Worst-Case Portfolio Optimization in a Market with Bubbles

Christoph Belak

Department of Mathematics
Kaiserslautern University of Technology
Germany

School of Mathematical Sciences
Dublin City University
Ireland

Joint work with Sören Christensen (CAU Kiel) and Olaf Menkens (Dublin City University)

6th AMaMeF Conference, Warsaw, Poland
June 11, 2013
Overview

1. Introduction and Model Setup

2. The HJB System and Verification

3. Numerical Results
Worst-Case Portfolio Optimization in a Market with Bubbles
Worst-Case Portfolio Optimization in a Market with Bubbles

We study

- an optimal investment problem, in which the investor aims to maximize expected utility from terminal wealth,
Introduction

Worst-Case Portfolio Optimization in a Market with Bubbles

We study

1. an optimal investment problem, in which the investor aims to maximize
 expected utility from terminal wealth,

2. while assuming that bubbles may be present in the market which may lead
 to crashes,
Worst-Case Portfolio Optimization in a Market with Bubbles

We study

1. an optimal investment problem, in which the investor aims to maximize expected utility from terminal wealth,
2. while assuming that bubbles may be present in the market which may lead to crashes,
3. and we assume that the investor takes a worst-case perspective towards the impact of these crashes.
Worst-Case Portfolio Optimization in a Market with Bubbles

We study

1. an optimal investment problem, in which the investor aims to maximize expected **utility from terminal wealth**,
2. while assuming that bubbles may be present in the market which may **lead to crashes**, and
3. we assume that the investor takes a **worst-case perspective** towards the impact of these crashes.

The Worst-Case Problem

\[
\sup_{\pi} \inf_{\theta} \mathbb{E} \left[U(X_T^{\pi,\theta}) \right].
\]
Literature related to **Bubbles**:

Loewenstein and Willard (2000), Cox and Hobson (2005), Jarrow, Protter and Shimbo (2007, 2010), Biagini, Föllmer and Nedelcu (2013), ...

⇒ Compare with Föllmer’s talk.

Literature related to the **Worst-Case Approach**:

Korn and Willmot (2002), Korn and Menkens (2005), Korn and Steffensen (2007), Seifried (2010), ...

⇒ Compare with Menkens’ talk.
We start with a **Black-Scholes market**:

\[
\begin{align*}
\frac{dB_t}{B_t} &= 0, \\
\frac{dS_t}{S_t} &= \alpha S_t dt + \sigma S_t dW_t.
\end{align*}
\]
We start with a **Black-Scholes market**:

\[dB_t = 0, \quad dS_t = \alpha S_t \, dt + \sigma S_t \, dW_t. \]

Let \(Z_t \) be an **observable** continuous-time Markov chain with **finite state space** \(\{0, 1, \ldots, d\} \).
The Market

We start with a Black-Scholes market:

\[dB_t = 0, \quad dS_t = \alpha S_t dt + \sigma S_t dW_t. \]

Let \(Z_t \) be an observable continuous-time Markov chain with finite state space \(\{0, 1, \ldots, d\} \).

- **State 0** corresponds to a market regime **without a bubble** – no crash may occur.
We start with a **Black-Scholes market:**

\[dB_t = 0, \quad dS_t = \alpha S_t dt + \sigma S_t dW_t. \]

Let \(Z_t \) be an **observable** continuous-time Markov chain with **finite state space** \(\{0, 1, \ldots, d\} \).

- **State 0** corresponds to a market regime **without a bubble** – no crash may occur.
- **State \(i \in \{1, \ldots, d\} \)** corresponds to a regime in which a **bubble is present**. The bubble may burst, **leading to a crash** of maximum relative size \(\kappa^i \), i.e.

\[S_\tau = (1 - \kappa)S_{\tau^-}, \quad 0 \leq \kappa \leq \kappa^i. \]
The Market

We start with a **Black-Scholes market**:

\[
 dB_t = 0, \quad dS_t = \alpha S_t \, dt + \sigma S_t \, dW_t.
\]

Let \(Z_t \) be an **observable** continuous-time Markov chain with **finite state space** \(\{0, 1, \ldots, d\} \).

