{t \in I}$ Q-martingale $\forall 1 \leq i \leq d$.

Theorem 1

Let Q be a probability measure equivalent to P. The following assertions are equivalent:

1. There are probability measures Q_1, \ldots, Q_d on (Ω, \mathcal{F}) satisfying

 \[
 \frac{dQ_i|_{\mathcal{F}_t}}{dQ|_{\mathcal{F}_t}} = \frac{X^i_t}{X^i_0}, \quad t \in I. \tag{1}
 \]

 and $Q_i \ll Q$ for all $1 \leq i \leq d$.

2. Q is a martingale measure.
From now on: financial models which allow a martingale measure

Notation:

• \(\left(\Omega, \mathcal{F}, \{Q_1, \ldots, Q_d, Q, P\} \right) \) together with \((\mathcal{F}_t)_{t \in I} \) is called a financial experiment.

• The processes \(\left(\frac{dQ_i|\mathcal{F}_t}{dQ|\mathcal{F}_t} \right)_{t \in I} \) are called filtered likelihood processes.
Example (Cox-Ross-Rubinstein model)

- \(Q, Q_1 \) products of Bernoulli distributions (parameters \(\tau, \kappa \))
- \(Q := ((1 - \tau)\varepsilon_0 + \tau\varepsilon_1)^N \) and \(Q_1 := ((1 - \kappa)\varepsilon_0 + \kappa\varepsilon_1)^N \)
- Result:

\[
\frac{dQ_1|\mathcal{F}_n}{dQ|\mathcal{F}_n}(k_n) = \left(\frac{\kappa}{\tau}\right)^{k_n} \left(\frac{1 - \kappa}{1 - \tau}\right)^{n-k_n} = \tilde{u}^{k_n} \tilde{d}^{n-k_n} = \frac{X_n(k_n)}{X_0(k_n)}.
\]
Example (Cox-Ross-Rubinstein model)

- Q, Q_1 products of Bernoulli distributions (parameters τ, κ)
- $Q := ((1 - \tau)\varepsilon_0 + \tau\varepsilon_1)^N$ and $Q_1 := ((1 - \kappa)\varepsilon_0 + \kappa\varepsilon_1)^N$
- Result:

\[
\frac{dQ_1|_{\mathcal{F}_n}(k_n)}{dQ|_{\mathcal{F}_n}(k_n)} = \left(\frac{\kappa}{\tau}\right)^{k_n} \left(\frac{1 - \kappa}{1 - \tau}\right)^{n-k_n} = \tilde{u}^k \tilde{a}^{n-k} = \frac{X_n(k_n)}{X_0(k_n)}.
\]
Example (Itô type price processes)

Discounted price processes:

\[X^i_t = X^i_0 \exp \left(\int_0^t \sigma^i_t(s) dW(s) + \int_0^t \left(\mu^i(s) - \rho(s) - \frac{\|\sigma^i(s)\|^2}{2} \right) ds \right) \]

where \(W \) is a \(d \)-dimensional Brownian motion

Usual assumptions:

- **Parameter space** \(\Theta \): space of volatility matrices
 \[\sigma = (\sigma_{ij})_{i,j=1,\ldots,d} \] which are progressively measurable, uniformly positive definite processes such that an integrability condition holds.
 \[\sigma_i := (\sigma_{i1}, \ldots, \sigma_{id})' \]
- **Interest rate and drift**: \(\rho \) and \(\mu = (\mu_1, \ldots, \mu_d)' \) progressively measurable processes
- **Bond price**:
 \[V^0_t = \exp \left(\int_0^t \rho(s) ds \right), \quad 0 \leq t \leq T \]
\[
\frac{X_T^i}{X_0^i} = \frac{dQ_i}{dQ} := \exp \left(\int_0^T \sigma'_i(s)d\bar{W}(s) - \frac{1}{2} \int_0^T \|\sigma_i(s)\|^2 ds \right)
\]

Changing martingale measure:
\(\mathbf{1} = (1, \ldots, 1)' \in \mathbb{R}^d \) and \(\theta(s) := \sigma^{-1}(s)[\rho(s)\mathbf{1} - \mu(s)] \)

- Set \(\frac{dQ}{dP} := \exp \left(\int_0^T \theta'(s)dW(s) - \frac{1}{2} \int_0^T \|\theta(s)\|^2 ds \right) \)

