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Objectives:

Determine the price of digital double barrier options with an arbitrary
number of barrier periods.
Find the exact value of the structured floor for structured notes whose
individual coupons are digital double barrier options.
Approximate the value of the structured floor by the price of a corridor
option.
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Setup and Pricing for One Period

The underlying (St )t≥0 has the risk-neutral dynamics

dSt

St
= r dt + σ dWt ,

with the initial value S0 > 0, constant interest rate r ≥ 0, volatility σ > 0
and a standard Brownian motion W .

At maturity T0 + P, the payoff is one unit of currency if the underlying has
stayed between the two barriers:

C1 := I{Blow<St<Bup, ∀t∈[T0,T0+P]}, (1)

where T0 > 0, P > 0 and Bup > Blow > 0 are barriers.

Sühan Altay (TU Vienna, FAM) Digital Double Barrier Options 12.06.2013 4 / 29



Setup and Pricing for One Period

Let us denote the price of this “one-period double barrier digital” at t < T0
by

BD(St , t ; {T0},P,Blow,Bup, r) := e−r(T0+P−t)E[C1|Ft ]. (2)

The value function

f (S, t) := BD(S, t ; {T0},P,Blow,Bup, r)

satisfies the Black–Scholes PDE

∂f
∂t

+
1
2
σ2S2 ∂

2f
∂S2 + rS

∂f
∂S
− rf = 0

with the terminal condition f (S,T0 + P) = 1, for S ∈ (Blow,Bup), and the
boundary conditions f (Blow, t) = f (Bup, t) = 0 for t ∈ [T0,T0 + P].
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Setup and Pricing for One Period
Use the standard transformation f (S, t) = eαx+βτU(x , τ), where

x := log(S/Blow), τ := 1
2σ

2(T0 + P − t), (3)

α := −1
2

(
2
σ2 r − 1

)
, β := −2r

σ2 − α
2,

to transform the Black–Scholes PDE into the heat equation

∂2U
∂x2 =

∂U
∂τ

. (4)

The boundary conditions in the new coordinates are

U(0, τ) = U(L, τ) = 0, τ ∈ [0,p], (5)

where L := log(Bup/Blow) and p = 1
2σ

2P. The terminal condition
translates to the initial condition

U(x ,0) = e−αx , x ∈ (0,L). (6)
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Proposition

For 0 ≤ t < T0, the price of a barrier digital with barrier period [T0,T0 + P] and
payoff C1 at T0 + P is

BD(St , t ; {T0},P,Blow,Bup, r) =
√

2π
(

S
Blow

)α ∞∑
k=1

k
1− (−1)k e−αL

α2L2 + k2π2 e−( kπ
L )2p+βτ

×
∫ L−x√

2(τ−p)

− x√
2(τ−p)

sin
(

kπ
L

(x + y
√

2(τ − p))
)

e−y2/2dy . (7)

this is a rear-end barrier option, because the two barriers are alive only towards
the end of the contract (see Hui (1997)) .

in probabilistic terms, we are integrating the probability to stay between the
barriers (see e.g Borodin and Salminen (2002)) , with ST0 viewed as a parameter,
against the law of ST0 .
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Sketch of the Proof:

First consider the rectangle (0, L)× (0, p), the (unique) solution can be found by
separation of variables

U(x , τ) =
∞∑

k=1

bk sin
(

kπ
L

x
)

e−( kπ
L )2τ , (x , τ) ∈ (0, L)× (0, p), (8)

where

bk :=
2
L

∫ L

0
e−αx1 sin

(
kπ
L

x1

)
dx1 = 2kπ

1− (−1)k e−αL

α2L2 + k2π2

are the Fourier coefficients of the boundary function U(x , 0) = e−αx .

Next, at τ = p, the solution is given by (8) for 0 < x < L and vanishes otherwise.

U(x , p) =

{∑∞
k=1 2kπ 1−(−1)k e−αL

α2L2+k2π2 sin( kπ
L x)e−( kπ

L )2p, 0 < x < L,
0, x ≤ 0 or x ≥ L.

