Non-arbitrage condition and thin random times

Anna Aksamit

Laboratoire d'Analyse & Probabilités, Université d'Evry

6th General AMaMeF and Banach Center Conference Warszawa 14 June 2013

ヨート

Question

Consider a Default-free Model $(\Omega, \mathcal{A}, \mathbb{F}, \mathbb{P}, X)$ without arbitrage opportunities. Then, incorporate the default event τ to this model. Is the Defaultable Model $(\Omega, \mathcal{A}, \mathbb{F}^{\tau}, \mathbb{P}, X)$ arbitrage free?

- Choulli T., Aksamit A., Deng J., and Jeanblanc M., *Non-arbitrage up to Random Horizon and after Honest Times for Semimartingales Models*, Working paper, 2013.
- Aksamit A., Choulli T., Jeanblanc M., Thin random times, Working paper, 2013

< ∃ >

Set a filtered probability space $(\Omega, \mathcal{A}, \mathbb{F}, \mathbb{P})$ and consider a random time τ , i.e. positive \mathcal{A} -measurable random variable.

- The process Z defined as Z_t = P(τ > t|F_t) is called the Azéma supermartingale associated with τ.
- The process \widetilde{Z} defined as $\widetilde{Z}_t = \mathbb{P}(\tau \ge t | \mathcal{F}_t)$ is second important supermartingale associated with τ .
- The processes A^o and A^p denote respectively dual optional and predictable projections of the process A = 11_{[\(\tau,\infty\)}).
- The Doob Meyer decomposition of Azéma supermartingale Z is $Z = \mu - A^p$, with $\mu_t = \mathbb{E}(A^p_{\infty}|\mathcal{F}_t)$ and optional decomposition is $Z = m - A^o$, with $m_t = \mathbb{E}(A^o_{\infty}|\mathcal{F}_t)$.

EN (EN E OQO

Progressively enlarged filtration \mathbb{F}^{τ} associated with τ is defined as

$$\mathcal{F}_t^{ au} = \bigcap_{s>t} (\mathcal{F}_s \lor \sigma(\tau \land s)).$$

Initially enlarged filtration $\mathbb{F}^{\sigma(\tau)}$ associated with au is defined as

$$\mathcal{F}_t^{\sigma(\tau)} = \bigcap_{s>t} (\mathcal{F}_s \vee \sigma(\tau)).$$

For general enlargement of filtration $\mathbb{F} \subset \mathbb{G}$ we talk about two hypotheses

(H) hypothesis: Each \mathbb{F} -martingale remains a \mathbb{G} -martingale.

(H') hypothesis: Each \mathbb{F} -martingale remains a \mathbb{G} -semimartingale.

12 A

Honest times

- Random time τ is an honest time if for each t ≥ 0 there exists

 *F*_t-measurable random variable τ_t such that τ = τ_t on (τ < t).

- If τ is an honest time, then each \mathbb{F} -martingale X remains an \mathbb{F}^{τ} -semimartingale with semimartingale decomposition given by

$$X_t = \widehat{X}_t + \int_0^{t \wedge \tau} \frac{1}{Z_{s-}} d\langle X, m \rangle_s - \int_{\tau}^t \frac{1}{1 - Z_{s-}} d\langle X, m \rangle_s$$

where \widehat{X} is \mathbb{F}^{τ} -martingale.

 Let τ be a random time. For each F-martingale X, the process X^τ is F^τ-semimartingale with semimartingale decomposition

$$X_t = \widehat{X}_t + \int_0^{t \wedge \tau} \frac{1}{Z_{s-}} d\langle X, m \rangle_s$$

where \widehat{X} is \mathbb{F}^{τ} -martingale.

Sac

Let X be an \mathbb{F} -semimartingale. We say that X satisfies No Unbounded Profit with Bounded Risk (NUPBR) if

$$\mathcal{K}(X) := \{(H \cdot X)_T : H \in L(X) \text{ and } H \cdot X \ge -1\}$$

is bounded in $L^0(\mathbb{P})$.

Theorem(Takaoka)

The \mathbb{F} -semimartingale X satisfies NUPBR if and only if $\mathcal{L}_{\sigma}(X) \neq \emptyset$, where $\mathcal{L}_{\sigma}(X)$ is the set of σ -densities given by

 $\mathcal{L}_{\sigma}(X):=\left\{L\in\mathcal{M}_{loc}(\mathbb{F}):L>0 \text{ and } LX \text{ is an } \sigma\text{-martingale}\right\}.$

Theorem

- **()** Let au be a random time. Then, the following are equivalent:
 - The thin set $\{\widetilde{Z}=0 \& Z_->0\}$ is evanescent.
 - For any process X satisfying NUPBR(\mathbb{F}), X^{τ} satisfies NUPBR(\mathbb{F}^{τ}).
- Let τ be an honest time satisfying $Z_{\tau} < 1$ a.s.. Then, the following are equivalent:
 - The thin set $\{\widetilde{Z}=1 \ \& \ Z_- < 1\}$ is evanescent.
 - For any process X satisfying NUPBR(F), X X^τ satisfies NUPBR(F^τ).

