Optimal dual martingales and new algorithms for Bermudan products

Jianing Zhang (TU Munich) jww
J. Schoenmakers (Weierstrass Institute)
J. Huang (Galaxy Asset Management)

Advances in Mathematics of Finance
6th General AMaMeF and Banach Center Conference Warsaw • June 10th 2013

Outline

Part I Rehash of optimal stopping

- Bermudan options
- Snell envelope
- Dual methods

Part II Surely optimal martingales

- Examples
- Characterization and stability
- Variance minimization criterion

Part III Designing new dual algorithms

- Backward recursion
- Suitable martingale increments
- Numerical experiment

Part I

Rehash of optimal stopping

Discrete time framework

- discrete time (tenor) structure $\mathbb{T}=\left\{t_{0}<t_{1}<\ldots<t_{T}\right\}$
- $t_{i}:=i$ in this talk

Discrete time framework

- discrete time (tenor) structure $\mathbb{T}=\left\{t_{0}<t_{1}<\ldots<t_{T}\right\}$
- $t_{i}:=i$ in this talk
- filtered prob. space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{i}\right)_{i=0, \ldots, T}, \mathbb{P}\right)$ with \mathbb{P} pricing measure
- asset prices $\left(S_{i}\right)_{i=0, \ldots, T}$ with values in \mathbb{R}_{+}^{D}
- cashflow $\left(Z_{i}\right)_{i=0, \ldots, T} \in \sigma(S)$ such that $\max _{i=0, \ldots, T}\left|Z_{i}\right| \in L^{1}$

Discrete time framework

- discrete time (tenor) structure $\mathbb{T}=\left\{t_{0}<t_{1}<\ldots<t_{T}\right\}$
- $t_{i}:=i$ in this talk
- filtered prob. space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{i}\right)_{i=0, \ldots, T}, \mathbb{P}\right)$ with \mathbb{P} pricing measure
- asset prices $\left(S_{i}\right)_{i=0, \ldots, T}$ with values in \mathbb{R}_{+}^{D}
- cashflow $\left(Z_{i}\right)_{i=0, \ldots, T} \in \sigma(S)$ such that $\max _{i=0, \ldots, T}\left|Z_{i}\right| \in L^{1}$

Bermudan option

Buy/sell the right to exercise once and receive cashflow Z_{j} at time $j \in\{0, \ldots, T\}$ where the exercise time j can be freely chosen.

Discrete time framework

- discrete time (tenor) structure $\mathbb{T}=\left\{t_{0}<t_{1}<\ldots<t_{T}\right\}$
- $t_{i}:=i$ in this talk
- filtered prob. space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{i}\right)_{i=0, \ldots, T}, \mathbb{P}\right)$ with \mathbb{P} pricing measure
- asset prices $\left(S_{i}\right)_{i=0, \ldots, T}$ with values in \mathbb{R}_{+}^{D}
- cashflow $\left(Z_{i}\right)_{i=0, \ldots, T} \in \sigma(S)$ such that $\max _{i=0, \ldots, T}\left|Z_{i}\right| \in L^{1}$

Bermudan option

Buy/sell the right to exercise once and receive cashflow Z_{j} at time $j \in\{0, \ldots, T\}$ where the exercise time j can be freely chosen.

Optimal stopping problem

Find spot price by solving

$$
Y_{0}^{*}:=\sup _{\tau \in\{0, \ldots, T\}} \mathbb{E} Z_{\tau}, \quad \tau \text { stopping time }
$$

Snell envelope approach

- Dynamize the problem via
- $Y_{i}^{*}:=\sup _{\tau \in\{i, \ldots, T\}} \mathbb{E}_{i} Z_{\tau}:=\operatorname{esssup}_{\tau \in\{i, \ldots, T\}} \mathbb{E}\left[Z_{\tau} \mid \mathcal{F}_{i}\right]$

Snell envelope approach

- Dynamize the problem via
- $Y_{i}^{*}:=\sup _{\tau \in\{i, \ldots, T\}} \mathbb{E}_{i} Z_{\tau}:=\operatorname{esssup}_{\tau \in\{i, \ldots, T\}} \mathbb{E}\left[Z_{\tau} \mid \mathcal{F}_{i}\right]$
- price of Bermudan option is time zero value Y_{0}^{*}