(9)

Finally solve for U in the region R× (p, 1
2σ

2(T0 + P)). A solution is found by
convolving the initial condition (9) with the heat kernel (see Evans [4, p. 47]).
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Double Barrier Digitals with Finitely Many Periods

n tenor dates
0 < T0 < · · · < Tn−1

and fixed period length P > 0 satisfying Ti + P ≤ Ti+1 for i = 0, . . . ,n− 2.
Consider a contract that pays one unit of currency at time Tn−1 + P, if the
underlying has remained between the two barriers Blow and Bup during
each of the time intervals [Ti ,Ti + P], i = 0, . . . ,n − 1.
The price of this “multi-period double barrier digital” unless it is not
knocked out before t is given by

BD(St , t ; {T0, . . . ,Tn−1},P,Blow,Bup, r) := e−r(Tn−1+P−t)E
[ n∏

i=1

Ci

∣∣∣∣Ft

]
,

(10)
where

Ci := I{Blow<St<Bup, ∀t∈[Ti−1,Ti−1+P]}.

Sühan Altay (TU Vienna, FAM) Digital Double Barrier Options 12.06.2013 9 / 29



0 p τn−1 τn−1 + p
τ

x

L

Fourier se-
ries, coef-
ficients by
integrating
U(·, 0)

convolution
of U(·, τn +
p) with heat
kernel

Fourier series,
coefficients
by integrating
value at τn−1

convolution
of value at
τn−1 + p
with heat
kernel

U ≡ 0

U ≡ 0 U ≡ 0

Figure: Solving the boundary value problem for an arbitrary number of barrier periods.

The n barrier periods [Ti ,Ti + P] are mapped to [τi , τi + p], where

τi := 1
2σ

2(Tn−1 − Ti−1), i = n, . . . ,1,

are the images of the barrier period endpoints under the coordinate change.
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Theorem

The value function (10) equals eαx+βτU(x , τ), where for j ∈ {0, . . . ,n − 1},
τn−j ≤ τ ≤ τn−j + p, 0 < x < L, we have

U(x , τ) =

∫ ∞
−∞

. . .

∫ ∞
−∞︸ ︷︷ ︸

j

∫ L

0
. . .

∫ L

0︸ ︷︷ ︸
j+1

∞∑
k1=0

· · ·
∞∑

kj+1=0

gj (k1, . . . , kj+1; x1, . . . , xj+1; y1, . . . , yj ; x , τ) dx1 . . . dxj+1dy1 . . . dyj , (11)

whereas for j ∈ {0, . . . ,n − 1}, τn−j + p < τ < τn−(j+1) (with τ0 :=∞), x ∈ R,
we have

U(x , τ) =

∫ ∞
−∞

. . .

∫ ∞
−∞︸ ︷︷ ︸

j+1

∫ L

0
. . .

∫ L

0︸ ︷︷ ︸
j+1

∞∑
k1=0

· · ·
∞∑

kj+1=0

hj (k1, . . . , kj+1; x1, . . . , xj+1; y1, . . . , yj+1; x , τ) dx1 . . . dxj+1dy1 . . . dyj+1. (12)

where hj and gj are defined recursively by
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Theorem

hj (k1, . . . , kj+1; x1, . . . , xj+1; y1, . . . , yj+1; x , τ)

:= 1√
2π

e−y2
j+1/2 I[

− x√
2(τ−(τn−j+p))

,
L−x√

2(τ−(τn−j+p))

](yj+1)

· gj (k1, . . . , kj+1; x1, . . . , xj+1; y1, . . . , yj ; x + yj+1

√
2(τ − (τn−j + p)), τn−j + p)

and

gj (k1, . . . , kj+1; x1, . . . , xj+1; y1, . . . , yj ; x , τ)

:= 2
L sin kj+1πxj+1

L sin kj+1πx
L e−(kj+1π/L)2(τ−τn−j )

· hj−1(k1, . . . , kj ; x1, . . . , xj ; y1, . . . , yj ; xj+1, τn−j ),

with the recursion starting at

g0(k1; x1; ; x , τ) := 2
L e−αx1 sin k1πx1

L sin k1πx
L e−(k1π/L)2τ . (13)
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Idea of the Proof:
To iterate the argument of Proposition (see Figure 1)
Using separation of variables in the barrier periods, and convolution with
the heat kernel for the periods in between
The required initial condition at the left boundary comes from the
previous step of the iteration (for j = 0 also from the payoff).