By Girsanov’s Theorem \(\bar{W}(t) = W(t) - \int_0^t \theta(s)ds \) is a \(d \)-dimensional Brownian motion with respect to \(Q \)

Statistical meaning: regression model in survival analysis

- \(\xi(t) = W(t) + \int_0^t (\tau(s) - \theta(s))ds = \bar{W}(t) + \int_0^t \tau(s)ds, \quad 0 \leq t \leq T \)
- \(Q = \mathcal{L}((\xi(t))_{t \leq T}|\tau = 0) \)
- \(Q_i = \mathcal{L}((\xi(t))_{t \leq T}|\tau = \sigma_i), \quad \sigma_i := (\sigma_{i1}, \ldots, \sigma_{id})' \)
\[
\frac{X_i^T}{X_i^0} = \frac{dQ_i}{dQ} := \exp \left(\int_0^T \sigma_i'(s)d\bar{W}(s) - \frac{1}{2} \int_0^T \|\sigma_i(s)\|^2 ds \right)
\]

Changing martingale measure:
\[\mathbf{1} = (1, \ldots, 1)' \in \mathbb{R}^d \text{ and } \theta(s) := \sigma^{-1}(s)[\rho(s)\mathbf{1} - \mu(s)]\]
- Set \(\frac{dQ}{dP} := \exp \left(\int_0^T \theta'(s)dW(s) - \frac{1}{2} \int_0^T \|\theta(s)\|^2 ds \right)\)

By Girsanov’s Theorem \(\bar{W}(t) = W(t) - \int_0^t \theta(s)ds\) is a \(d\)-dimensional Brownian motion with respect to \(Q\)

Statistical meaning: regression model in survival analysis
- \(\xi(t) = W(t) + \int_0^t (\tau(s) - \theta(s))ds = \bar{W}(t) + \int_0^t \tau(s)ds\)
- \(0 \leq t \leq T\)
- \(Q = \mathcal{L} ((\xi(t))_{t \leq T}|\tau = 0)\)
- \(Q_i = \mathcal{L} ((\xi(t))_{t \leq T}|\tau = \sigma_i), \sigma_i := (\sigma_{i1}, \ldots, \sigma_{id})'\)
### Finance	Statistics
Itô process models of Black-Scholes type | regression models
volatility | hazard parameters

Definition

\[\{P_\vartheta : \vartheta \in \Theta\} \text{ is } G\text{-complete w.r.t. some class of function } G, \text{ if for } g \in G \text{ we have } \int g \, dP_\vartheta = \text{constant for all } P_\vartheta \text{ implies } g = \text{constant a.e.} \]
Definition

\[\{ P_\vartheta : \vartheta \in \Theta \} \text{ is } \mathcal{G} \text{-complete w.r.t. some class of function } \mathcal{G}, \text{ if for } g \in \mathcal{G} \text{ we have } \int g \, dP_\vartheta = \text{constant for all } P_\vartheta \text{ implies } g = \text{constant a.e.} \]
3. Option prices as functions of power functions of tests

Example (European Call option)

- **Payoff European Call:**
 \[H_C = (X_T^1 - K)^+ = (X_T^1 - K)1_{\{X_T^1 > K\}} = (X_T^1 - K)\phi_C \left(\frac{dQ_1}{dQ} \right) \]

 where \(\phi_C \left(\frac{dQ_1}{dQ} \right) = 1 \left\{ \frac{dQ_1}{dQ} > \frac{K}{X_0^1} \right\} \) is a Neyman Pearson test for the null hypothesis \(\{ Q \} \) versus \(\{ Q_1 \} \)

- **Fair price:**
 \[p(H_C) = X_0^1 E_{Q_1} \left(\phi_C \left(\frac{dQ_1}{dQ} \right) \right) - KE_{Q_1} \left(\phi_C \left(\frac{dQ_1}{dQ} \right) \right) \]

- \(p(H_C) + K \) Bayes risk of the test \(\phi_C \) with respect to the prior \(\Lambda_0 = X_0^1 \) and \(\Lambda_1 = K \)
3. Option prices as functions of power functions of tests

Example (European Call option)

