Digital Double Barrier Options: Several Barrier Periods and Structured Floors

Sühan Altay
(joint work with S. Gerhold, R. Haidinger and K. Hirhager)

6th AMaMeF and Banach Center Conference Warsaw

Objectives:

- Determine the price of digital double barrier options with an arbitrary number of barrier periods.
- Find the exact value of the structured floor for structured notes whose individual coupons are digital double barrier options.
- Approximate the value of the structured floor by the price of a corridor option.

Outline

(1) Preliminaries and Pricing for One Period
(2) Double Barrier Digitals with Finitely Many Periods
(3) Structured Floors
4. Approximation by a Corridor Option

Setup and Pricing for One Period

- The underlying $\left(S_{t}\right)_{t \geq 0}$ has the risk-neutral dynamics

$$
\frac{d S_{t}}{S_{t}}=r d t+\sigma d W_{t}
$$

with the initial value $S_{0}>0$, constant interest rate $r \geq 0$, volatility $\sigma>0$ and a standard Brownian motion W.

- At maturity $T_{0}+P$, the payoff is one unit of currency if the underlying has stayed between the two barriers:

$$
\begin{equation*}
C_{1}:=\mathbb{I}_{\left\{B_{\mathrm{oow}}<S_{t}<B_{\mathrm{up}}, \forall t \in\left[T_{0}, T_{0}+P\right]\right\}} \tag{1}
\end{equation*}
$$

where $T_{0}>0, P>0$ and $B_{\text {up }}>B_{\text {low }}>0$ are barriers.

Setup and Pricing for One Period

- Let us denote the price of this "one-period double barrier digital" at $t<T_{0}$ by

$$
\begin{equation*}
B D\left(S_{t}, t ;\left\{T_{0}\right\}, P, B_{\mathrm{low}}, B_{\mathrm{up}}, r\right):=e^{-r\left(T_{0}+P-t\right)} \mathbf{E}\left[C_{1} \mid \mathcal{F}_{t}\right] . \tag{2}
\end{equation*}
$$

- The value function

$$
f(S, t):=B D\left(S, t ;\left\{T_{0}\right\}, P, B_{\mathrm{low}}, B_{\mathrm{up}}, r\right)
$$

satisfies the Black-Scholes PDE

$$
\frac{\partial f}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}+r S \frac{\partial f}{\partial S}-r f=0
$$

with the terminal condition $f\left(S, T_{0}+P\right)=1$, for $S \in\left(B_{\text {low }}, B_{\text {up }}\right)$, and the boundary conditions $f\left(B_{\text {low }}, t\right)=f\left(B_{\text {up }}, t\right)=0$ for $t \in\left[T_{0}, T_{0}+P\right]$.

Setup and Pricing for One Period

- Use the standard transformation $f(S, t)=e^{\alpha x+\beta \tau} U(x, \tau)$, where

$$
\begin{align*}
& x:=\log \left(S / B_{\mathrm{low}}\right), \quad \tau:=\frac{1}{2} \sigma^{2}\left(T_{0}+P-t\right), \tag{3}\\
& \alpha:=-\frac{1}{2}\left(\frac{2}{\sigma^{2}} r-1\right), \quad \beta:=-\frac{2 r}{\sigma^{2}}-\alpha^{2},
\end{align*}
$$

to transform the Black-Scholes PDE into the heat equation

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial x^{2}}=\frac{\partial U}{\partial \tau} \tag{4}
\end{equation*}
$$

- The boundary conditions in the new coordinates are

$$
\begin{equation*}
U(0, \tau)=U(L, \tau)=0, \quad \tau \in[0, p] \tag{5}
\end{equation*}
$$

where $L:=\log \left(B_{\text {up }} / B_{\text {low }}\right)$ and $p=\frac{1}{2} \sigma^{2} P$. The terminal condition translates to the initial condition

$$
\begin{equation*}
U(x, 0)=e^{-\alpha x}, \quad x \in(0, L) \tag{6}
\end{equation*}
$$

