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Objectives:

@ Determine the price of digital double barrier options with an arbitrary
number of barrier periods.

@ Find the exact value of the structured floor for structured notes whose
individual coupons are digital double barrier options.

@ Approximate the value of the structured floor by the price of a corridor
option.
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Setup and Pricing for One Period

@ The underlying (S;)r>0 has the risk-neutral dynamics

ds;

g =dt+odw,

with the initial value Sy > 0, constant interest rate r > 0, volatility o > 0
and a standard Brownian motion W.

@ At maturity Tp + P, the payoff is one unit of currency if the underlying has
stayed between the two barriers:

Ci =B, <5<By, Vte[To,To+P}+ (1)

where To > 0, P > 0 and B, > By, > 0 are barriers.
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Setup and Pricing for One Period

@ Let us denote the price of this “one-period double barrier digital” at t < Ty
by
BD(S;,t;{To}, P, Biow, Bup, 1) := & "0+ P=0E[Cy | Fy]. (2)

@ The value function
f(S,t) := BD(S,t;{To}, P, Biow, Bup, )
satisfies the Black—Scholes PDE

c’)f 1 5252 02f B

at S 752 +r S =0

with the terminal condition (S, To + P) = 1, for S € (Biow, Byp), and the
boundary conditions f(Biow, t) = f(Bup, t) = 0 for t € [Ty, To + P].
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Setup and Pricing for One Period

@ Use the standard transformation (S, t) = e~*57U(x, 1), where

x :=109(S/Biow),  T:=10%(To+P—t), 3)
1/2 2r 5
a:——2<02r—1), B::—?—Oz,
to transform the Black—Scholes PDE into the heat equation
0?U  oU
o = o @

@ The boundary conditions in the new coordinates are
U(oa T) = U(L7 T) =0, TE [07p]7 (5)

where L := log(B,y/Biow) and p = 1o2P. The terminal condition
translates to the initial condition

U(x,0) = e™, x € (0,L). (6)
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Proposition

For0 < t < Ty, the price of a barrier digital with barrier period [Ty, To + P] and
payoff Cy at Ty + P is

)k —al

BD(S:, t;{To}, P, Bow, Bup, 1) = <Bl ) Zk 2L2+k27r2 e —(km)2piBr

< [P D gy (‘Lo yvam=mn) e ey (1)

(1— p)

4

@ this is a rear-end barrier option, because the two barriers are alive only towards
the end of the contract (see Hui (1997)) .

@ in probabilistic terms, we are integrating the probability to stay between the
barriers (see e.g Borodin and Salminen (2002)) , with Sy, viewed as a parameter,
against the law of St;.
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Sketch of the Proof:

@ First consider the rectangle (0, L) x (0, p), the (unique) solution can be found by
separation of variables

:Zbksin("{x>e—<%">zf, (1) €O.L)x(0,p), ()
k=1

where P
s kn (=1)e @
L/ Xq Sln (TX1> dX1 = zkﬂw
are the Fourier coefficients of the boundary function U(x,0) = e~ **.
@ Next, at 7 = p, the solution is given by (8) for 0 < x < L and vanishes otherwise.

k —al .
(x.p) = | T 2k i sin(k7x)e TP, 0 < x < L,
0, x<O0orx>L.

9)

@ Finally solve for U in the region R x (p, $0*(To + P)). A solution is found by
convolving the initial condition (9) with the heat kernel (see Evans [4, p. 47]).
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Double Barrier Digitals with Finitely Many Periods

@ ntenor dates
O0<To< < Thg

and fixed period length P > 0 satisfying T;+ P < T;y 1 fori=0,...,n— 2.

@ Consider a contract that pays one unit of currency at time T,_1 + P, if the
underlying has remained between the two barriers By, and B,, during
each of the time intervals [T;, T;+ P],i=0,...,n—1.

@ The price of this “multi-period double barrier digital” unless it is not
knocked out before t is given by

]:I:|7
(10)

n
BD(Sh t; {T07 RN Tn71 }a Pa Blowa Bup; r) = e—f(T,—,,HrP—T)E |:H Ci
i=1

where

Ci = LB <Si<Buyp, VIE[T_1,Ti_1+P]}-
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Figure: Solving the boundary value problem for an arbitrary number of barrier periods.

