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Disclaimer

The following expresses the views of its author(s) only, and should not be
taken to represent views of institutions with which the authors are or have
been based. In particular, the information provided is personal opinion and
should not be relied upon for financial advice. If you require financial
advice or guidance please contact an appropriate professional.
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Notation (HLOC: high, low, close, open stock price)
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Volatility Estimation Problem in Black-Scholes I

• Black-Scholes setting: stock price dSt = µStdt + σStWt (GBM)

• Volatility estimation σ (equivalently, variance estimation σ2)

• Literature on this:{
assumes security price has no drift⇒ OVERESTIMATION

assumes no price jump at opening⇒ UNDERESTIMATION

• Garman and Klass (1980): variance estimator VGK assumes no drift

• Parkinson (1980): variance estimator VP uses only high-low data
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Volatility Estimation Problem in Black-Scholes II

• Rogers and Satchell (1991) and Rogers et al (1994): VRS assumes no
opening jumps

VRS =
1

n

n∑
i=1

(
log

Hi

Oi

(
log

Hi

Oi
− log

Ci

Oi

)
+ log

Li

Oi

(
log

Li

Oi
− log

Ci

Oi

))
.

(1)

• JUMP (Ci → Oi+1): the sample variance V0 of log(Oi+1/Ci )

V0 :=
1

n − 1

n∑
i=1

(
log

Oi+1

Ci
− 1

n

n∑
j=1

log
Oj+1

Cj

)2
. (2)

• Incorporate opening jumps in VRS by using V0 + VRS?
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Volatility Estimation Problem in Black-Scholes III

Yang and Zhang (2000)

• caution against easy fix (adding V0 to VRS), not min variance

• propose estimator assuming stock has drift and opening jumps:

VYZ = V0 + kVC + (1− k)VRS , (3)

V0 sample variance of log(Oi+1/Ci )
VC is the sample variance of log(Ci/Oi )
k is constant chosen to minimize estimator variance for fixed n
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Volatility Estimation Problem in Black-Scholes IV

In contrast, our approach is based in part on Koné (1996):

1. derive expectation of range of arithmetic Brownian motion

2. estimate range using method of moments and HLOC daily data

3. solve implicit equation for intra-day volatility and include opening
jumps

We propose the variance estimator:

VZ := V0 + Vi , (4)

where Vi is solution of an implicit equation.

Compare to VYZ = V0 + kVC + (1− k)VRS .
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Range of arithmetic Brownian motion

In a filtered probability space (Ω,F , {Ft}t ,P) consider:

• Arithmetic Brownian motion: dXt = µdt + σdWt , X0 = 0

• running max: Mt := sup
0≤s≤t

Xs

• running min: mt := inf
0≤s≤t

Xs

• Range: Rt := Mt −mt

Cristin Buescu Range-based vol estimation using daily HLOC prices 8 / 27



Joint density of aBM and max: (Xt ,Mt)

P(Xt ∈ da,Mt ∈ db) =
2(2b − a)√

2πt3σ3
exp

{
−(2b − a)2

2tσ2
+

µ

σ2
a− 1

2

µ2

σ2
t

}
da db.

• Derived directly.

• Can be obtained from equation (1.8.8) of Harrison (1985)

• For σ = 1 this was used in Example E5 of Karatzas and Shreve
(1998) in relationship to Clark’s formula to obtain explicitly the
hedging portfolio.
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Density and expectation of half-range: Mt − Xt

Density of half-range via Jacobian (2-dim transformation):

fMt−Xt (c) = 2
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Φ
(µt − c

σ
√
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)
exp
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c
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+
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}
. (5)

Expectation of half-range:
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Expectation of range of arithmetic Brownian motion

Rt = Mt −mt = (Mt − Xt) + (Xt −mt)

Symmetry between half-ranges gives:

E [Rt ] =
(
µt +

σ2

µ

)(
1− 2Φ

(
−
√

t
µ

σ

))
+ 2

σ
√

t√
2π

exp
(
− tµ2
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)
.

Equivalently:

E [Rt ] = h
( µt

σ
√

t
,
σ2

µ

)
=: ER(µ, σ, t), (6)

where the function h is defined by:

h(x , y) :=

{
(x2 + 1)(2Φ(x)− 1) +

2x√
2π

exp
(
− x2

2

)}
y . (7)
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Corollaries

• Derive also joint density of (Mt ,mt) (see also Borodin and Salminen
(1996))

• and the density of the range Rt of an arithmetic Brownian motion
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1 day = intra-day + after-hours
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1 = (1− f ) + f

Price St (GBM):
dSt

St
= µs dt + σ dWt , t ≥ 0. (8)

Log-price Xt = log St (aBM):

dXt = µdt + σdWt , µ = µs −
σ2

2

Assume after-hours= fraction f of 1 day.