Snell envelope approach

- Dynamize the problem via
- $Y_{i}^{*}:=\sup _{\tau \in\{i, \ldots, T\}} \mathbb{E}_{i} Z_{\tau}:=\operatorname{esssup}_{\tau \in\{i, \ldots, T\}} \mathbb{E}\left[Z_{\tau} \mid \mathcal{F}_{i}\right]$
- price of Bermudan option is time zero value Y_{0}^{*}

Properties

- Bellman principle $\rightsquigarrow Y_{i}^{*}=\max \left\{Z_{i}, \mathbb{E}_{i} Y_{i+1}^{*}\right\}$
- Y^{*} smallest supermartingale dominating Z
- $\tau_{i}^{*}=\inf \left\{i \leq j \leq T: Z_{j} \geq \mathbb{E}_{j} Y_{j+1}^{*}\right\}$ optimal exercise times

Snell envelope approach

- Dynamize the problem via
- $Y_{i}^{*}:=\sup _{\tau \in\{i, \ldots, T\}} \mathbb{E}_{i} Z_{\tau}:=\operatorname{esssup}_{\tau \in\{i, \ldots, T\}} \mathbb{E}\left[Z_{\tau} \mid \mathcal{F}_{i}\right]$
- price of Bermudan option is time zero value Y_{0}^{*}

Properties

- Bellman principle $\rightsquigarrow Y_{i}^{*}=\max \left\{Z_{i}, \mathbb{E}_{i} Y_{i+1}^{*}\right\}$
- Y^{*} smallest supermartingale dominating Z
- $\tau_{i}^{*}=\inf \left\{i \leq j \leq T: Z_{j} \geq \mathbb{E}_{j} Y_{j+1}^{*}\right\}$ optimal exercise times

Consequences

- $\tau \in\{0, \ldots, T\}$ any stopping time $\Longrightarrow Y_{0}^{\text {low }}(\tau):=\mathbb{E} Z_{\tau}$
- $Y_{0}^{\text {low }}(\tau) \leq Y_{0}^{*}$ and $Y_{i}^{\text {low }}\left(\tau_{0}^{*}\right)=Y_{0}^{*}$

Rogers (2002), Haugh \& Kogan (2002)
Let \mathcal{M} be the set of all martingales M satisfying $M_{0}=0$.

Rogers (2002), Haugh \& Kogan (2002)

Let \mathcal{M} be the set of all martingales M satisfying $M_{0}=0$. Then

$$
Y_{i}^{*}=\inf _{M \in \mathcal{M}} \mathbb{E}_{i} \max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)=\mathbb{E}_{i} \max _{i \leq j \leq T}\left(Z_{j}-M_{j}^{*}+M_{i}^{*}\right)
$$

Rogers (2002), Haugh \& Kogan (2002)

Let \mathcal{M} be the set of all martingales M satisfying $M_{0}=0$. Then

$$
\begin{aligned}
Y_{i}^{*} & =\inf _{M \in \mathcal{M}} \mathbb{E}_{i} \max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)=\mathbb{E}_{i} \max _{i \leq j \leq T}\left(Z_{j}-M_{j}^{*}+M_{i}^{*}\right) \\
& =\max _{i \leq j \leq T}\left(Z_{j}-M_{j}^{*}+M_{i}^{*}\right)
\end{aligned}
$$

Rogers (2002), Haugh \& Kogan (2002)

Let \mathcal{M} be the set of all martingales M satisfying $M_{0}=0$. Then

$$
\begin{aligned}
Y_{i}^{*} & =\inf _{M \in \mathcal{M}} \mathbb{E}_{i} \max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)=\mathbb{E}_{i} \max _{i \leq j \leq T}\left(Z_{j}-M_{j}^{*}+M_{i}^{*}\right) \\
& =\max _{i \leq j \leq T}\left(Z_{j}-M_{j}^{*}+M_{i}^{*}\right)
\end{aligned}
$$

where the infimum is attained for the Doob martingale \mathbf{M}^{*} of the Snell envelope $Y^{*}=Y_{0}^{*}+M^{*}-A^{*}$ where $A_{i}^{*} \in \mathcal{F}_{i-1}, A_{0}^{*}=0$ and increasing.