Proposition

For $0 \leq t<T_{0}$, the price of a barrier digital with barrier period $\left[T_{0}, T_{0}+P\right]$ and payoff C_{1} at $T_{0}+P$ is

$$
\begin{align*}
B D\left(S_{t}, t ;\left\{T_{0}\right\}, P, B_{\mathrm{low}}, B_{\mathrm{up}}, r\right) & =\sqrt{2 \pi}\left(\frac{S}{B_{\mathrm{low}}}\right)^{\alpha} \sum_{k=1}^{\infty} k \frac{1-(-1)^{k} e^{-\alpha L}}{\alpha^{2} L^{2}+k^{2} \pi^{2}} e^{-\left(\frac{k \pi}{L}\right)^{2} p+\beta \tau} \\
& \times \int_{-\frac{x}{\sqrt{2(\tau-p)}}}^{\frac{L-x}{\sqrt{2(\tau-p)}}} \sin \left(\frac{k \pi}{L}(x+y \sqrt{2(\tau-p))}) e^{-y^{2} / 2} d y .\right. \tag{7}
\end{align*}
$$

- this is a rear-end barrier option, because the two barriers are alive only towards the end of the contract (see Hui (1997)) .
- in probabilistic terms, we are integrating the probability to stay between the barriers (see e.g Borodin and Salminen (2002)), with $S_{T_{0}}$ viewed as a parameter, against the law of $S_{T_{0}}$.

Sketch of the Proof:

- First consider the rectangle $(0, L) \times(0, p)$, the (unique) solution can be found by separation of variables

$$
\begin{equation*}
U(x, \tau)=\sum_{k=1}^{\infty} b_{k} \sin \left(\frac{k \pi}{L} x\right) e^{-\left(\frac{k \pi}{L}\right)^{2} \tau}, \quad(x, \tau) \in(0, L) \times(0, p), \tag{8}
\end{equation*}
$$

where

$$
b_{k}:=\frac{2}{L} \int_{0}^{L} e^{-\alpha x_{1}} \sin \left(\frac{k \pi}{L} x_{1}\right) d x_{1}=2 k \pi \frac{1-(-1)^{k} e^{-\alpha L}}{\alpha^{2} L^{2}+k^{2} \pi^{2}}
$$

are the Fourier coefficients of the boundary function $U(x, 0)=e^{-\alpha x}$.

- Next, at $\tau=p$, the solution is given by (8) for $0<x<L$ and vanishes otherwise.

$$
U(x, p)= \begin{cases}\sum_{k=1}^{\infty} 2 k \pi \frac{1-(-1)^{k} e^{-\alpha L}}{\alpha^{2} L^{2}+k^{2} \pi^{2}} \sin \left(\frac{k \pi}{L} x\right) e^{-\left(\frac{k \pi}{L}\right)^{2} p}, & 0<x<L, \tag{9}\\ 0, & x \leq 0 \text { or } x \geq L .\end{cases}
$$

- Finally solve for U in the region $\mathbb{R} \times\left(p, \frac{1}{2} \sigma^{2}\left(T_{0}+P\right)\right)$. A solution is found by convolving the initial condition (9) with the heat kernel (see Evans [4, p. 47]).

Double Barrier Digitals with Finitely Many Periods

- n tenor dates

$$
0<T_{0}<\cdots<T_{n-1}
$$

and fixed period length $P>0$ satisfying $T_{i}+P \leq T_{i+1}$ for $i=0, \ldots, n-2$.

- Consider a contract that pays one unit of currency at time $T_{n-1}+P$, if the underlying has remained between the two barriers $B_{\text {low }}$ and $B_{\text {up }}$ during each of the time intervals $\left[T_{i}, T_{i}+P\right], i=0, \ldots, n-1$.
- The price of this "multi-period double barrier digital" unless it is not knocked out before t is given by

$$
\begin{equation*}
B D\left(S_{t}, t ;\left\{T_{0}, \ldots, T_{n-1}\right\}, P, B_{\mathrm{low}}, B_{\mathrm{up}}, r\right):=e^{-r\left(T_{n-1}+P-t\right)} \mathbf{E}\left[\prod_{i=1}^{n} C_{i} \mid \mathcal{F}_{t}\right], \tag{10}
\end{equation*}
$$

where

$$
C_{i}:=\mathbb{I}_{\left\{B_{\text {low }}<S_{t}<B_{\text {up }}, \forall t \in\left[T_{i-1}, T_{i-1}+P\right]\right\}} .
$$

Figure: Solving the boundary value problem for an arbitrary number of barrier periods.

