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Problem

Question

Consider a Default-free Model (Ω,A,F,P,X ) without arbitrage

opportunities. Then, incorporate the default event τ to this model.

Is the Defaultable Model (Ω,A,Fτ ,P,X ) arbitrage free?

Choulli T., Aksamit A., Deng J., and Jeanblanc M., Non-arbitrage

up to Random Horizon and after Honest Times for Semimartingales

Models, Working paper, 2013.

Aksamit A., Choulli T., Jeanblanc M., Thin random times, Working

paper, 2013
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Random times

Set a �ltered probability space (Ω,A,F,P) and consider a random time

τ , i.e. positive A-measurable random variable.

The process Z de�ned as Zt = P(τ > t|Ft) is called the Azéma

supermartingale associated with τ .

The process Z̃ de�ned as Z̃t = P(τ ≥ t|Ft) is second important

supermartingale associated with τ .

The processes Ao and Ap denote respectively dual optional and

predictable projections of the process A = 11[τ,∞).

The Doob Meyer decomposition of Azéma supermartingale Z is

Z = µ− Ap, with µt = E(Ap
∞|Ft) and optional decomposition is

Z = m − Ao , with mt = E(Ao
∞|Ft).
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Enlargement of �ltration

Progressively enlarged �ltration Fτ associated with τ is de�ned as

Fτt =
⋂
s>t

(Fs ∨ σ(τ ∧ s)).

Initially enlarged �ltration Fσ(τ) associated with τ is de�ned as

Fσ(τ)
t =

⋂
s>t

(Fs ∨ σ(τ)).

For general enlargement of �ltration F ⊂ G we talk about two

hypotheses

(H) hypothesis: Each F-martingale remains a G-martingale.

(H ′) hypothesis: Each F-martingale remains a G-semimartingale.
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Honest times

Random time τ is an honest time if for each t ≥ 0 there exists

Ft-measurable random variable τt such that τ = τt on (τ < t).

If τ is an honest time, then each F-martingale X remains an

Fτ -semimartingale with semimartingale decomposition given by

Xt = X̂t +

∫ t∧τ

0

1

Zs−
d〈X ,m〉s −

∫ t

τ

1

1− Zs−
d〈X ,m〉s

where X̂ is Fτ -martingale.

Let τ be a random time. For each F-martingale X , the process X τ

is Fτ -semimartingale with semimartingale decomposition

Xt = X̂t +

∫ t∧τ

0

1

Zs−
d〈X ,m〉s

where X̂ is Fτ -martingale.
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Non-arbitrage condition � NUPBR

Let X be an F-semimartingale. We say that X satis�es No Unbounded

Pro�t with Bounded Risk (NUPBR) if

K(X ) := {(H · X )T : H ∈ L(X ) and H · X ≥ −1}

is bounded in L0(P).

Theorem(Takaoka)

The F-semimartingale X satis�es NUPBR if and only if Lσ(X ) 6= ∅,
where Lσ(X ) is the set of σ-densities given by

Lσ(X ) := {L ∈Mloc(F) : L > 0 and LX is an σ-martingale} .
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Non-arbitrage up to Random Horizon and after Honest Time

Theorem

1 Let τ be a random time. Then, the following are equivalent:

The thin set {Z̃ = 0 & Z− > 0} is evanescent.
For any process X satisfying NUPBR(F), X τ satis�es NUPBR(Fτ ).

2 Let τ be an honest time satisfying Zτ < 1 a.s.. Then, the following

are equivalent:

The thin set {Z̃ = 1 & Z− < 1} is evanescent.
For any process X satisfying NUPBR(F), X − X τ satis�es

NUPBR(Fτ ).
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Avoidance of F-stopping times

Often in the literature standard assumption on a random time is used:

(A) assumption: τ avoids F stopping times, i.e. P(τ = T ) = 0, for any

F-stopping time T .
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Strict and thin random times

De�nition

A random time τ is called

1 a strict random time if [[τ ]] ∩ [[T ]] = ∅ for any F-stopping time T .

2 a thin random time if its graph [[τ ]] is contained in a thin set. i.e. if

there exists a sequence of F stopping times (Tn)∞n=1
with disjoint

graphs such that [[τ ]] ⊂
⋃

n[[Tn]].

The sequence (Tn)n is then exhausting sequence of a thin random

time.