- **State 0** corresponds to a market regime **without a bubble** – no crash may occur.
- **State \(i \in \{1, \ldots, d\} \)** corresponds to a regime in which a **bubble is present**. The bubble may burst, **leading to a crash** of maximum relative size \(\kappa^i \), i.e.

\[
 S_{\tau} = (1 - \kappa) S_{\tau^-}, \quad 0 \leq \kappa \leq \kappa^i.
\]

- After a crash, \(Z_t \) is assumed to **jump back to state 0**.
Bubbles and Crashes

\[Z_t \text{ in state } 0 \]

\[\rightarrow \text{ No crash possible} \]
Bubbles and Crashes

\[Z_t \text{ in state } 0 \]
\[\rightarrow \text{ No crash possible} \]

\[\downarrow \]

\[Z_t \text{ jumps to state } i \]
\[\rightarrow \text{ Investor receives warning} \]
\[\rightarrow \text{ Crash of maximum size } \kappa^i \text{ possible} \]
Bubbles and Crashes

Z_t in state 0

→ No crash possible

↓

Z_t jumps to state i

→ Investor receives warning
→ Crash of maximum size κ_i possible

↘

Crash (τ, κ) occurs

→ Stock price crashes by a fraction of κ
→ Z_t jumps back to state 0
Bubbles and Crashes

Z_t in state 0
- No crash possible

Z_t jumps to state i
- Investor receives warning
- Crash of maximum size \(\kappa^i \) possible

Crash \((\tau, \kappa)\) occurs
- Stock price crashes by a fraction of \(\kappa \)
- \(Z_t \) jumps back to state 0

Z_t jumps to state j
- Investor receives new information
- Crash of maximum size \(\kappa^j \) possible
The Investor

In each state $i = 0, \ldots, d$, the investor can choose which fraction π^i_t of her total wealth X_t to invest in the risky asset.
In each state \(i = 0, \ldots, d \), the investor can choose which fraction \(\pi^i_t \) of her total wealth \(X_t \) to invest in the risky asset.

Given a crash scenario \(\theta = (\tau_k, \kappa_k)_{k \in \mathbb{N}} \), the total wealth then evolves as
The Investor

In each state $i = 0, \ldots, d$, the investor can choose which fraction π^i_t of her total wealth X_t to invest in the risky asset.

Given a crash scenario $\theta = (\tau_k, \kappa_k)_{k \in \mathbb{N}}$, the total wealth then evolves as

$$X_0 = x,$$
The Investor

In each state $i = 0, \ldots, d$, the investor can choose which fraction π^i_t of her total wealth X_t to invest in the risky asset.

Given a crash scenario $\theta = (\tau_k, \kappa_k)_{k \in \mathbb{N}}$, the total wealth then evolves as

$$X_0 = x,$$

$$dX_t = \alpha \pi^i_t X_t dt + \sigma \pi^i_t X_t dW_t, \quad \text{on } \{Z_t = i\},$$
The Investor

In each state $i = 0, \ldots, d$, the investor can choose which fraction π^i_t of her total wealth X_t to invest in the risky asset.

Given a crash scenario $\theta = (\tau_k, \kappa_k)_{k \in \mathbb{N}}$, the total wealth then evolves as

$$X_0 = x,$$
$$dX_t = \alpha \pi^i_t X_t dt + \sigma \pi^i_t X_t dW_t, \quad \text{on} \ \{Z_t = i\},$$
$$X_{\tau_k} = (1 - \pi^i_{\tau_k} \kappa_k) X_{\tau_k-}, \quad \text{on} \ \{Z_{\tau_k-} = i\}.$$
The Investor

In each state $i = 0, \ldots, d$, the investor can choose which fraction π^i_t of her total wealth X_t to invest in the risky asset.

Given a crash scenario $\theta = (\tau_k, \kappa_k)_{k \in \mathbb{N}}$, the total wealth then evolves as

$$X_0 = x,$$
$$dX_t = \alpha \pi^i_t X_t dt + \sigma \pi^i_t X_t dW_t,$$
$$X_{\tau_k} = (1 - \pi^i_{\tau_k} \kappa_k) X_{\tau_k-},$$

on $\{Z_t = i\}$,

on $\{Z_{\tau_k-} = i\}$.

We say that a strategy $\pi = (\pi^0, \ldots, \pi^d)$ is admissible, if it leads to nonnegative wealth for all possible crash scenarios $\theta = (\tau_k, \kappa_k)_{k \in \mathbb{N}}$. This holds if

$$\pi^i \leq \frac{1}{\kappa^i},$$

for all i.