Rogers (2002), Haugh \& Kogan (2002)

Let \mathcal{M} be the set of all martingales M satisfying $M_{0}=0$. Then

$$
\begin{aligned}
Y_{i}^{*} & =\inf _{M \in \mathcal{M}} \mathbb{E}_{i} \max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)=\mathbb{E}_{i} \max _{i \leq j \leq T}\left(Z_{j}-M_{j}^{*}+M_{i}^{*}\right) \\
& =\max _{i \leq j \leq T}\left(Z_{j}-M_{j}^{*}+M_{i}^{*}\right)
\end{aligned}
$$

where the infimum is attained for the Doob martingale \mathbf{M}^{*} of the Snell envelope $Y^{*}=Y_{0}^{*}+M^{*}-A^{*}$ where $A_{i}^{*} \in \mathcal{F}_{i-1}, A_{0}^{*}=0$ and increasing.

Consequence

- M any martingale $\rightsquigarrow Y_{0}^{*} \leq Y_{0}^{u p}(M):=\mathbb{E} \max _{0 \leq j \leq T}\left(Z_{j}-M_{j}\right)$
- $Y_{0}^{*}=Y_{0}^{u p}\left(M^{*}\right)$

Rogers (2002), Haugh \& Kogan (2002)

Let \mathcal{M} be the set of all martingales M satisfying $M_{0}=0$. Then

$$
\begin{aligned}
Y_{i}^{*} & =\inf _{M \in \mathcal{M}} \mathbb{E}_{i} \max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)=\mathbb{E}_{i} \max _{i \leq j \leq T}\left(Z_{j}-M_{j}^{*}+M_{i}^{*}\right) \\
& =\max _{i \leq j \leq T}\left(Z_{j}-M_{j}^{*}+M_{i}^{*}\right)
\end{aligned}
$$

where the infimum is attained for the Doob martingale \mathbf{M}^{*} of the Snell envelope $Y^{*}=Y_{0}^{*}+M^{*}-A^{*}$ where $A_{i}^{*} \in \mathcal{F}_{i-1}, A_{0}^{*}=0$ and increasing.

Consequence

- M any martingale $\rightsquigarrow Y_{0}^{*} \leq Y_{0}^{u p}(M):=\mathbb{E} \max _{0 \leq j \leq T}\left(Z_{j}-M_{j}\right)$
- $Y_{0}^{*}=Y_{0}^{u p}\left(M^{*}\right)$

Question: Is the Doob martingale the only martingale which attains the infimum?

Part II

Surely optimal martingales

Kolodko \& Schoenmakers (2006)

Let M be a martingales such that $M_{0}=0$, and $Z_{j}-Y_{0}^{*} \leq M_{j}$, $1 \leq j \leq T$. Then we have

$$
Y_{0}^{*}=\max _{0 \leq j \leq T}\left(Z_{j}-M_{j}\right) \quad \text { a.s. }
$$

Kolodko \& Schoenmakers (2006)

Let M be a martingales such that $M_{0}=0$, and $Z_{j}-Y_{0}^{*} \leq M_{j}$, $1 \leq j \leq T$. Then we have

$$
Y_{0}^{*}=\max _{0 \leq j \leq T}\left(Z_{j}-M_{j}\right) \quad \text { a.s. }
$$

Example

By taking $M=M^{*}$ being the Doob martingale of Y^{*}, i.e.

$$
\begin{gathered}
Y_{j}^{*}=Y_{0}^{*}+M_{j}^{*}-A_{j}^{*} \Longrightarrow \\
Z_{j}-Y_{0}^{*}-M_{j}^{*}=Z_{j}-Y_{j}^{*}-A_{j}^{*} \leq 0
\end{gathered}
$$

Example (cont'd)

However, this is not the only one.