The n barrier periods [$T_{i}, T_{i}+P$] are mapped to $\left[\tau_{i}, \tau_{i}+p\right]$, where

$$
\tau_{i}:=\frac{1}{2} \sigma^{2}\left(T_{n-1}-T_{i-1}\right), \quad i=n, \ldots, 1,
$$

are the images of the barrier period endpoints under the coordinate change,

Theorem

The value function (10) equals $e^{\alpha x+\beta \tau} U(x, \tau)$, where for $j \in\{0, \ldots, n-1\}$, $\tau_{n-j} \leq \tau \leq \tau_{n-j}+p, 0<x<L$, we have

$$
\begin{align*}
& U(x, \tau)=\underbrace{\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}}_{j} \underbrace{\int_{0}^{L} \ldots \int_{0}^{L} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{j+1}=0}^{\infty}}_{j+1} \\
& g_{j}\left(k_{1}, \ldots, k_{j+1} ; x_{1}, \ldots, x_{j+1} ; y_{1}, \ldots, y_{j} ; x, \tau\right) d x_{1} \ldots d x_{j+1} d y_{1} \ldots d y_{j} \tag{11}
\end{align*}
$$

whereas for $j \in\{0, \ldots, n-1\}, \tau_{n-j}+p<\tau<\tau_{n-(j+1)}$ (with $\left.\tau_{0}:=\infty\right), x \in \mathbb{R}$, we have

$$
\begin{align*}
& U(x, \tau)=\underbrace{\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}}_{j+1} \underbrace{\int_{0}^{L} \ldots \int_{0}^{L}}_{j+1} \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{j+1}=0}^{\infty} \\
& h_{j}\left(k_{1}, \ldots, k_{j+1} ; x_{1}, \ldots, x_{j+1} ; y_{1}, \ldots, y_{j+1} ; x, \tau\right) d x_{1} \ldots d x_{j+1} d y_{1} \ldots d y_{j+1} . \tag{12}
\end{align*}
$$

where h_{j} and g_{j} are defined recursively by

Theorem

$$
\begin{aligned}
& h_{j}\left(k_{1}, \ldots, k_{j+1} ; x_{1}, \ldots, x_{j+1} ; y_{1}, \ldots, y_{j+1} ; x, \tau\right) \\
& \quad:=\frac{1}{\sqrt{2 \pi}} e^{-y_{j+1}^{2} / 2} \mathbb{I}\left[-\frac{x}{\sqrt{2\left(\tau-\left(\tau_{n-j}+p\right)\right)}} \frac{L-x}{\sqrt{2\left(\tau-\left(\tau_{n-j}+p\right)\right)}}\right]
\end{aligned}
$$

$$
\cdot g_{j}\left(k_{1}, \ldots, k_{j+1} ; x_{1}, \ldots, x_{j+1} ; y_{1}, \ldots, y_{j} ; x+y_{j+1} \sqrt{2\left(\tau-\left(\tau_{n-j}+p\right)\right)}, \tau_{n-j}+p\right)
$$

and

$$
\begin{aligned}
& g_{j}\left(k_{1}, \ldots, k_{j+1} ; x_{1}, \ldots, x_{j+1} ; y_{1}, \ldots, y_{j} ; x, \tau\right) \\
& :=\frac{2}{L} \sin \frac{k_{j+1} \pi x_{j+1}}{L} \sin \frac{k_{j+1} \pi x}{L} e^{-\left(k_{j+1} \pi / L\right)^{2}\left(\tau-\tau_{n-j}\right)} \\
& \quad \cdot h_{j-1}\left(k_{1}, \ldots, k_{j} ; x_{1}, \ldots, x_{j} ; y_{1}, \ldots, y_{j} ; x_{j+1}, \tau_{n-j}\right)
\end{aligned}
$$

with the recursion starting at

$$
\begin{equation*}
g_{0}\left(k_{1} ; x_{1} ; ; x, \tau\right):=\frac{2}{L} e^{-\alpha x_{1}} \sin \frac{k_{1} \pi x_{1}}{L} \sin \frac{k_{1} \pi x}{L} e^{-\left(k_{1} \pi / L\right)^{2} \tau} . \tag{13}
\end{equation*}
$$