4 3 b.

Often in the literature standard assumption on a random time is used:

(A) assumption: τ avoids \mathbb{F} stopping times, i.e. $\mathbb{P}(\tau = T) = 0$, for any \mathbb{F} -stopping time T.

▲ 글 ▶ - 글

Definition

A random time τ is called

- **3** a strict random time if $\llbracket \tau \rrbracket \cap \llbracket T \rrbracket = \emptyset$ for any \mathbb{F} -stopping time T.
- a thin random time if its graph [[τ]] is contained in a thin set. i.e. if there exists a sequence of F stopping times (T_n)_{n=1}[∞] with disjoint graphs such that [[τ]] ⊂ ∪_n[[T_n]].
 The sequence (T_n)_n is then exhausting sequence of a thin random .

time.

A random time au is strict and thin random time if and only if $au = \infty$.

▶ < 글 ▶ _ 글

Definition

Pair of random times (τ_1, τ_2) is the decomposition of a random time τ if

- τ_1 is a strict random time and τ_2 is a thin random time;
- $\mathbf{2} \ \tau_1 \wedge \tau_2 = \tau;$
- $1 \quad \forall \tau_1 \lor \tau_2 = \infty.$

Theorem

Each random time τ has a decomposition (τ_1, τ_2) .

3 3 3

Define

$$\tau_1 := \tau_{\{\Delta A^{\bullet}_{\tau} = 0\}} \quad \text{and} \quad \tau_2 := \tau_{\{\Delta A^{\bullet}_{\tau} > 0\}}.$$

We see that the time au_1 is a strict random time as

$$\mathbb{P}(\tau_1=T<\infty)=\mathbb{E}(\int_0^\infty \mathbb{1}_{\{u=T\}}\mathbb{1}_{\{\Delta A^o_u=0\}}dA^o_u)=0.$$

and the time au_2 is a thin random time as

$$\llbracket \tau_2 \rrbracket = \llbracket \tau \rrbracket \cap \{ \Delta A^o > 0 \} = \llbracket \tau \rrbracket \cap \bigcup_n \llbracket T_n \rrbracket \subset \bigcup_n \llbracket T_n \rrbracket.$$

< ∃ >

э

Lemma: Alternative characterisation

- The random time τ is a thin random time if and only if its dual optional projection is a pure jump process.
- On The random time τ is a strict random time if and only if its dual optional projection is a continuous process.

< ≣ >

-

Remark

 $\textbf{O} \text{ Decomposition of a stopping time, } \mathcal{P} \text{ instead of } \mathcal{O}.$

$$\ 2 \ \ \tau = \tau_1 \wedge \tau_2^i \wedge \tau_2^a$$

$$\begin{aligned} \tau_1 &= \tau_{\{\Delta A^{\mathbf{p}}_{\tau} = 0\}} & \text{strict part} \\ \tau_2^i &= \tau_{\{\Delta A^{\mathbf{p}}_{\tau} > 0, \Delta A^{\mathbf{p}}_{\tau} = 0\}} & \text{totally inaccessible thin part} \\ \tau_2^{\mathbf{a}} &= \tau_{\{\Delta A^{\mathbf{p}}_{\tau} > 0\}} & \text{accessible thin part} \end{aligned}$$

< ∃ >

э

Sar

Poisson filtration example

- Let \mathbb{F}^X be a filtration of CPP $X_t = \sum_{k=1}^{N_t} Y_k$, where N is a Poisson process with parameter η and sequence of jump times $(\theta_n)_{n=1}^{\infty}$ and Y_k are i.i.d. positive random variables, independent from N, with cumulative distribution function F.
- Define the random time $\tau = \sup\{t : \mu t X_t \leq a\}$ with a > 0. Under the condition $\mu > \eta \mathbb{E}(Y_1)$, the random time τ is finite a.s. Since τ is a last passage time, it is an honest time in the filtration \mathbb{F} . Furthermore, since the process $\mu t - X_t$ has only negative jumps, one has $\mu \tau - X_\tau = a$
- $A^{\circ} = C \sum_{n \ge 1} \mathbb{1}_{[T_n,\infty)}$ with $T_n = \inf\{t > T_{n-1} : \mu t X_t = a\}$ and $T_0 = 0$.

nac

Brownian filtration example: local time approximation

 Let B be a Brownian motion. For ε > 0, define a double sequence of stopping times by

$$U_0 = 0, \quad V_0 = 0$$
$$U_n = \inf\{t \ge V_{n-1} : B_t = \varepsilon\}, \quad V_n = \inf\{t \ge U_n : B_t = 0\}.$$

and process $D_t = \max\{n : V_n \le t\}$ which is the number of downcrossings of B from level ε to level 0 before time t.