The n barrier periods [T;, T; + P] are mapped to [r;, 7; + p], where
Ti i= 1517'2(7-,7_1—7-,'_1), i:n,...,1,

are the images of the barrier period endpoints under the coordinate change.
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Theorem

The value function (10) equals e**+#7U(x, 1), where forj € {0,...,n—1},
Tn—j <7 < Tph—j+ P, 0 < x < L, we have

“////0

L 70 k=0 k+10

gj(k1,...,kj+1,X1,...,X/'+1,y1,...7yj,X,T)dX1...de+1dy1 dy], (11)

whereas forj € {0,...,n—1}, 7p_j+p < 7 < Th_(j41) (With 79 := 00), X € R,

we have

“////0

hj(k1,...,/(/+1,X1,...,Xj+1,y1,...,y/'+1,X,T)dX1...dX/'+1dy1 d}/j+1 (1

k1 /+1 0

where h; and g; are defined recursively by

2)

v
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Theorem

hj(k17'~"kj+1;x1a"'7X]'+1;y17°"7y]'+1;xa7-)

—y2

X L—x

V21 =(Tn—j+P)) A/2(T—(Tn—j+P))

'gj(k17"'7l(j+1;x1a"‘7)(/+1;.y17"'7.}/j;x+}/j+1\/2(T_(Tnfj+p))77—n7]’+p)
and

gj(k17"'7l(j+1;x1a"'7)(j+1;y17"‘7,}/j;x77—)
= % sin W T 7er/'+‘ sin _kl'+1L”X e—(k/'+17f/L)2(7'—Tn—i)
'hj_1(k1,...,k';X1,...,Xj;y1,...,yj;Xj+1,Tn_j),
with the recursion starting at
5 50 0 2, in k ik —(ky/L)?
Go(ki; x17; %, 7) == 2% gin KXt gjp kurx g=(kim/L)'r (13)

y
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Idea of the Proof:
@ To iterate the argument of Proposition (see Figure 1)

@ Using separation of variables in the barrier periods, and convolution with
the heat kernel for the periods in between

@ The required initial condition at the left boundary comes from the
previous step of the iteration (for j = 0 also from the payoff).

Remarks:
@ Proposition corresponds to (12) for j =0

o If a different option (a call, say) with the same barrier conditions is to be
priced instead of a digital payoff, the quantity e=** in (13) should be
replaced by the appropriate payoff U(x4, 0).
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Numerical Implementation
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Structured Notes and Floors

@ Tenor structure satisfies Tj_1 + P = T;fori € {1,...,n— 1}, and define
Tn:=Th1+P.

@ Consider a structured note with n coupons, where the i-th coupon
consists of a payment of

Ci = 1By, <S<Byp, Vte[T_1, T} ie{l,...,n},

attime T.
@ In addition, the holder receives the terminal compensation

n +
(F - ; c,-> (15)

at T,, where F > 0.
@ These coupons can be priced by the Proposition (replace Ty by T;_1).

(Question):HOWEVER, HOW TO GET A HANDLE ON THE LAW OF A := Y7 , C;?
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Structured Floor

(Answer): THE LAW OF A:=>"7 , C; IS LINKED TO BARRIER OPTIONS WITH
SEVERAL BARRIER PERIODS.

Observation: The moments

E[A”]:ii”P[A:i], ve{l,...,n—1}, (16)
i=0

of A are linear combinations of multi-period double barrier option prices, with
coefficients

crd)= > (h,.l.j.,in)’ JT{1,...,n. (17)

0<it,...,in<v
supp(i)=J

(The notation supp(i) = J means that J is the set of indices such that the
corresponding components of the vector i = (i, ..., i) are non-zero.)
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Structured Floor

Theorem

The price of the structured floor (15) at time t = 0 can be expressed as

nA|F]|
e~ TE[(F — A)f]=e T Z (F— i) P[A=1], (18)
i=0
where
P[A = n] = BD(S0,0;{To}, Tn — To, Biow, Bup, 0). (19)

The other point masses P[A = i] in (18) can be recovered from the moments
of A by solving (16) (including v = 0, of course). The moments in turn can be
computed from barrier digital prices by (v € {1,...,n—1})

E[A"] = Z c(v,J) - BD(So,0;{T;:j € J}, P, Biow; By, 0), (20)

where the coefficients c(v,J) are defined in (17).
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Proof.

The expression (18) is clear. The event in (19) means that all of the n
coupons (14) are paid. By our assumption that T; = T;_¢ + P, its risk-neutral
probability is the (undiscounted) price of a double barrier digital with one
barrier period [Ty, T,], which yields (19). To prove (20), we calculate

en-($)] - 5
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Now observe that [, , C; is the payoff of a double barrier digital with barrier
periods [T;, T; + P] for j € J. O
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Approximation of Structured Floor

@ Numerical quadrature may be too involved for a large number of coupons.
@ Let us fix a maturity T = T, and assume that the n coupon periods

T=1RATATL de (1),

have length T/n.

@ For large n, the proportion of intervals during which the underlying stays
inside the barrier interval

B = [Blowa Bup]

is similar to the proportion of time that the underlying spends inside B,
i.e., the occupation time.
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Theorem

Let (St)i>0 be a continuous stochastic process such that for each real c the
level set {t > 0: S; = c} has a.s. Lebesgue measure zero. Then we have a.s.

n“_>moo,—7 Zﬂ{stes VieT} = T/ 15(Sy)dt.

