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Optimal position closure

Bertsimas&Lo framework:

I T <∞: time horizon

I x ∈ R: initial position

I Xt : position size at time t ∈ [0,T ]

Constraint: XT = 0

I Ẋt : trading rate (Ẋ ≥ 0: buying, Ẋ ≤ 0: selling)

I St : uninfluenced price (a martingale)

I η > 0: price impact parameter

I S̃t = St + ηẊt : realized price
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I St : uninfluenced price (a martingale)

I (ηt)t∈[0,T ]: price impact process
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Optimal position closure

I Expected costs:

E

[∫ T

0

S̃tẊtdt

]
= −S0x + E

[∫ T

0

ηtẊ
2
t dt

]

I Additive risk functional:

E

[∫ T

0

γtX
2
t dt

]
, with e.g. γt = const or γt = λ(St)

I Optimal liquidation problem:

E

[∫ T

0

(
ηtẊ

2
t + γtX

2
t

)
dt

]
−→ min

X0=x,XT=0
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A control problem with terminal state constraint

I Brownian set-up: (Ω,F ,P, (Ft), (Wt))

I (ηt): positive, progressively measurable

I (γt): nonnegative, progressively measurable

I p > 1 (q its Hölder conjugate)

I Admissible controls: For t ∈ [0,T ] and x ∈ R we write X ∈ A0(t, x)
iff

I X is progressively measurable
I X has absolutely continuous paths: Xs = x +

∫ s

t
Ẋrdr

I terminal state constraint: XT = 0

I Control problem:

v(t, x) = inf
X∈A0(t,x)

E

[∫ T

t

(
ηs |Ẋs |p + γs |Xs |p

)
ds
∣∣Ft

]
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Our aim & related literature

I We aim at providing a purely probabilistic solution of the control
problem

I Characterize the optimal control by means of a BSDE with singular
terminal condition

I Schied 2013: Solves a variant of this problem in a Markovian
framework using superprocesses
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A maximum principle

v(t, x) = inf
X∈A0(t,x)

E

[∫ T

t

(
ηs |Ẋs |p + γs |Xs |p

)
ds
∣∣Ft

]
(1)

Proposition (Maximum Principle)
Let X ∈ A0(t, x) such that

Ms = ηs |Ẋs |p−1 +

∫ s

t

γr |Xr |p−1dr

is a martingale. Then X is optimal in (1).
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t
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ds
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]
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Proposition (Maximum Principle)
Let X ∈ A0(t, x), i.e.

dXs = Ẋsds, Xt = x & XT = 0
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Ms = ηs |Ẋs |p−1 +
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t
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Derivation of the BSDE

v(t, x) = inf
X∈A0(t,x)

E

[∫ T

t

(
ηs |Ẋs |p + γs |Xs |p

)
ds
∣∣Ft

]

I The value function is explicit in the x variable:

v(t, x) = Yt |x |p

for some coefficient process Y .
I The maximum principle implies:

dYt =

(
(p − 1)

Y q
t

ηq−1t

− γt
)

dt + ZtdWt

I Terminal constraint leads to singular terminal condition: YT =∞
I Optimal control: Ẋt = −

(
Yt

ηt

)q−1
Xt ,

i.e.

Xt = xe−
∫ t
0 ( Ys

ηs
)q−1

ds
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BSDEs with singular terminal condition

So far only considered by Popier 2006, 2007

dYt =

(
(p − 1)

Y q
t

ηq−1t

− γt
)

dt + ZtdWt (3)

Definition
(Y ,Z ) is a solution of the BSDE (3) with singular terminal condition
YT =∞ if it satisfies

(i) for all 0 ≤ s ≤ t < T :

Ys = Yt −
∫ t

s

(
(p − 1)

Y q
r

ηq−1
r
− γr

)
dr −

∫ t

s
ZrdWr ;

(ii) lim inft↗T Yt =∞, a.s.

(iii) for all 0 ≤ t < T : E
[
sup0≤s≤t |Ys |2 +

∫ t

0
|Zr |2dr

]
<∞;
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Integrability Assumptions and Approximation

I For the remainder of the talk we assume that η satisfies

E

∫ T

0

1

ηq−1t

dt <∞, E

∫ T

0

η2t dt <∞

and that γ satisfies

E

∫ T

0

γ2t dt <∞

I Approximation

dY L
t =

(
(p − 1)

(Y L
t )q

ηq−1t

− (γt ∧ L)

)
dt + ZL

t dWt

Y L
T = L
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Existence and Minimality

Proposition
There exists a solution (Y L,ZL). Y L is bounded from below

Y L
t ≥

1(
1

Lq−1 + E
[∫ T

t
1

ηq−1
s

ds
∣∣Ft

])p−1 .

Theorem
There exists a process (Y ,Z ) such that for every t < T and as L↗∞

I Y L
t ↗ Yt a.s.

I ZL → Z in L2(Ω× [0, t]).

The pair (Y ,Z ) is the minimal solution to (3) with singular terminal
condition YT =∞.
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Optimal Controls - Penalization

Consider the unconstrained minimization problem

vL(0, x) = inf
X∈A(0,x)

E

[∫ T

0

(
ηs |Ẋs |p + (γs ∧ L)|Xs |p

)
ds + L|XT |p

]
(4)

Proposition
The control

X L
t = xe

−
∫ t
0

(
YL
s

ηs

)q−1

ds

is optimal in (4) and vL(0, x) = Y L
0 |x |p.
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Optimal Controls

Theorem
The control

Xt = xe−
∫ t
0 ( Ys

ηs
)q−1

ds

belongs to A0(0, x) and is optimal in (1). Moreover, v(t, x) = Yt |x |p.

Proof
Define Mt = pηt |Ẋt |p−1 +

∫ t

0
pγs |Xs |p−1ds. Then dMt = X p−1

t ZtdWt .
Hence M is a nonnegative, local martingale on [0,T ). In particular M
converges almost surely for t ↗ T . This implies

0 ≤ Xt =

(
Mt − p

∫ t

0
γsX p−1

s ds

pYt

)q−1

≤
(

Mt

pYt

)q−1

→ 0

a.s. for t ↗ T
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Processes with uncorrelated multiplicative increments

Definition
η has uncorrelated multiplicative increments (umi) if

E

[
ηt
ηs

∣∣Fs

]
= E

[
ηt
ηs

]
for all s ≤ t < T .

Examples

I η is deterministic

I η is a martingale

I dηt = µ(t)ηtdt + σ(t, ηt)dWt

I ηt = eZt where Z is a Lévy process
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umi processes ↔ deterministic controls

Assume γ = 0.

Proposition
Suppose that η has umi, then

Yt =
1(∫ T

t
1

E [ηs |Ft ]q−1 ds
)p−1

is the minimal solution to (3) with singular terminal condition. The
deterministic control

Xt = x
1∫ T

0
1

E [ηs ]q−1 ds

∫ T

t

1

E [ηs ]q−1
ds

is optimal in (1).

Vice versa, assume that the optimal control Xt = xe−
∫ t
0 ( Ys

ηs
)q−1

ds is
deterministic. Then η has umi.
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Thank you!
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