• Define a random time

$$\tau^{\varepsilon} = \sup\{V_n : V_n \le T_1\}$$

with
$$T_1 = \inf\{t : B_t = 1\}.$$

• $A^o = \varepsilon D_{t \wedge T_1} + \varepsilon$ and $\{\Delta A^o > 0\} = [0, T_1] \cap \bigcup_{n=0}^{\infty} \llbracket V_n \rrbracket$

3 3 3

Let τ be a thin random time with exhausting sequence $(T_n)_n$. Denote by $C_n = \{\tau = T_n\}$, so $\tau = \sum_n \mathbb{1}_{C_n} T_n$.

Theorem

For each thin random time τ , the hypothesis (H') is satisfied between \mathbb{F} and \mathbb{F}^{τ} . Any \mathbb{F} martingale X can be decomposed as

$$X_t = \widehat{X}_t + \int_0^{t \wedge \tau} \frac{1}{Z_{s-}} d\langle X, m \rangle_s + \sum_n \mathbb{1}_{C_n} \int_0^t \mathbb{1}_{\{T_n < s\}} \frac{1}{z_{s-}^n} d\langle X, z^n \rangle_s,$$

with $z_t^n = \mathbb{P}(C_n | \mathcal{F}_t)$, where \widehat{X} is \mathbb{F}^{τ} local martingale.

Theorem (Jacod)

Suppose that \mathbb{F}^{C} is an initial enlargement of the filtration \mathbb{F} with an atomic σ -field generated by $\mathcal{C} = ((C_n)_n)$. Then, the filtration \mathbb{F}^{C} satisfies (H') hypothesis and each \mathbb{F} martingale X can be decomposed in \mathbb{F}^{C} as

$$X_t = \widehat{X}_t + \sum_n \mathbb{1}_{C_n} \int_0^t \frac{1}{z_{s-}^n} d\langle X, z^n \rangle_s$$

with $z_t^n = \mathbb{P}(C_n | \mathcal{F}_t)$, where \widehat{X} is $\mathbb{F}^{\mathcal{C}}$ local martingale.

4 萬 6 1

 \mathbb{F}^{τ} predictable process H can be decomposed as

$$H_t = \mathbb{1}_{\{t \le \tau\}} J_t + \mathbb{1}_{\{\tau < t\}} K_t(\tau) \quad t > 0$$

where J is \mathbb{F} predictable process and $\mathcal{K} : \mathbb{R}_+ \times \Omega \times \mathbb{R}_+ \to \mathbb{R}$ is $\mathcal{P} \otimes \mathcal{B}(\mathbb{R}_+)$ measurable.

As au is thin we can rewrite process H as

$$H_{t} = J_{t} \mathbb{1}_{\{t \leq \tau\}} + \sum_{n} \mathbb{1}_{\{T_{n} < t\}} K_{t}(T_{n}) \mathbb{1}_{C_{n}}$$

Note that each process $\mathbb{1}_{\{T_n < t\}} K_t(T_n)$ is \mathbb{F} predictable.

.≣ . ►

Corollary

Let au be a random time and (au_1, au_2) its random time decomposition. Then:

- The filtration \mathbb{F}^{τ} satisfies (H') hypothesis if and only if the filtration \mathbb{F}^{τ_1} satisfies (H') hypothesis.
- The Azéma supermartingale of τ_2 in filtration \mathbb{F} coincides with the Azéma supermartingale of τ_2 in \mathbb{F}^{τ_1} , i.e. $\mathbb{P}(\tau_2 > t | \mathcal{F}_t) = \mathbb{P}(\tau_2 > t | \mathcal{F}_t^{\tau_1}).$

• Let τ be an honest time and (τ_1, τ_2) its random time decomposition. Then, times τ_1 and τ_2 are honest times.

Theorem

For any honest time τ with decomposition (τ_1, τ_2) its Azéma supermartingale at τ can be written as

$$Z_{\tau}^{\tau} \mathbb{1}_{\{\tau < \infty\}} = \mathbb{1}_{\{\tau = \tau_1 < \infty\}} + Z_{\tau_2}^{\tau} \mathbb{1}_{\{\tau = \tau_2 < \infty\}}$$

where $Z_{ au_2}^ au < 1$.