Example (cont'd)

However, this is not the only one. Let $Z>0$ a.s. and consider multiplicative Doob decomposition

$$
Y_{j}^{*}=Y_{0}^{*} N_{j}^{*} B_{j}^{*}
$$

- N^{*} martingale with $N_{0}^{*}=1$
- B^{*} predictable decreasing, with $B_{0}^{*}=1$

Example (cont'd)

However, this is not the only one. Let $Z>0$ a.s. and consider multiplicative Doob decomposition

$$
Y_{j}^{*}=Y_{0}^{*} N_{j}^{*} B_{j}^{*}
$$

- N^{*} martingale with $N_{0}^{*}=1$
- B^{*} predictable decreasing, with $B_{0}^{*}=1$

$$
\text { Put } \mathbf{M}_{\mathbf{j}}^{\circ}=\left(\mathbf{N}_{\mathbf{j}}^{*}-\mathbf{1}\right) \mathbf{Y}_{0}^{*} \text {, then we have }
$$

Example (cont'd)

However, this is not the only one. Let $Z>0$ a.s. and consider multiplicative Doob decomposition

$$
Y_{j}^{*}=Y_{0}^{*} N_{j}^{*} B_{j}^{*}
$$

- N^{*} martingale with $N_{0}^{*}=1$
- B^{*} predictable decreasing, with $B_{0}^{*}=1$

$$
\begin{aligned}
\text { Put } \mathbf{M}_{\mathbf{j}}^{\circ} & =\left(\mathbf{N}_{\mathbf{j}}^{*}-\mathbf{1}\right) \mathbf{Y}_{\mathbf{0}}^{*} \text {, then we have } \\
\bullet M_{j}^{\circ} & =Y_{0}^{*}\left(\frac{Y_{j}^{*}}{Y_{0}^{*} B_{j}^{*}}-1\right) \geq Y_{0}^{*}\left(\frac{Y_{j}^{*}}{Y_{0}^{*}}-1\right)=Y_{j}^{*}-Y_{0}^{*} \geq Z_{j}-Y_{0}^{*}
\end{aligned}
$$

Example (cont'd)

However, this is not the only one. Let $Z>0$ a.s. and consider multiplicative Doob decomposition

$$
Y_{j}^{*}=Y_{0}^{*} N_{j}^{*} B_{j}^{*}
$$

- N^{*} martingale with $N_{0}^{*}=1$
- B^{*} predictable decreasing, with $B_{0}^{*}=1$

$$
\text { Put } \mathbf{M}_{\mathbf{j}}^{\circ}=\left(\mathbf{N}_{\mathbf{j}}^{*}-\mathbf{1}\right) \mathbf{Y}_{0}^{*} \text {, then we have }
$$

- $M_{j}^{\circ}=Y_{0}^{*}\left(\frac{Y_{j}^{*}}{Y_{0}^{*} B_{j}^{*}}-1\right) \geq Y_{0}^{*}\left(\frac{Y_{j}^{*}}{Y_{0}^{*}}-1\right)=Y_{j}^{*}-Y_{0}^{*} \geq Z_{j}-Y_{0}^{*}$
- by previous Lemma

$$
\mathbf{Y}_{\mathbf{0}}^{*}=\max _{\mathbf{0} \leq \mathbf{j} \leq \mathbf{T}}\left(\mathbf{Z}_{\mathbf{j}}-\mathbf{M}_{\mathbf{j}}^{\circ}\right) \quad \text { a.s. }
$$

Definition
A martingale M starting at $M_{0}=0$ is called surely optimal for the Snell envelop Y^{*} at $i \in\{0, \ldots, T\}$ if and only if

Definition

A martingale M starting at $M_{0}=0$ is called surely optimal for the Snell envelop Y^{*} at $i \in\{0, \ldots, T\}$ if and only if

$$
Y_{i}^{*}=\max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right) \quad \text { a.s. }
$$

Definition

A martingale M starting at $M_{0}=0$ is called surely optimal for the Snell envelop Y^{*} at $i \in\{0, \ldots, T\}$ if and only if

$$
Y_{i}^{*}=\max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right) \quad \text { a.s. }
$$

Theorem

M with $M_{0}=0$ is surely optimal at $i=0, \ldots, T$ if and only if:

Definition

A martingale M starting at $M_{0}=0$ is called surely optimal for the Snell envelop Y^{*} at $i \in\{0, \ldots, T\}$ if and only if

$$
Y_{i}^{*}=\max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right) \quad \text { a.s. }
$$

Theorem

M with $M_{0}=0$ is surely optimal at $i=0, \ldots, T$ if and only if: there exists sequence of random variables $\left(\xi_{i}\right)_{0 \leq i \leq T}$ satisfying