Remarks:
Proposition corresponds to (12) for j = 0
If a different option (a call, say) with the same barrier conditions is to be
priced instead of a digital payoff, the quantity e−αx1 in (13) should be
replaced by the appropriate payoff U(x1,0).
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Numerical Implementation

Figure: Value function of a double barrier digital with two barrier periods with
parameters r = 0.01, σ = 0.15, Blow = 80, Bup = 120, {T0,T1} = {1, 6}, and P = 2.
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Structured Notes and Floors

Tenor structure satisfies Ti−1 + P = Ti for i ∈ {1, . . . ,n − 1}, and define
Tn := Tn−1 + P.
Consider a structured note with n coupons, where the i-th coupon
consists of a payment of

Ci = I{Blow<St<Bup, ∀t∈[Ti−1,Ti ]}, i ∈ {1, . . . ,n}, (14)

at time Ti .
In addition, the holder receives the terminal compensation(

F −
n∑

i=1

Ci

)+

(15)

at Tn, where F > 0.
These coupons can be priced by the Proposition (replace T0 by Ti−1).

(Question):HOWEVER, HOW TO GET A HANDLE ON THE LAW OF A :=
∑n

i=1 Ci?
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Structured Floor

(Answer): THE LAW OF A :=
∑n

i=1 Ci IS LINKED TO BARRIER OPTIONS WITH
SEVERAL BARRIER PERIODS.
Observation: The moments

E[Aν ] =
n∑

i=0

iνP[A = i], ν ∈ {1, . . . ,n − 1}, (16)

of A are linear combinations of multi-period double barrier option prices, with
coefficients

c(ν, J) :=
∑

0≤i1,...,in≤ν
supp(i)=J

(
ν

i1, . . . , in

)
, J ⊆ {1, . . . ,n}. (17)

(The notation supp(i) = J means that J is the set of indices such that the
corresponding components of the vector i = (i1, . . . , in) are non-zero.)
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Structured Floor

Theorem

The price of the structured floor (15) at time t = 0 can be expressed as

e−rTn E[(F − A)+] = e−rTn

n∧bFc∑
i=0

(F − i) P[A = i], (18)

where
P[A = n] = BD(S0,0; {T0},Tn − T0,Blow,Bup,0). (19)

The other point masses P[A = i] in (18) can be recovered from the moments
of A by solving (16) (including ν = 0, of course). The moments in turn can be
computed from barrier digital prices by (ν ∈ {1, . . . ,n − 1})

E[Aν ] =
∑

J⊆{1,...,n}
c(ν, J) · BD(S0,0; {Tj : j ∈ J},P,Blow,Bup,0), (20)

where the coefficients c(ν, J) are defined in (17).
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Proof.
The expression (18) is clear. The event in (19) means that all of the n
coupons (14) are paid. By our assumption that Ti = Ti−1 + P, its risk-neutral
probability is the (undiscounted) price of a double barrier digital with one
barrier period [T0,Tn], which yields (19). To prove (20), we calculate

E[Aν ] = E
[( n∑

i=1

Ci

)ν]
=
∑

i1,...,in

(
ν

i1, . . . , in

)
E[C i1

1 . . .C
in
n ]

=
∑

i1,...,in

(
ν

i1, . . . , in

)
E
[ n∏

j=1
ij>0

Cj

]

=
∑

J⊆{1,...,n}

( ∑
i1,...,in

supp(i)=J

(
ν

i1, . . . , in

))
E
[∏

j∈J

Cj

]
.

Now observe that
∏

j∈J Cj is the payoff of a double barrier digital with barrier
periods [Tj ,Tj + P] for j ∈ J.
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Approximation of Structured Floor

Numerical quadrature may be too involved for a large number of coupons.
Let us fix a maturity T = Tn and assume that the n coupon periods

T n
i := ] i−1

n T , i
n T ], i ∈ {1, . . . ,n},

have length T/n.
For large n, the proportion of intervals during which the underlying stays
inside the barrier interval

B := [Blow,Bup]

is similar to the proportion of time that the underlying spends inside B,
i.e., the occupation time.
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Theorem

Let (St )t≥0 be a continuous stochastic process such that for each real c the
level set {t ≥ 0 : St = c} has a.s. Lebesgue measure zero. Then we have a.s.

lim
n→∞

1
n

n∑
i=1

I{St∈B ∀t∈T n
i } =

1
T

∫ T

0
1B(St )dt .

Theorem suggests the approximation

e−rT E[(F − A)+] ≈ e−rT n
T

E
[(

FT
n
−
∫ T

0
1B(St )dt

)+]
(21)

for the price of the structure floor (15). It is obtained from replacing F by F/n
in the relation

E[(nF − A)+] ∼ nE
[(

F − 1
T

∫ T

0
1B(St )dt

)+]
, n→∞.

which follows from above.
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Corridor Option

e−rT E[(F − A)+] ≈ e−rT n
T

E
[(

FT
n
−
∫ T

0
1B(St )dt

)+]

On the right-hand side, we recognize the price of a put on the occupation
time of (St ), also called a corridor option.
Fusai (2000) studied such options in the Black–Scholes model. In
particular, his Theorem 1 gives an expression for the Laplace transform
of the characteristic function of

∫ T
0 1B(St )dt .