Idea of the Proof:

- To iterate the argument of Proposition (see Figure 1)
- Using separation of variables in the barrier periods, and convolution with the heat kernel for the periods in between
- The required initial condition at the left boundary comes from the previous step of the iteration (for $j=0$ also from the payoff).

Remarks:

- Proposition corresponds to (12) for $j=0$
- If a different option (a call, say) with the same barrier conditions is to be priced instead of a digital payoff, the quantity $e^{-\alpha x_{1}}$ in (13) should be replaced by the appropriate payoff $U\left(x_{1}, 0\right)$.

Numerical Implementation

Figure: Value function of a double barrier digital with two barrier periods with parameters $r=0.01, \sigma=0.15, B_{\text {low }}=80, B_{\text {up }}=120,\left\{T_{0}, T_{1}\right\}=\{1,6\}$, and $P=2$.

Structured Notes and Floors

- Tenor structure satisfies $T_{i-1}+P=T_{i}$ for $i \in\{1, \ldots, n-1\}$, and define $T_{n}:=T_{n-1}+P$.
- Consider a structured note with n coupons, where the i-th coupon consists of a payment of

$$
\begin{equation*}
C_{i}=\mathbb{I}_{\left\{B_{\text {low }}<S_{t}<B_{\mathrm{up}}, \forall t \in\left[T_{i-1}, T_{i}\right]\right\}}, \quad i \in\{1, \ldots, n\}, \tag{14}
\end{equation*}
$$

at time T_{i}.

- In addition, the holder receives the terminal compensation

$$
\begin{equation*}
\left(F-\sum_{i=1}^{n} C_{i}\right)^{+} \tag{15}
\end{equation*}
$$

at T_{n}, where $F>0$.

- These coupons can be priced by the Proposition (replace T_{0} by T_{i-1}).
(Question):HOWEVER, HOW TO GET A HANDLE ON THE LAW OF $A:=\sum_{i=1}^{n} C_{i}$?

Structured Floor

(Answer): the law of $A:=\sum_{i=1}^{n} C_{i}$ IS LINKED to barrier options with SEVERAL BARRIER PERIODS.
Observation: The moments

$$
\begin{equation*}
\mathbf{E}\left[A^{\nu}\right]=\sum_{i=0}^{n} i^{\nu} \mathbf{P}[A=i], \quad \nu \in\{1, \ldots, n-1\} \tag{16}
\end{equation*}
$$

of A are linear combinations of multi-period double barrier option prices, with coefficients

$$
\begin{equation*}
c(\nu, J):=\sum_{\substack{0 \leq i_{1}, \ldots, i_{n} \leq \nu \\ \operatorname{supp}(i)=J}}\binom{\nu}{i_{1}, \ldots, i_{n}}, \quad J \subseteq\{1, \ldots, n\} . \tag{17}
\end{equation*}
$$

(The notation $\operatorname{supp}(\mathbf{i})=J$ means that J is the set of indices such that the corresponding components of the vector $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right)$ are non-zero.)