Definition

A martingale M starting at $M_{0}=0$ is called surely optimal for the Snell envelop Y^{*} at $i \in\{0, \ldots, T\}$ if and only if

$$
Y_{i}^{*}=\max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right) \quad \text { a.s. }
$$

Theorem

M with $M_{0}=0$ is surely optimal at $i=0, \ldots, T$ if and only if: there exists sequence of random variables $\left(\xi_{i}\right)_{0 \leq i \leq T}$ satisfying

- $\xi_{i} \geq 0$
- $\mathbb{E}_{i-1} \xi_{i}=1$
- $M_{i}=M_{i}^{*}-A_{i}^{*}+\sum_{l=1}^{i}\left(A_{l}^{*}-A_{l-1}^{*}\right) \xi_{i}$

Definition

A martingale M starting at $M_{0}=0$ is called surely optimal for the Snell envelop Y^{*} at $i \in\{0, \ldots, T\}$ if and only if

$$
Y_{i}^{*}=\max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right) \quad \text { a.s. }
$$

Theorem

M with $M_{0}=0$ is surely optimal at $i=0, \ldots, T$ if and only if: there exists sequence of random variables $\left(\xi_{i}\right)_{0 \leq i \leq T}$ satisfying

- $\xi_{i} \geq 0$
- $\mathbb{E}_{i-1} \xi_{i}=1$
- $M_{i}=M_{i}^{*}-A_{i}^{*}+\sum_{l=1}^{i}\left(A_{l}^{*}-A_{l-1}^{*}\right) \xi_{i}$
where M^{*} is the Doob martingale and A_{i}^{*} the predictable part of the Snell envelope Y^{*}.

Question: Is the Doob martingale the only martingale which attains the infimum?
Answer: There are infinitely many!

Question: Is the Doob martingale the only martingale which attains the infimum?
Answer: There are infinitely many!

Example

Let $Z>0$ and consider $Y_{i}^{*}=Y_{0}^{*} N_{i}^{*} B_{i}^{*}>0$. For $\alpha \in[0,1]$ put
$-\xi_{i}:=1-\alpha+\alpha \frac{Y_{i}^{*}}{\mathrm{E}_{\mathrm{i}-1} \mathrm{Y}_{\mathrm{i}}^{*}}=1-\alpha+\alpha \frac{\mathrm{N}_{1}^{*}}{\mathrm{~N}_{1-1}^{*}}$

Question: Is the Doob martingale the only martingale which attains the infimum?
Answer: There are infinitely many!

Example

Let $Z>0$ and consider $Y_{i}^{*}=Y_{0}^{*} N_{i}^{*} B_{i}^{*}>0$. For $\alpha \in[0,1]$ put

- $\xi_{\mathrm{i}}:=1-\alpha+\alpha \frac{\mathbf{Y}_{i}^{*}}{\mathrm{E}_{\mathrm{i}-1} \mathrm{Y}_{\mathrm{i}}^{*}}=1-\alpha+\alpha \frac{\mathrm{N}_{1}^{*}}{\mathrm{~N}_{1-1}^{*}}$
- $\mathbb{E}_{i-1} \xi_{i}=1$ and $\xi_{i} \geq 0$

Question: Is the Doob martingale the only martingale which attains the infimum?
Answer: There are infinitely many!

Example

Let $Z>0$ and consider $Y_{i}^{*}=Y_{0}^{*} N_{i}^{*} B_{i}^{*}>0$. For $\alpha \in[0,1]$ put

- $\xi_{\mathrm{i}}:=1-\alpha+\alpha \frac{\mathrm{Y}_{\mathrm{i}}^{*}}{\mathrm{E}_{\mathrm{i}-1} \mathrm{Y}_{\mathrm{i}}^{*}}=1-\alpha+\alpha \frac{\mathbf{N}_{*}^{*}}{\mathrm{~N}_{\mathrm{I}-1}^{*}}$
- $\mathbb{E}_{i-1} \xi_{i}=1$ and $\xi_{i} \geq 0$

Hence, for every $0 \leq \alpha \leq 1$

$$
M_{i}=M_{i}^{*}-\alpha A_{i}^{*}+\alpha \sum_{l=1}^{i}\left(A_{l}^{*}-A_{l-1}^{*}\right) \frac{N_{l}^{*}}{N_{l-1}^{*}}
$$

is an surely optimal for $i=0, \ldots, T$.