A random time τ is strict and thin random time if and only if τ =∞.
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Decomposition of a random time

De�nition

Pair of random times (τ1, τ2) is the decomposition of a random time τ if

1 τ1 is a strict random time and τ2 is a thin random time;

2 τ1 ∧ τ2 = τ ;

3 τ1 ∨ τ2 =∞.

Theorem

Each random time τ has a decomposition (τ1, τ2).
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Decomposition of a random time

De�ne

τ1 := τ{∆Ao
τ =0} and τ2 := τ{∆Ao

τ>0}.

We see that the time τ1 is a strict random time as

P(τ1 = T <∞) = E(

∫ ∞
0

11{u=T}11{∆Ao
u=0}dA

o
u) = 0.

and the time τ2 is a thin random time as

[[τ2]] = [[τ ]] ∩ {∆Ao > 0} = [[τ ]] ∩
⋃
n

[[Tn]] ⊂
⋃
n

[[Tn]].
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Decomposition of a random time

Lemma: Alternative characterisation

1 The random time τ is a thin random time if and only if its dual

optional projection is a pure jump process.

2 The random time τ is a strict random time if and only if its dual

optional projection is a continuous process.

Anna Aksamit Non-arbitrage & thin random times



Decomposition of a random time

Remark

1 Decomposition of a stopping time, P instead of O.
2 τ = τ1 ∧ τ i2 ∧ τ a2

τ1 = τ{∆Ao
τ =0} strict part

τ i
2

= τ{∆Ao
τ>0,∆A

p
τ =0} totally inaccessible thin part

τ a
2

= τ{∆A
p
τ>0} accessible thin part
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Poisson �ltration example

Let FX be a �ltration of CPP Xt =
∑Nt

k=1
Yk , where N is a Poisson

process with parameter η and sequence of jump times (θn)∞n=1
and

Yk are i.i.d. positive random variables, independent from N, with

cumulative distribution function F .

De�ne the random time τ = sup{t : µt − Xt ≤ a} with a > 0.

Under the condition µ > η E(Y1), the random time τ is �nite a.s.

Since τ is a last passage time, it is an honest time in the �ltration F.
Furthermore, since the process µt − Xt has only negative jumps, one

has µτ − Xτ = a

Ao = C
∑

n≥1 11[Tn,∞) with Tn = inf{t > Tn−1 : µt − Xt = a} and
T0 = 0.

Anna Aksamit Non-arbitrage & thin random times



Brownian �ltration example: local time approximation

Let B be a Brownian motion. For ε > 0, de�ne a double sequence of

stopping times by
U0 = 0, V0 = 0

Un = inf{t ≥ Vn−1 : Bt = ε}, Vn = inf{t ≥ Un : Bt = 0}.

and process Dt = max{n : Vn ≤ t} which is the number of

downcrossings of B from level ε to level 0 before time t.

De�ne a random time

τε = sup{Vn : Vn ≤ T1}

with T1 = inf{t : Bt = 1}.

Ao = εDt∧T1 + ε and {∆Ao > 0} = [0,T1] ∩
⋃∞

n=0
[[Vn]]
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(H ′) hypothesis and decomposition formula

Let τ be a thin random time with exhausting sequence (Tn)n. Denote by

Cn = {τ = Tn}, so τ =
∑

n 11CnTn.

Theorem

For each thin random time τ , the hypothesis (H ′) is satis�ed between F
and Fτ . Any F martingale X can be decomposed as

Xt = X̂t +

∫ t∧τ

0

1

Zs−
d〈X ,m〉s +

∑
n

11Cn

∫ t

0

11{Tn<s}
1

zns−
d〈X , zn〉s ,

with znt = P(Cn|Ft), where X̂ is Fτ local martingale.
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(H ′) hypothesis and decomposition formula

Theorem (Jacod)

Suppose that FC is an initial enlargement of the �ltration F with an

atomic σ-�eld generated by C = ((Cn)n).

Then, the �ltration FC satis�es (H ′) hypothesis and each F martingale X

can be decomposed in FC as

Xt = X̂t +
∑
n

11Cn

∫ t

0

1

zns−
d〈X , zn〉s

with znt = P(Cn|Ft), where X̂ is FC local martingale.
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(H ′) hypothesis and decomposition formula

Fτ predictable process H can be decomposed as

Ht = 11{t≤τ}Jt + 11{τ<t}Kt(τ) t > 0

where J is F predictable process and K : R+ × Ω× R+ → R is

P ⊗ B(R+) measurable.