Structured Floor

Theorem

The price of the structured floor (15) at time $t=0$ can be expressed as

$$
\begin{equation*}
e^{-r T_{n}} \mathbf{E}\left[(F-A)^{+}\right]=e^{-r T_{n}} \sum_{i=0}^{n \wedge\lfloor F\rfloor}(F-i) \mathbf{P}[A=i], \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{P}[A=n]=B D\left(S_{0}, 0 ;\left\{T_{0}\right\}, T_{n}-T_{0}, B_{\mathrm{low}}, B_{\mathrm{up}}, 0\right) . \tag{19}
\end{equation*}
$$

The other point masses $\mathbf{P}[A=i]$ in (18) can be recovered from the moments of A by solving (16) (including $\nu=0$, of course). The moments in turn can be computed from barrier digital prices by $(\nu \in\{1, \ldots, n-1\})$

$$
\begin{equation*}
\mathrm{E}\left[A^{\nu}\right]=\sum_{J \subseteq\{1, \ldots, n\}} c(\nu, J) \cdot B D\left(S_{0}, 0 ;\left\{T_{j}: j \in J\right\}, P, B_{\mathrm{low}}, B_{\mathrm{up}}, 0\right), \tag{20}
\end{equation*}
$$

where the coefficients $c(\nu, J)$ are defined in (17).

Proof.

The expression (18) is clear. The event in (19) means that all of the n coupons (14) are paid. By our assumption that $T_{i}=T_{i-1}+P$, its risk-neutral probability is the (undiscounted) price of a double barrier digital with one barrier period [T_{0}, T_{n}], which yields (19). To prove (20), we calculate

$$
\begin{aligned}
\mathbf{E}\left[A^{\nu}\right]=\mathbf{E}\left[\left(\sum_{i=1}^{n} C_{i}\right)^{\nu}\right] & =\sum_{i_{1}, \ldots, i_{n}}\binom{\nu}{i_{1}, \ldots, i_{n}} \mathbf{E}\left[C_{1}^{i_{1}} \ldots C_{n}^{i_{n}}\right] \\
& =\sum_{i_{1}, \ldots, i_{n}}\binom{\nu}{i_{1}, \ldots, i_{n}} \mathbf{E}\left[\prod_{\substack{j=1 \\
i_{j}>0}}^{n} C_{j}\right] \\
& =\sum_{J \subseteq\{1, \ldots, n\}}\left(\sum_{\substack{i_{1}, \ldots, i_{n} \\
\operatorname{supp}(\mathbf{i})=J}}\binom{\nu}{i_{1}, \ldots, i_{n}}\right) \mathbf{E}\left[\prod_{j \in J} C_{j}\right] .
\end{aligned}
$$

Now observe that $\prod_{j \in J} C_{j}$ is the payoff of a double barrier digital with barrier periods $\left[T_{j}, T_{j}+P\right]$ for $j \in J$.

Approximation of Structured Floor

- Numerical quadrature may be too involved for a large number of coupons.
- Let us fix a maturity $T=T_{n}$ and assume that the n coupon periods

$$
\left.\left.\mathcal{T}_{i}^{n}:=\right] \frac{i-1}{n} T, \frac{i}{n} T\right], \quad i \in\{1, \ldots, n\},
$$

have length T / n.

- For large n, the proportion of intervals during which the underlying stays inside the barrier interval

$$
\mathcal{B}:=\left[B_{\mathrm{low}}, B_{\mathrm{up}}\right]
$$

is similar to the proportion of time that the underlying spends inside \mathcal{B}, i.e., the occupation time.

Theorem

Let $\left(S_{t}\right)_{t \geq 0}$ be a continuous stochastic process such that for each real c the level set $\left\{t \geq 0: S_{t}=c\right\}$ has a.s. Lebesgue measure zero. Then we have a.s.

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{\left\{S_{t} \in \mathcal{B} \forall t \in \mathcal{T}_{i}^{n}\right\}}=\frac{1}{T} \int_{0}^{T} \mathbf{1}_{\mathcal{B}}\left(S_{t}\right) d t .
$$

Theorem suggests the approximation

$$
\begin{equation*}
e^{-r T} \mathbf{E}\left[(F-A)^{+}\right] \approx e^{-r T} \frac{n}{T} \mathbf{E}\left[\left(\frac{F T}{n}-\int_{0}^{T} \mathbf{1}_{\mathcal{B}}\left(S_{t}\right) d t\right)^{+}\right] \tag{21}
\end{equation*}
$$

for the price of the structure floor (15). It is obtained from replacing F by F / n in the relation

$$
\mathbf{E}\left[(n F-A)^{+}\right] \sim n \mathbf{E}\left[\left(F-\frac{1}{T} \int_{0}^{T} \mathbf{1}_{\mathcal{B}}\left(S_{t}\right) d t\right)^{+}\right], n \rightarrow \infty
$$

which follows from above.