Doob type decomposition

A martingale M with $M_{0}=0$ is surely optimal for $i=0, \ldots, T$ if and only if

Doob type decomposition

A martingale M with $M_{0}=0$ is surely optimal for $i=0, \ldots, T$ if and only if there exists an non-decreasing adapted process N (not necessarily predictable!) with $N_{0}=0$, s.t.

$$
Y_{i}^{*}=Y_{0}^{*}+M_{i}-N_{i} \text { a.s. }
$$

Doob type decomposition

A martingale M with $M_{0}=0$ is surely optimal for $i=0, \ldots, T$ if and only if there exists an non-decreasing adapted process N (not necessarily predictable!) with $N_{0}=0$, s.t.

$$
Y_{i}^{*}=Y_{0}^{*}+M_{i}-N_{i} \text { a.s. }
$$

Characterization of sure optimality

Let Y^{*} be the Snell envelope of the cashflow Z and let M be any martingale with $M_{0}=0$. Then, for every $i \in\{0, \ldots, T\}$ it holds that

Doob type decomposition

A martingale M with $M_{0}=0$ is surely optimal for $i=0, \ldots, T$ if and only if there exists an non-decreasing adapted process N (not necessarily predictable!) with $N_{0}=0$, s.t.

$$
Y_{i}^{*}=Y_{0}^{*}+M_{i}-N_{i} \text { a.s. }
$$

Characterization of sure optimality

Let Y^{*} be the Snell envelope of the cashflow Z and let M be any martingale with $M_{0}=0$. Then, for every $i \in\{0, \ldots, T\}$ it holds that

$$
\max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right) \in \mathcal{F}_{i} \Longrightarrow \max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)=Y_{i}^{*}
$$

Doob type decomposition

A martingale M with $M_{0}=0$ is surely optimal for $i=0, \ldots, T$ if and only if there exists an non-decreasing adapted process N (not necessarily predictable!) with $N_{0}=0$, s.t.

$$
Y_{i}^{*}=Y_{0}^{*}+M_{i}-N_{i} \text { a.s. }
$$

Characterization of sure optimality

Let Y^{*} be the Snell envelope of the cashflow Z and let M be any martingale with $M_{0}=0$. Then, for every $i \in\{0, \ldots, T\}$ it holds that

$$
\max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right) \in \mathcal{F}_{i} \Longrightarrow \max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)=Y_{i}^{*}
$$

Checking sure optimality

- $i=0$ and $\max _{0 \leq j \leq T}\left(Z_{j}-M_{j}\right)$ is deterministic
- Theorem yields that M is surely optimal

Define $\theta_{i}^{(\mathbf{n})}:=\max _{\mathbf{i} \leq \mathrm{j} \leq \mathbf{T}}\left(\mathrm{Z}_{\mathrm{j}}-\mathrm{M}_{\mathrm{j}}^{(\mathbf{n})}+\mathrm{M}_{\mathbf{i}}^{(\mathbf{n})}\right)$.

Stability theorem

Let $M^{(n)}$ be a sequence of martingales with $M_{0}^{n}=0$ that is uniformly integrable. If

Define $\theta_{i}^{(\mathbf{n})}:=\max _{\mathbf{i} \leq \mathrm{j} \leq \mathrm{T}}\left(\mathrm{Z}_{\mathrm{j}}-\mathrm{M}_{\mathrm{j}}^{(\mathbf{n})}+\mathrm{M}_{\mathrm{i}}^{(\mathbf{n})}\right)$.

Stability theorem

Let $M^{(n)}$ be a sequence of martingales with $M_{0}^{n}=0$ that is uniformly integrable. If

$$
\operatorname{Var}_{i}\left(\theta_{i}^{(n)}\right):=\mathbb{E}_{i}\left|\theta_{i}^{(n)}-\mathbb{E}_{i} \theta_{i}^{(n)}\right|^{2} \longrightarrow 0 \text { in prob. as } n \rightarrow \infty
$$

then it holds that

$$
\mathbb{E}_{i} \theta_{i}^{(n)} \longrightarrow Y_{i}^{*} \text { in } L^{1} \text { as } n \rightarrow \infty
$$

Define $\theta_{i}^{(n)}:=\max _{i \leq j \leq T}\left(Z_{j}-M_{j}^{(n)}+M_{i}^{(n)}\right)$.