- Payoff European Call:

\[H_C = (X_T^1 - K)^+ = (X_T^1 - K)1_{\{X_T^1 > K\}} = (X_T^1 - K)\phi_C \left(\frac{dQ_1}{dQ} \right) \]

where \(\phi_C \left(\frac{dQ_1}{dQ} \right) = 1 \left\{ \frac{dQ_1}{dQ} > \frac{K}{X_0^1} \right\} \) is a Neyman Pearson test for the null hypothesis \(\{Q\} \) versus \(\{Q_1\} \)

- Fair price:

\[p(H_C) = X_0^1 E_{Q_1} \left(\phi_C \left(\frac{dQ_1}{dQ} \right) \right) - KE_{Q} \left(\phi_C \left(\frac{dQ_1}{dQ} \right) \right) \]

- \(p(H_C) + K \) Bayes risk of the test \(\phi_C \) with respect to the prior \(\Lambda_0 = X_0^1 \) and \(\Lambda_1 = K \)
Option:
Random payoff H at time T.
Assumption (A): H is of the form

$$H = \sum_{j=1}^{m} \sum_{i=1}^{d} [a_{ij} X^i_T - K_{ij}] \phi_{ij} \left(\left(\frac{X^i_t}{X^i_0} \right)_{t \in I} \right),$$

where $\phi_{ij} : \mathbb{R}^l \to [0, 1]$ tests and a_{ij}, K_{ij} real coefficients $1 \leq i \leq d, 1 \leq j \leq m$.

Examples:
- European Call, European Put
- Strangle Option, Straddle Option, Bull-Spread Option
- Digital Option
Option:
Random payoff H at time T.
Assumption (A): H is of the form

$$H = \sum_{j=1}^{m} \sum_{i=1}^{d} [a_{ij}X_T^i - K_{ij}] \phi_{ij} \left(\left(\frac{X_t^i}{X_0^i} \right)_{t \in I} \right),$$

where $\phi_{ij} : \mathbb{R}^l \rightarrow [0, 1]$ tests and a_{ij}, K_{ij} real coefficients $1 \leq i \leq d, 1 \leq j \leq m$.

Examples:

- European Call, European Put
- Strangle Option, Straddle Option, Bull-Spread Option
- Digital Option
Theorem 2
Under assumption (A) and for a fixed martingale measure \(Q \) the option price \(p(H) \) of \(H \) is given by

\[
p(H) = \sum_{j=1}^{m} \sum_{i=1}^{d} a_{ij} X_0^i E_{Q_i} \left(\phi_{ij} \left(\left(\frac{dQ_i|\mathcal{F}_t}{dQ|\mathcal{F}_t} \right)_{t \leq T} \right) \right) - K_{ij} E_Q \left(\phi_{ij} \left(\left(\frac{dQ_i|\mathcal{F}_t}{dQ|\mathcal{F}_t} \right)_{t \leq T} \right) \right).
\]

- \(E_Q \left(\phi_{ij} \left(\left(\frac{dQ_i|\mathcal{F}_t}{dQ|\mathcal{F}_t} \right)_{t \leq T} \right) \right) \) level of the test \(\phi_{ij} \)
- \(E_{Q_i} \left(\phi_{ij} \left(\left(\frac{dQ_i|\mathcal{F}_t}{dQ|\mathcal{F}_t} \right)_{t \leq T} \right) \right) \) power of the test \(\phi_{ij} \)
Theorem 2

Under assumption (A) and for a fixed martingale measure \(Q \) the option price \(p(H) \) of \(H \) is given by

\[
p(H) = \sum_{j=1}^{m} \sum_{i=1}^{d} a_{ij} X_0^i E_Q \left(\phi_{ij} \left(\left(\frac{dQ_i|\mathcal{F}_t}{dQ|\mathcal{F}_t} \right)_{t \leq T} \right) \right)
\]

\[
- K_{ij} E_Q \left(\phi_{ij} \left(\left(\frac{dQ_i|\mathcal{F}_t}{dQ|\mathcal{F}_t} \right)_{t \leq T} \right) \right) .
\]

- \(E_Q \left(\phi_{ij} \left(\left(\frac{dQ_i|\mathcal{F}_t}{dQ|\mathcal{F}_t} \right)_{t \leq T} \right) \right) \) level of the test \(\phi_{ij} \)

- \(E_{Q_i} \left(\phi_{ij} \left(\left(\frac{dQ_i|\mathcal{F}_t}{dQ|\mathcal{F}_t} \right)_{t \leq T} \right) \right) \) power of the test \(\phi_{ij} \)
Dictionary