Corridor Option

$$
e^{-r T} \mathbf{E}\left[(F-A)^{+}\right] \approx e^{-r T} \frac{n}{T} \mathbf{E}\left[\left(\frac{F T}{n}-\int_{0}^{T} \mathbf{1}_{\mathcal{B}}\left(S_{t}\right) d t\right)^{+}\right]
$$

- On the right-hand side, we recognize the price of a put on the occupation time of $\left(S_{t}\right)$, also called a corridor option.
- Fusai (2000) studied such options in the Black-Scholes model. In particular, his Theorem 1 gives an expression for the Laplace transform of the characteristic function of $\int_{0}^{T} \mathbf{1}_{\mathcal{B}}\left(S_{t}\right) d t$.
- By using numerical inversion techniques, Fusai (2000) shows how to price corridor options.

Proof.

For $1 \leq i \leq n$, define processes $\left(X_{n i}(t)\right)_{0 \leq t \leq T}$ by

$$
X_{n i}(t):= \begin{cases}1 & \text { if } t \in \mathcal{T}_{i}^{n} \text { and } S_{u} \in \mathcal{B} \forall u \in \mathcal{T}_{i}^{n} \\ 0 & \text { otherwise. }\end{cases}
$$

Put $X_{n}:=\sum_{i=1}^{n} X_{n i}$. We claim that, a.s., the function $X_{n}(\cdot)$ converges pointwise on the set $[0, T] \backslash\left\{t: S_{t}=B_{\text {low }}\right.$ or $\left.S_{t}=B_{\text {up }}\right\}$, with limit $\mathbf{1}_{\mathcal{B}}(S$.). Indeed, if $t \in[0, T]$ is such that $S_{t} \notin \mathcal{B}$, then $X_{n}(t)=0$ for all n. If, on the other hand, $S_{t} \in \operatorname{int}(\mathcal{B})$, then t has a neighborhood V such that $S_{u} \in \mathcal{B}$ for all $u \in V$, by continuity. Hence $X_{n}(t)=1$ for large n. Since we have pointwise convergence on a set of (a.s.) full measure, we can apply the dominated convergence theorem to conclude

$$
\lim _{n \rightarrow \infty} \int_{0}^{T} X_{n}(t) d t=\int_{0}^{T} \mathbf{1}_{\mathcal{B}}\left(S_{t}\right) d t, \quad \text { a.s. }
$$

But this is the desired result, since

$$
\begin{aligned}
\int_{0}^{T} X_{n}(t) d t & =\sum_{i=1}^{n} \int_{0}^{T} X_{n i}(t) d t \\
& =\sum_{i=1}^{n} \int_{\mathcal{T}_{i}^{n}} X_{n i}(t) d t=\sum_{i=1}^{n}\left|\mathcal{T}_{i}^{n}\right| \mathbf{1}_{\left\{S_{t} \in \mathcal{B} \forall t \in \mathcal{T}_{i}^{n}\right\}}=\frac{T}{n} \sum_{i=1}^{n} \mathbf{1}_{\left\{s_{t} \in \mathcal{B} \forall t \in \mathcal{T}_{i}^{n}\right\}} .
\end{aligned}
$$

Numerical evaluation of the approximation

coupons	structure floor	corridor option	relative error
$n=1$	7.63696	9.91563	0.2298060
$n=2$	7.52979	9.24883	0.1858660
$n=3$	7.42262	8.66698	0.1435750
$n=4$	7.31545	8.06291	0.0927030
$n=5$	7.20827	7.44886	0.0322987
$n=6$	7.10110	7.31880	0.0297450
$n=7$	6.99393	7.18558	0.0266714
$n=8$	6.88677	7.03704	0.0213544
$n=9$	6.77962	6.92288	0.0206936
$n=10$	6.67232	6.80399	0.0193516

Table: Numerical evaluation of the approximation (21) with maturity $T=4$, structure floor level $F=10$, and n coupons. The other parameters are $r=0.01, \sigma=0.15$, $B_{\text {low }}=80$, and $B_{\text {up }}=120$.