Christoph Belak, Sören Christensen, Olaf Menkens
Worst-Case Portfolio Optimization in a Market with Bubbles
The Worst-Case Problem

The aim of the investor is to find the strategy \(\pi^* = (\pi_0^*, \ldots, \pi_d^*) \) which performs best if the worst-possible crash scenario \(\theta = (\tau_k, \kappa_k)_{k \in \mathbb{N}} \) occurs.

\[
V(t, x, i) = \sup_{\pi} \inf_{\theta} \mathbb{E}_{(t,x,i)} \left[U(X_T^{\pi, \theta}) \right].
\]
The Worst-Case Problem

The aim of the investor is to find the strategy $\pi^* = (\pi_0^*, \ldots, \pi_d^*)$ which performs best if the worst-possible crash scenario $\theta = (\tau_k, \kappa_k)_{k \in \mathbb{N}}$ occurs.

The Worst-Case Problem

$$V(t, x, i) = \sup_{\pi} \inf_{\theta} \mathbb{E}_{(t, x, i)} \left[U(X_{T}^{\pi, \theta}) \right].$$

Here, U is assumed to be the power utility function:

$$U(x) = \frac{1}{\gamma} x^\gamma, \quad \gamma < 1, \gamma \neq 0.$$
Overview

1. Introduction and Model Setup

2. The HJB System and Verification

3. Numerical Results
The value function $V(\cdot, \cdot, 0)$ and the corresponding optimal strategy in state 0 can be determined by solving the following \textbf{HJB equation}:

$$0 = \sup_{\pi} \left[\mathcal{L}^{\pi} V(t, x, 0) + \sum_{j=0}^{d} q_{0,j} V(t, x, j) \right].$$
The HJB Equation for $i = 0$

Denote by $(q_{i,j})_{0 \leq i,j \leq d}$ the generator matrix of Z_t and let

$$L^\pi V = V_t + \alpha \pi x V_x + \frac{1}{2} \sigma^2 \pi^2 x^2 V_{xx}.$$
Verification for $i = 0$

Using the HJB equation

$$0 = \sup_{\pi} \left[\mathcal{L}^\pi V(t, x, 0) + \sum_{j=0}^{d} q_{0,j} V(t, x, j) \right],$$

it is easy to verify that the optimal strategy for state 0 is simply the Merton fraction

$$\pi_{t}^{0,*} = \frac{\alpha}{(1 - \gamma) \sigma^2}.$$
Verification for $i = 0$

Using the HJB equation

$$0 = \sup_{\pi} \left[\mathcal{L}^{\pi} V(t, x, 0) + \sum_{j=0}^{d} q_{0,j} V(t, x, j) \right],$$

it is easy to verify that the optimal strategy for state 0 is simply the Merton fraction

$$\pi_{t}^{0,\ast} = \frac{\alpha}{(1 - \gamma)\sigma^{2}}.$$

The value function is given by

$$V(t, x, 0) = \frac{1}{\gamma} x^{\gamma} f_{0}^{0}(t),$$

where $f_{0}^{0}(t)$ solves

$$f_{t}^{0}(t) = -\frac{\gamma\alpha^{2}}{2(1 - \gamma)\sigma^{2}} f_{0}^{0}(t) - \sum_{j=0}^{d} q_{0,j} f^{j}(t), \quad f_{0}^{0}(T) = 1.$$
The HJB Equation for $i > 0$

Define the following sets:

$$A_1 := \left\{ \pi : V(t,x,i) \leq V(t,(1 - \kappa^i \pi_t)x,0) \right\},$$

The value function $V(\cdot, \cdot, i)$ and the corresponding optimal strategy in state i can be determined by solving the **HJB system**

$$0 \leq \sup_{\pi \in A_1} \left[\mathcal{L}^\pi V(t,x,i) + \sum_{j=1}^{d} q_{i,j} V(t,x,j) \right],$$
The HJB Equation for $i > 0$

Define the following sets:

$$A_1 := \left\{ \pi : V(t, x, i) \leq V(t, (1 - \kappa^i \pi_t)x, 0) \right\},$$

$$A_2 := \left\{ \pi : \mathcal{L}^\pi V(t, x, i) + \sum_{j=1}^{d} q_{i,j} V(t, x, j) \geq 0 \right\}.$$

The value function $V(\cdot, \cdot, i)$ and the corresponding optimal strategy in state i can be determined by solving the HJB system

$$0 \leq \sup_{\pi \in A_1} \left[\mathcal{L}^\pi V(t, x, i) + \sum_{j=1}^{d} q_{i,j} V(t, x, j) \right],$$

$$0 \leq \sup_{\pi \in A_2} \left[V(t, (1 - \kappa^i \pi_t)x, 0) - V(t, x, i) \right].$$
The HJB Equation for $i > 0$