As τ is thin we can rewrite process H as

Ht = Jt11{t≤τ} +
∑
n

11{Tn<t}Kt(Tn)11Cn

Note that each process 11{Tn<t}Kt(Tn) is F predictable.
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(H ′) hypothesis in general case

Corollary

Let τ be a random time and (τ1, τ2) its random time decomposition.

Then:

1 The �ltration Fτ satis�es (H ′) hypothesis if and only if the �ltration

Fτ1 satis�es (H ′) hypothesis.

2 The Azéma supermartingale of τ2 in �ltration F coincides with the

Azéma supermartingale of τ2 in Fτ1 , i.e.
P(τ2 > t|Ft) = P(τ2 > t|Fτ1t ).
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Thin honest times

Let τ be an honest time and (τ1, τ2) its random time decomposition.

Then, times τ1 and τ2 are honest times.

Theorem

For any honest time τ with decomposition (τ1, τ2) its Azéma

supermartingale at τ can be written as

Z ττ 11{τ<∞} = 11{τ=τ1<∞} + Z ττ211{τ=τ2<∞}

where Z ττ2 < 1.
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Thin honest times

Remark

For a thin honest time τ , the two following decomposition formulas

coincide

Xt = X̂t +

∫ t∧τ

0

1

Zs−
d〈X ,m〉s +

∑
n

11Cn

∫ t

0

11{Tn<s}
1

zns−
d〈X , zn〉s ,

Xt = X̂t +

∫ t∧τ

0

1

Zs−
d〈X ,m〉s −

∫ t

0

11{τ<s}
1

1− Zs−
d〈X ,m〉s

This is due to two possible representations of predictable process

11{τ<t}K (τ) = 11{τ<t}K (τt) from honest time property,

11{τ<t}K (τ) =
∑
n

11{Tn<t}K (Tn)11Cn from thin time property.
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Local martingale de�ator in FC and Fτ

Theorem

Assume that all martingales in F are continuous.

Let X be an F local martingale. Then:

1 The process LCt :=
∑

n 11Cn
1

znt
is a local martingale de�ator in FC for

X , i.e. it is strictly positive FC local martingale with LC
0

= 1 and

LC∞ > 0 a.s. such that XLC is an FC local martingale.

2 The process Lτt :=
∑

n 11Cn

(
1

znt
− 1

zn
t∧Tn

)
is a local martingale

de�ator in Fτ for X − X τ , i.e. it is strictly positive Fτ local

martingale with Lτ
0

= 1 and Lτ∞ > 0 a.s. such that (X − X τ ) Lτ is

an Fτ local martingale.
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Entropy of the partition

Let C = (Cn)n be an F∞ measurable partition of Ω. Then, the quantity

H(C) := −
∑
n

P(Cn) log(P(Cn))

is an entropy of C.

Theorem[Meyer, Yor]

Assume that all F local martingales are continuous and H(C) <∞. Let

an F local martingale X be an element of H2(F). Then, an FC

semimartingale X is an element of H1(FC).
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Entropy of the partition

Meyer P.-A., 1978. Sur un Théorème de Jacod

Yor M., 1985. Entropie d'une Partition et Grossissement Initial

d'une Filtration

The author of the �rst paper posed the question about additional

knowledge associated with thin random time:

Un problème voisin, mais plus intéressant peut être, consiste à

mesurer le bouleversement produit, sur un système probabiliste, non

pas en forçant des connaissances à l'instant 0, mais en les forçant

progressivement dans le système.
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Entropy of thin random time

In case of progressive enlargement with thin random time τ =
∑

n 11CnTn

we suggest measurement of additional knowledge by

H(τ) = −
∑
n

E
(
11Cn log z

n
Tn

)
.

Remark

If τ is an F stopping time then H(τ) = 0.

If for any n the set Cn is already in FTn
then we do not gain any

additional information.

H(τ) is invariant under di�erent decompositions of τ .
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Entropy of thin random time

To justify this measurement of additional knowledge we give analogous

result to the previous one

Theorem

Assume that all F local martingales are continuous and H(τ) <∞.

Let an F local martingale X be an element of H2(F). Then, an Fτ

semimartingale X is an element of H1(Fτ ).
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Thank you for your attention!
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