By using numerical inversion techniques, Fusai (2000) shows how to
price corridor options.
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Proof.
For 1 ≤ i ≤ n, define processes (Xni(t))0≤t≤T by

Xni(t) :=

{
1 if t ∈ T n

i and Su ∈ B ∀u ∈ T n
i

0 otherwise.

Put Xn :=
∑n

i=1 Xni . We claim that, a.s., the function Xn(·) converges pointwise on the
set [0,T ] \ {t : St = Blow or St = Bup}, with limit 1B(S·). Indeed, if t ∈ [0,T ] is such that
St /∈ B, then Xn(t) = 0 for all n. If, on the other hand, St ∈ int(B), then t has a
neighborhood V such that Su ∈ B for all u ∈ V , by continuity. Hence Xn(t) = 1 for
large n. Since we have pointwise convergence on a set of (a.s.) full measure, we can
apply the dominated convergence theorem to conclude

lim
n→∞

∫ T

0
Xn(t)dt =

∫ T

0
1B(St)dt , a.s.

But this is the desired result, since∫ T

0
Xn(t)dt =

n∑
i=1

∫ T

0
Xni(t)dt

=
n∑

i=1

∫
T n

i

Xni(t)dt =
n∑

i=1

|T n
i | 1{St∈B ∀t∈T n

i }
=

T
n

n∑
i=1

1{St∈B ∀t∈T n
i }
.
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Numerical evaluation of the approximation

coupons structure floor corridor option relative error
n = 1 7.63696 9.91563 0.2298060
n = 2 7.52979 9.24883 0.1858660
n = 3 7.42262 8.66698 0.1435750
n = 4 7.31545 8.06291 0.0927030
n = 5 7.20827 7.44886 0.0322987
n = 6 7.10110 7.31880 0.0297450
n = 7 6.99393 7.18558 0.0266714
n = 8 6.88677 7.03704 0.0213544
n = 9 6.77962 6.92288 0.0206936
n = 10 6.67232 6.80399 0.0193516

Table: Numerical evaluation of the approximation (21) with maturity T = 4, structure
floor level F = 10, and n coupons. The other parameters are r = 0.01, σ = 0.15,
Blow = 80, and Bup = 120.
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Approximation by a corridor option works only for period lengths tending
to zero.
One could also let the number of coupons tend to infinity for a fixed
period length P, so that maturity increases linearly with n.

Figure: Correlation between individual coupons, n=20
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Approximation of Sum of Coupons

The correlation of the random variables Ci and Cj decreases for large
|i − j |.
Therefore, it is a natural question whether a "central limit theorem" holds,
i.e., whether the sum of coupons A :=

∑n
i=1 Ci

A− E[A]√
Var[A]

converges in law to a standard normal random variable as n→∞.
To have CLT (or certain normal approximation methods) we have to verify
any of the "mixing" conditions (see Bradley (2005)).
"Mixing" means, roughly, that random variables temporally far apart from
one another are nearly independent.
However, we could not verify for example, the φ mixing condition.
Numerical experiments also cast doubt on Gaussian limit law.
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Figure: Density Approximation
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Thanks for listening...
Comments! and Questions?
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Approximation of Sum of Coupons and φ-mixing

On (Ω,F ,P), for any two σ-fields A and B ∈ F ,
φ(A,B) := sup |P(B|A)− P(B)| given A ∈ A and B ∈ B, where the
supremum is taken over all pairs of (finite) partitions {A1, . . . ,Ai} and
{B1, . . . ,Bj} of Ω such that Ai ∈ A for each i and Bi ∈ B for each j .
Now suppose X := (Xk , k ∈ N) is a sequence of random variables. For
0 ≤ J ≤ L ≤ ∞, define the σ-field

FL
J := σ(Xk , J ≤ k ≤ L, (k ∈ N))

and for each n ≥ 1 define

φ(n) := sup
j∈N

(F j
0,F∞j+n)

The random sequence X is called φ-mixing if φ(n)→ 0 as n→∞.
In the context of our question, it can be shown that adapting the above
notations in the obvious way, φ(σ(Ws, s ≤ t), σ(Ws, s ≥ t + u)) = 1.
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