Define the following sets:

$$A_1 := \left\{ \pi : V(t, x, i) \leq V(t, (1 - \kappa^i \pi_t) x, 0) \right\},$$

$$A_2 := \left\{ \pi : \mathcal{L}^\pi V(t, x, i) + \sum_{j=1}^{d} q_{i,j} V(t, x, j) \geq 0 \right\}.$$

The value function $V(\cdot, \cdot, i)$ and the corresponding optimal strategy in state i can be determined by solving the HJB system

$$0 \leq \sup_{\pi \in A_1} \left[\mathcal{L}^\pi V(t, x, i) + \sum_{j=1}^{d} q_{i,j} V(t, x, j) \right],$$

$$0 \leq \sup_{\pi \in A_2} \left[V(t, (1 - \kappa^i \pi_t) x, 0) - V(t, x, i) \right],$$

$$0 = \sup_{\pi \in A_1} \left[\mathcal{L}^\pi V(t, x, i) + \sum_{j=1}^{d} q_{i,j} V(t, x, j) \right]$$

$$\cdot \sup_{\pi \in A_2} \left[V(t, (1 - \kappa^i \pi_t) x, 0) - V(t, x, i) \right].$$
Suppose both equations are equal to 0 at the same time. As before, we make the ansatz

\[V(t, x, i) = \frac{1}{\gamma} x^{\gamma} f^i(t). \]

With this, the equations reduce to

\[f^i(t) = (1 - \pi_t^{i,*} \kappa^i)^{\gamma} f^0(t), \]

\[\frac{\partial}{\partial t} f^i(t) = -\gamma f^i(t) \left(\alpha \pi_t^{i,*} - \frac{1}{2} (1 - \gamma) \sigma^2 (\pi_t^{i,*})^2 \right) - \sum_{j=1}^{d} q_{i,j} f^j(t). \]
Verification for $i > 0$

Suppose both equations are equal to 0 at the same time. As before, we make the ansatz

$$V(t, x, i) = \frac{1}{\gamma} x^\gamma f^i(t).$$

With this, the equations reduce to

$$f^i(t) = (1 - \pi_t^{i, *} \kappa^i)^\gamma f^0(t),$$

$$\frac{\partial}{\partial t} f^i(t) = -\gamma f^i(t) \left(\alpha \pi_t^{i, *} - \frac{1}{2} (1 - \gamma) \sigma^2 (\pi_t^{i, *})^2 \right) - \sum_{j=1}^{d} q_{i,j} f^j(t).$$

Taking the logarithm in the first equation and then the derivative with respect to t, this yields

$$\frac{\partial}{\partial t} \pi_t^{i, *} = \frac{1}{\gamma \kappa^i} (1 - \pi_t^{i, *} \kappa^i) \left[\frac{1}{f^0(t)} \frac{\partial}{\partial t} f^0(t) - \frac{1}{f^i(t)} \frac{\partial}{\partial t} f^i(t) \right].$$
Plugging the ODEs for f^0 and f^i into the last equation, we arrive at

$$
\frac{\partial}{\partial t} \pi_t^{i,*} = -\frac{1}{\kappa^i} (1 - \pi_t^{i,*} \kappa^i) \left[\frac{1}{2} (1 - \gamma) \sigma^2 (\pi_t^{i,*} - \pi_t^{0,*})^2 \right. \\
- \frac{1}{\gamma} \sum_{j=1}^{d} q_{0,j} \left((1 - \pi_t^{j,*} \kappa^j)^\gamma - 1 \right) \\
+ \frac{1}{\gamma} \sum_{j=1}^{d} q_{i,j} \left(\frac{(1 - \pi_t^{j,*} \kappa^j)^\gamma}{(1 - \pi_t^{i,*} \kappa^i)^\gamma} \right],
$$

with terminal condition $\pi_T^{i,*} = 0$.
Overview

1. Introduction and Model Setup

2. The HJB System and Verification

3. Numerical Results
Numerical Example
Numerical Example

The graph shows the behavior of risky asset fraction over time in a market with different crash sizes. The x-axis represents time, and the y-axis represents the risky fraction. Different lines correspond to different crash sizes, with the Merton fraction being represented by a blue line. The graph illustrates how the risky fraction decreases with time under varying crash scenarios.
We propose a regime switching model for an optimal investment problem in a financial market with bubbles.

We derive a system of HJB equations which lead to a coupled system of ordinary differential equations for the optimal strategies.

Depending on the choice of parameters, the optimal strategies may or may not make the investor indifferent towards the impact of the crashes.

It is straightforward to extend the results to state-dependent market coefficients.
Thank you for your attention!!!