- Approximation by a corridor option works only for period lengths tending to zero.
- One could also let the number of coupons tend to infinity for a fixed period length P, so that maturity increases linearly with n.

Figure: Correlation between individual coupons, $\mathrm{n}=20$

Approximation of Sum of Coupons

- The correlation of the random variables C_{i} and C_{j} decreases for large $|i-j|$.
- Therefore, it is a natural question whether a "central limit theorem" holds, i.e., whether the sum of coupons $A:=\sum_{i=1}^{n} C_{i}$

$$
\frac{A-\mathrm{E}[A]}{\sqrt{\operatorname{Var}[A]}}
$$

converges in law to a standard normal random variable as $n \rightarrow \infty$.

- To have CLT (or certain normal approximation methods) we have to verify any of the "mixing" conditions (see Bradley (2005)).
- "Mixing" means, roughly, that random variables temporally far apart from one another are nearly independent.
- However, we could not verify for example, the ϕ mixing condition.
- Numerical experiments also cast doubt on Gaussian limit law.

Figure: Density Approximation

References

－S．Altay，S．Gerhold，and K．Hirhager，Digital double barrier options： Several barrier periods and structure floors，ArXiv e－prints，（2012）．
A．N．Borodin and P．Salminen，Handbook of Brownian motion—facts and formulae，Probability and its Applications，Birkhäuser Verlag，Basel， second ed．， 2002.
國 R．C．BRadLey，Basic properties of strong mixing conditions．A survey and some open questions，Probab．Surv．， 2 （2005），pp．107－144． Update of，and a supplement to，the 1986 original．
R．C．Evans，Partial differential equations，vol． 19 of Graduate Studies in Mathematics，American Mathematical Society，Providence，RI， 1998.
囯 G．FUSAI，Corridor options and arc－sine law，Ann．Appl．Probab．， 10 （2000），pp．634－663．
國 C．H．HuI，Time－dependent barrier option values，The Journal of Futures Markets， 17 （1997），pp．667－688．

Thanks for listening... Comments! and Questions?

Approximation of Sum of Coupons and ϕ-mixing

- On $(\Omega, \mathcal{F}, \mathbf{P})$, for any two σ-fields \mathcal{A} and $\mathcal{B} \in \mathcal{F}$,
- $\phi(\mathcal{A}, \mathcal{B}):=\sup |\mathbf{P}(B \mid A)-\mathbf{P}(B)|$ given $A \in \mathcal{A}$ and $B \in \mathcal{B}$, where the supremum is taken over all pairs of (finite) partitions $\left\{A_{1}, \ldots, A_{i}\right\}$ and $\left\{B_{1}, \ldots, B_{j}\right\}$ of Ω such that $A_{i} \in \mathcal{A}$ for each i and $B_{i} \in \mathcal{B}$ for each j.
- Now suppose $X:=\left(X_{k}, k \in \mathbb{N}\right)$ is a sequence of random variables. For $0 \leq J \leq L \leq \infty$, define the σ-field

$$
\mathcal{F}_{J}^{L}:=\sigma\left(X_{k}, J \leq k \leq L,(k \in \mathbb{N})\right)
$$

and for each $n \geq 1$ define

$$
\phi(n):=\sup _{j \in \mathbb{N}}\left(\mathcal{F}_{0}^{j}, \mathcal{F}_{j+n}^{\infty}\right)
$$

- The random sequence X is called ϕ-mixing if $\phi(n) \rightarrow 0$ as $n \rightarrow \infty$.
- In the context of our question, it can be shown that adapting the above notations in the obvious way, $\phi\left(\sigma\left(W_{s}, s \leq t\right), \sigma\left(W_{s}, s \geq t+u\right)\right)=1$.