<table>
<thead>
<tr>
<th>Finance</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>options</td>
<td>tests</td>
</tr>
<tr>
<td>option price</td>
<td>by power functions of test</td>
</tr>
<tr>
<td>European call option</td>
<td>Neyman Pearson test</td>
</tr>
<tr>
<td>Black-Scholes price</td>
<td>Bayes risk</td>
</tr>
</tbody>
</table>
4. Convergence of option prices

Le Cam: Convergence of experiments (likelihood processes)
Consequences: Convergence of Neyman Pearson Tests
Convergence of Bayes risks

- \(E_n = \{ P_{n,\vartheta} : \vartheta \in \Theta \} \) sequence of experiments
- weak convergence of experiments \(E_n \to E = \{ P_{\vartheta} : \vartheta \in \Theta \} \)
- weak convergence of all finite dimensional likelihood ratio processes

\[
\mathcal{L} \left(\left(\frac{dP_{n,\vartheta}}{dP_{n,\vartheta_0}} \right)_{\vartheta} \mid P_{n,\tau} \right) \to \mathcal{L} \left(\left(\frac{dP_{\vartheta}}{dP_{\vartheta_0}} \right)_{\vartheta} \mid P_{\tau} \right) \quad \text{for all } \tau
\]

- compact topology (on the set of classes of experiments)
Example

Central limit Theorem for statistical experiments (LAN) “local asymptotic normality” under some condition:

- $E_n \to E = \{ Q_{\vartheta g} : \vartheta \in \mathbb{R} \}$ weakly
- $\frac{dQ_{\vartheta g}}{dQ_0} = \exp(\vartheta L(g) - \vartheta^2 \| g \|^2 / 2)$ Gaussian shift, $g \in L_2$
- $g \mapsto L(g)$ Gaussian process, mean zero and $\text{Cov}(L(g_1), L(g_2)) = \langle g_1, g_2 \rangle$ under Q_0
- Covers the geometric Brownian motion
Example

Central limit Theorem for statistical experiments (LAN) “local asymptotic normality” under some condition:

- $E_n \to E = \{ Q_\vartheta g : \vartheta \in \mathbb{R} \}$ weakly
- $\frac{dQ_\vartheta g}{dQ_0} = \exp(\vartheta L(g) - \vartheta^2 \| g \|^2 / 2)$ Gaussian shift, $g \in L_2$
- $g \mapsto L(g)$ Gaussian process, mean zero and $\text{Cov}(L(g_1), L(g_2)) = \langle g_1, g_2 \rangle$ under Q_0
- Covers the geometric Brownian motion
Example (Brownian motion regression model)

- \(g : [0, 1] \rightarrow \mathbb{R}, \ P_0 = \lambda_{|[0,1]} \)
- \(X_t = B(t) + \int_0^t g(u) du, \ 0 \leq t \leq 1 \)
 noise + signal
- \(Q_g = \mathcal{L}((X_t)_{t \leq 1} | g) \)
- \(L(g) = \int_0^1 g B(dt) \)
- \(\frac{dQ_g}{dQ_0} = \exp \left(\int_0^1 g B(dt) - \frac{||g||^2}{2} \right) \)
For simplicity, one asset $d = 1$

$$X_{n,t} = \frac{dQ_{1,n|F_{t,n}}}{dQ_{n|F_{t,n}}}, \quad n \in \mathbb{N}_0$$

Theorem 3

Suppose that $X_{n,t}$ “converges weakly to” $X_{0,t}$ (in terms of financial experiments). $X_{0,t}$ is a price process iff $Q_{1,n} \triangleleft Q_n$ and $Q_n \triangleleft Q_{1,n}$ (Contiguity).

Contiguity $P_n \triangleleft Q_n$:
When $Q_n(A_n) \to 0$ then $P_n(A_n) \to 0$ holds.

“Asymptotic arbitrage freeness”
For simplicity, one asset $d = 1$

$$X_{n,t} = \frac{dQ_1,n|\mathcal{F}_{t,n}}{dQ_n|\mathcal{F}_{t,n}}, \quad n \in \mathbb{N}_0$$

Theorem 3

Suppose that $X_{n,t}$ “converges weakly to” $X_{0,t}$ (in terms of financial experiments). $X_{0,t}$ is a price process iff $Q_{1,n} \prec Q_n$ and $Q_n \prec Q_{1,n}$ (Contiguity).