Intra-day data (fraction 1− f of 1 day):

Oi = Si−1, Ci = Si−f , Hi = sup
t∈[i−1,i−f ]

St , Li = inf
t∈[i−1,i−f ]

St .
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Application of the method of moments

Use intra-day range data to derive the implicit equation in x = ̂σ(1− f ):

R1−f = M1−f −m1−f = log H1 − log L1 = log
H1

L1
⇒ k1 :=

1

n

n∑
i=1

log
Hi

Li
.

Recall E (R1−f ) = ER(µ, σ, 1− f ) = ER(µ(1− f ), σ
√

1− f , 1).

Compute E
[

log
Ci

Oi

]
= E

[
log

Si−f
Si−1

]
= µ (1− f )⇒ k2 :=

1

n

n∑
i=1

log
Ci

Oi
.

Implicit equation k1 = h
(k2

x
,

x2

k2

)
. Solution: Vi = x2. (9)
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Full one-day variance

Compute:

VAR
[

log
Ci

Oi

]
= VAR

[
log

Si−f
Si−1

]
= σ2 (1− f ),

VAR
[

log
Oi+1

Ci

]
= VAR

[
log

Si

Si−f

]
= σ2 f .

Thus, we can write heuristically:

σ2 = VAR
[

log
Ci

Oi

]
+VAR

[
log

Oi+1

Ci

]
= VAR(intra-day)+VAR(after hours)

leading to
VZ = Vi + V0 (annualised σ2a := 252VZ ).
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Monte Carlo simulation for known vol

Eg 1: Strikingly similar pattern for the two estimated vols when true
σa = 0.2 for varying number of data points (µs = 0.015, f = 0.25,
250 trading days, 50k time points)
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Compare the two vol estimators: σZ vs σYZ

Goal: investigate MVUE
Due to the implicit nature of the equation we achieve this by simulation.
Repeat previous simulation 5k times and look at:

• unbiased
• percentage of times σZ is closer to true σ than σYZ
• Mean Absolute Error (in L1-norm) comparison
• average σZ vs average σYZ (averaged over the number of scenarios)

• min variance
• efficiency
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Unbiased I

Percentage of scenarios where our estimator σZ is closer than σYZ to the
true value. For more than 37 data points in the estimation σZ is closer to
the true value more than half the time.
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Unbiased II

The Mean Absolute Error (MAE) for our estimator σZ (continuous line)
follows closely that of σYZ (dotted line) and both stabilize for n ≥ 55.
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Unbiased III

The difference of the Mean Absolute Errors of σZ and σYZ goes below 0
for n ≥ 37, suggesting that our σZ is better than σYZ in this range.
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Unbiased IV

The volatility σZ averaged over the number of scenarios (continuous line)
is closer to the true value σ = 0.2 than the averaged σYZ (dotted line)
when the number of data points is n ≥ 21.
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Min variance I

• Following Garman and Klass (1980) we define the efficiency of our
estimator with respect to VYZ as:

Eff :=
VAR(VYZ )

VAR(VZ )
. (10)

• Numerical approximation shows that the efficiency is higher than 1
with fewer data points, while overall it doesn’t drop by more than 1%.
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Min variance II

Efficiency vs number of data points:
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Impact of choice of f : none

• Yang and Zhang (2000): range for f is [0.18, 0.3] (typically 0.25).

• For this reason we have considered not only the case f = 0.25, but
also f = 0, f = 0.18 and f = 0.3, but the results were similar.

• Even in the driftless case (µ = 0) the values f = 0, f = 0.18, f = 0.25
and f = 0.3 resulted in findings that were qualitatively similar.

Conclude: satisfactory performance on simulated data.
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Application to algorithmic trading

Eg 2: IBM estimated volatility σa (continuous line) is similar to, but
below, the corresponding volatility σYZ (dotted line) for each trading day
between May 26 and June 18, 2010. Can be used in algo trading.
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Summary

• Derived expectation of range of Brownian motion
(and density, see also Borodin and Salminen (1996))

• Proposed a volatility estimator σZ based on daily range data, which
includes opening jumps and does not assume zero drift for stock price

• Advantages over estimator of Yang and Zhang (2000):
• no need to estimate the constant k that achieves min variance
• captures volatility using range data (fewer measurements than

normalized highs and lows)

• Disadvantages:
• implicit equation gives only numerical approximation of variance
• may lose up to 1% of efficiency (could have slightly larger variance)

• Works well and can be used in algorithmic trading.
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