Remark

For a thin honest time $\boldsymbol{\tau},$ the two following decomposition formulas coincide

$$\begin{aligned} X_t &= \widehat{X}_t + \int_0^{t \wedge \tau} \frac{1}{Z_{s-}} d\langle X, m \rangle_s + \sum_n \mathbbm{1}_{C_n} \int_0^t \mathbbm{1}_{\{T_n < s\}} \frac{1}{z_{s-}^n} d\langle X, z^n \rangle_s, \\ X_t &= \widehat{X}_t + \int_0^{t \wedge \tau} \frac{1}{Z_{s-}} d\langle X, m \rangle_s - \int_0^t \mathbbm{1}_{\{\tau < s\}} \frac{1}{1 - Z_{s-}} d\langle X, m \rangle_s \end{aligned}$$

This is due to two possible representations of predictable process

$$\begin{split} & \mathbb{1}_{\{\tau < t\}} \mathcal{K}(\tau) = \mathbb{1}_{\{\tau < t\}} \mathcal{K}(\tau_t) \quad \text{from honest time property,} \\ & \mathbb{1}_{\{\tau < t\}} \mathcal{K}(\tau) = \sum_n \mathbb{1}_{\{T_n < t\}} \mathcal{K}(T_n) \mathbb{1}_{C_n} \quad \text{from thin time property.} \end{split}$$

< ∃ >

э

Theorem

Assume that all martingales in $\mathbb F$ are continuous.

Let X be an \mathbb{F} local martingale. Then:

- The process $L_t^{\mathcal{C}} := \sum_n \mathbb{1}_{C_n} \frac{1}{z_t^n}$ is a local martingale deflator in $\mathbb{F}^{\mathcal{C}}$ for X, i.e. it is strictly positive $\mathbb{F}^{\mathcal{C}}$ local martingale with $L_0^{\mathcal{C}} = 1$ and $L_{\infty}^{\mathcal{C}} > 0$ a.s. such that $XL^{\mathcal{C}}$ is an $\mathbb{F}^{\mathcal{C}}$ local martingale.
- The process $L_t^{\tau} := \sum_n \mathbbm{1}_{C_n} \left(\frac{1}{z_t^n} \frac{1}{z_{t\wedge T_n}^n} \right)$ is a local martingale deflator in \mathbb{F}^{τ} for $X X^{\tau}$, i.e. it is strictly positive \mathbb{F}^{τ} local martingale with $L_0^{\tau} = 1$ and $L_{\infty}^{\tau} > 0$ a.s. such that $(X X^{\tau}) L^{\tau}$ is an \mathbb{F}^{τ} local martingale.

< ≣ >

Let $\mathcal{C} = (\mathcal{C}_n)_n$ be an \mathcal{F}_∞ measurable partition of Ω . Then, the quantity

$$H(\mathcal{C}) := -\sum_{n} \mathbb{P}(\mathcal{C}_{n}) \log(\mathbb{P}(\mathcal{C}_{n}))$$

is an entropy of \mathcal{C} .

Theorem[Meyer, Yor]

Assume that all \mathbb{F} local martingales are continuous and $H(\mathcal{C}) < \infty$. Let an \mathbb{F} local martingale X be an element of $H^2(\mathbb{F})$. Then, an $\mathbb{F}^{\mathcal{C}}$ semimartingale X is an element of $H^1(\mathbb{F}^{\mathcal{C}})$.

- Meyer P.-A., 1978. Sur un Théorème de Jacod
- Yor M., 1985. Entropie d'une Partition et Grossissement Initial d'une Filtration
- The author of the first paper posed the question about additional knowledge associated with thin random time: Un problème voisin, mais plus intéressant peut être, consiste à mesurer le bouleversement produit, sur un système probabiliste, non pas en forçant des connaissances à l'instant 0, mais en les forçant progressivement dans le système.

In case of progressive enlargement with thin random time $\tau = \sum_n \mathbbm{1}_{C_n} T_n$ we suggest measurement of additional knowledge by

$$H(\tau) = -\sum_{n} \mathbb{E}\left(\mathbb{1}_{C_{n}} \log z_{T_{n}}^{n}\right).$$

Remark

If au is an \mathbb{F} stopping time then H(au) = 0.

If for any *n* the set C_n is already in \mathcal{F}_{T_n} then we do not gain any additional information.

 $H(\tau)$ is invariant under different decompositions of τ .

To justify this measurement of additional knowledge we give analogous result to the previous one

Theorem

Assume that all \mathbb{F} local martingales are continuous and $H(\tau) < \infty$. Let an \mathbb{F} local martingale X be an element of $H^2(\mathbb{F})$. Then, an \mathbb{F}^{τ} semimartingale X is an element of $H^1(\mathbb{F}^{\tau})$.

3 3 3

Thank you for your attention!

문어 문