Contiguity $P_n \prec Q_n$:

When $Q_n(A_n) \to 0$ then $P_n(A_n) \to 0$ holds.

“Asymptotic arbitrage freeness”
Example

\[t_k = \frac{k}{n} T \ \text{discrete times} \]

\[X_{n,t_k} = \prod_{j=1}^{k} Z_{n,j}, \quad Z_{n,j} - 1 = \frac{X_{n,t_k} - X_{n,t_{k-1}}}{X_{n,t_{k-1}}} \quad \text{returns} \]

Under regularity assumptions:
Convergence to the Gaussian shift (= geometric Brownian motion)

Concrete Example: Convergence of Cox-Ross-Rubinstein models
Theorem (Le Cam) (Main Theorem of Testing)

Suppose that $\{P_{n,\vartheta} : \vartheta \in \Theta\} \rightarrow \{P_\vartheta : \vartheta \in \Theta\}$ weakly. $P_\vartheta \ll P_{\vartheta_0}$

Let $\varphi_n : \Omega_n \to [0, 1]$ be a sequence of tests with

$$\lim_{n \to \infty} E_{P_{n,\vartheta}}(\varphi_n) = a_\vartheta \text{ exists.}$$

Then there exists a test φ for $(P_\vartheta)_{\vartheta}$ with

$$E_{P_\vartheta}(\varphi) = a_\vartheta \text{ for all } \vartheta.$$

φ is related to the option for the “limit model”.
Theorem (Le Cam) (Main Theorem of Testing)

Suppose that \(\{ P_{n, \vartheta} : \vartheta \in \Theta \} \rightarrow \{ P_{\vartheta} : \vartheta \in \Theta \} \) weakly. \(P_{\vartheta} \ll P_{\vartheta_0} \)

Let \(\varphi_n : \Omega_n \rightarrow [0, 1] \) be a sequence of tests with

\[
\lim_{n \rightarrow \infty} E_{P_{n, \vartheta}}(\varphi_n) = a_{\vartheta} \text{ exists.}
\]

Then there exists a test \(\varphi \) for \((P_{\vartheta})_{\vartheta} \) with

\[
E_{P_{\vartheta}}(\varphi) = a_{\vartheta} \text{ for all } \vartheta.
\]

\(\varphi \) is related to the option for the “limit model”.
All kind of convergence results are known in statistics.

Application in finance:

- Convergence of financial experiments (price processes)
- Convergence of power functions
 Neyman Pearson tests, Bayes risks
- Convergence of option prices
- Discrete approximation of complicated option prices
| Dictionary |
|-----------------|-----------------|
| **Finance** | **Statistics** |
| price process | filtered likelihood process |
| Itô process models of Black-Scholes type | regression models |
| volatility | hazard parameters |
| complete markets | completeness of experiments |
| options | tests |
| option price | by power functions of test |
| European call option | Neyman Pearson test |
| Black-Scholes price | Bayes risk |
| martingale measure | null hypothesis |
| approximation of continuous time price models | convergence of experiments |
| asymptotic arbitrage free models | contiguity |
References

H. Föllmer and P. Leukert.
Quantile Hedging.

A. A. Gushchin and E. Mordecki.
Bounds on option prices for semimartingale market models.

F. Hubalek and W. Schachermayer
When does convergence of asset prices imply convergence of option prices?

A. Janssen and M. Tietje.
Applications of the Likelihood Theory in Finance: Modelling and Pricing.

Thank you for your attention!
Appendix

\[X_{n,t_k} = \prod_{j=1}^{k} Z_{n,j}, \quad Z_{n,j} - 1 = \frac{X_{n,t_k} - X_{n,t_{k-1}}}{X_{n,t_{k-1}}} \text{ returns} \]

\[\frac{dQ_{1,n|\mathcal{F}_{t_k,n}}}{dQ_{n|\mathcal{F}_{t_k,n}}} = X_{n,t_k} = \prod_{j=1}^{k} Z_{n,j} = \frac{d \bigotimes_{j=1}^{k} Q_{1,n(j)}}{d \bigotimes_{j=1}^{k} Q_{n(j)}} \]

\[\frac{dQ_{1,n(j)}}{dQ_{n(j)}} - 1 = Z_{n,j} - 1 \quad \text{“returns at stage } t_{\frac{i}{n}} \text{ for the } n\text{-th price process”} \]