Theorem suggests the approximation

e TE[(F — A)*] ~ e—fT;E KFnT - /OT 1B(St)dt> q 1)

for the price of the structure floor (15). It is obtained from replacing F by F/n
in the relation

E[(nF — A)T] ~ nE[(F ;_/OT1B(S,)dt)+], n— oo.

which follows from above.
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Corridor Option

o TE[(F - A)F] ~ erT;EKFJ /0T15(31)dt>+}

@ On the right-hand side, we recognize the price of a put on the occupation
time of (St), also called a corridor option.

@ Fusai (2000) studied such options in the Black—Scholes model. In
particular, his Theorem 1 gives an expression for the Laplace transform
of the characteristic function of foT 15(S;)dt.

@ By using numerical inversion techniques, Fusai (2000) shows how to
price corridor options.
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Proof.
For 1 <i < n, define processes (Xni(t))o<i<7 by

{1 ifte 7,"and Sy € BYu € T;"
Xn,'(t) = .
0 otherwise.

Put X, := "7, Xni. We claim that, a.s., the function X,(-) converges pointwise on the
set [0, T]\ {t: St = Biow Or St = By}, with limit 15(S.). Indeed, if t € [0, T] is such that
S: ¢ B, then X,(t) = 0 for all n. If, on the other hand, S; € int(B), then t has a
neighborhood V such that S, € B for all u € V, by continuity. Hence X,(t) = 1 for
large n. Since we have pointwise convergence on a set of (a.s.) full measure, we can
apply the dominated convergence theorem to conclude

n— oo

T T
Iim/ Xn(t)dt:/ 15(S)dt,  as.
0 0

But this is the desired result, since

/OTXn(t)dt - Zn:/OTX,,,-(t)dt

§ : n
— n 1 (ﬂ = T 1 T

/’7‘ X i( ) Z ‘ i | {SteB vte ;,‘ } n : : {SieB VlE'T, }
~ d i=1

=1
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Numerical evaluation of the approximation

coupons  structure floor corridor option  relative error

n=1 7.63696 9.91563 0.2298060
n=2 7.52979 9.24883 0.1858660
n=3 7.42262 8.66698 0.1435750
n=4 7.31545 8.06291 0.0927030

=5 7.20827 7.44886 0.0322987
n==6 7.10110 7.31880 0.0297450
n=7 6.99393 7.18558 0.0266714
n=38 6.88677 7.03704 0.0213544
n=9 6.77962 6.92288 0.0206936
n=10 6.67232 6.80399 0.0193516

Table: Numerical evaluation of the approximation (21) with maturity T = 4, structure
floor level F = 10, and n coupons. The other parameters are r = 0.01, o = 0.15,
B = 80, and B,, = 120.
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@ Approximation by a corridor option works only for period lengths tending
to zero.

@ One could also let the number of coupons tend to infinity for a fixed
period length P, so that maturity increases linearly with n.

Figure: Correlation between individual coupons, n=20
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Approximation of Sum of Coupons

@ The correlation of the random variables C; and C; decreases for large
i —jl.

@ Therefore, it is a natural question whether a "central limit theorem” holds,
i.e., whether the sum of coupons A:=>"", C;

A—E[A]
v/ Var[A]
converges in law to a standard normal random variable as n — oc.

@ To have CLT (or certain normal approximation methods) we have to verify
any of the "mixing" conditions (see Bradley (2005)).

@ "Mixing" means, roughly, that random variables temporally far apart from
one another are nearly independent.

@ However, we could not verify for example, the ¢ mixing condition.
@ Numerical experiments also cast doubt on Gaussian limit law.
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Figure: Density Approximation
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Thanks for listening...
Comments! and Questions?

Stihan Altay (TU Vienna, FAM) Digital Double Barrier Options



Approximation of Sum of Coupons and ¢-mixing

@ On (Q,F,P), for any two o-fields A and B € F,

@ ¢(A,B) :=sup|P(B|A) — P(B)| given A € A and B € B, where the
supremum is taken over all pairs of (finite) partitions {Ay,..., A;} and
{Bi,...,B;} of Qsuch that A; € A for each i and B; € B for each j.

@ Now suppose X := (X, k € N) is a sequence of random variables. For
0 < J < L < 0o, define the o-field

Fii=o(Xq, J <k < L,(keN))
and for each n > 1 define

(n) := sup(F}, F7<,)
JEN

@ The random sequence X is called ¢-mixing if ¢(n) — 0 as n — cc.

@ In the context of our question, it can be shown that adapting the above
notations in the obvious way, ¢(ac(Ws,s < t),0(Ws,s > t+ u)) = 1.
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