Stability theorem

Let $M^{(n)}$ be a sequence of martingales with $M_{0}^{n}=0$ that is uniformly integrable. If

$$
\operatorname{Var}_{i}\left(\theta_{i}^{(n)}\right):=\mathbb{E}_{i}\left|\theta_{i}^{(n)}-\mathbb{E}_{i} \theta_{i}^{(n)}\right|^{2} \longrightarrow 0 \text { in prob. as } n \rightarrow \infty
$$

then it holds that

$$
\mathbb{E}_{i} \theta_{i}^{(n)} \longrightarrow Y_{i}^{*} \text { in } L^{1} \text { as } n \rightarrow \infty
$$

\Longrightarrow good martingales via
$\mathbb{E} \operatorname{Var} r_{i}\left(\theta_{i}\right)=\mathbb{E} V a r_{i} \max _{i \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)$ low for all $\mathbf{i}=0, \ldots, \mathbf{T}$

Part III

Designing new dual algorithm

Useful recursion

$$
\begin{aligned}
\theta_{i}(M) & =\max \left(Z_{i}, \max _{i+1 \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)\right) \\
& =\max \left(Z_{i}, \theta_{i+1}(M)+M_{i}-M_{i+1}\right) \\
& =Z_{i}+\left(\theta_{i+1}(M)+M_{i}-M_{i+1}-Z_{i}\right)^{+}
\end{aligned}
$$

Useful recursion

$$
\begin{aligned}
\theta_{i}(M) & =\max \left(Z_{i}, \max _{i+1 \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)\right) \\
& =\max \left(Z_{i}, \theta_{i+1}(M)+M_{i}-M_{i+1}\right) \\
& =Z_{i}+\left(\theta_{i+1}(M)+M_{i}-M_{i+1}-Z_{i}\right)^{+}
\end{aligned}
$$

Backward iteration

- at $i=T: \theta_{T}(M)=Z_{T} \Longrightarrow \mathbb{E} \operatorname{Var}_{T}\left(\theta_{T}(M)\right)=0$

Useful recursion

$$
\begin{aligned}
\theta_{i}(M) & =\max \left(Z_{i}, \max _{i+1 \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)\right) \\
& =\max \left(Z_{i}, \theta_{i+1}(M)+M_{i}-M_{i+1}\right) \\
& =Z_{i}+\left(\theta_{i+1}(M)+M_{i}-M_{i+1}-Z_{i}\right)^{+}
\end{aligned}
$$

Backward iteration

- at $i=T: \theta_{T}(M)=Z_{T} \Longrightarrow \mathbb{E} \operatorname{Var}_{T}\left(\theta_{T}(M)\right)=0$
- $i+1 \leq T: M_{j}-M_{i+1}$ constructed with $\mathbb{E} \operatorname{Var}_{i+1} \theta_{i+1}(M)$ small

Useful recursion

$$
\begin{aligned}
\theta_{i}(M) & =\max \left(Z_{i}, \max _{i+1 \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)\right) \\
& =\max \left(Z_{i}, \theta_{i+1}(M)+M_{i}-M_{i+1}\right) \\
& =Z_{i}+\left(\theta_{i+1}(M)+M_{i}-M_{i+1}-Z_{i}\right)^{+}
\end{aligned}
$$

Backward iteration

- at $i=T: \theta_{T}(M)=Z_{T} \Longrightarrow \mathbb{E} \operatorname{Var}_{T}\left(\theta_{T}(M)\right)=0$
- $i+1 \leq T: M_{j}-M_{i+1}$ constructed with $\mathbb{E} V a r_{i+1} \theta_{i+1}(M)$ small
- to construct $M_{j}-M_{i}=\underbrace{M_{j}-M_{i+1}}_{\text {already constructed }}+M_{i+1}-M_{i}$ consider

Useful recursion

$$
\begin{aligned}
\theta_{i}(M) & =\max \left(Z_{i}, \max _{i+1 \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)\right) \\
& =\max \left(Z_{i}, \theta_{i+1}(M)+M_{i}-M_{i+1}\right) \\
& =Z_{i}+\left(\theta_{i+1}(M)+M_{i}-M_{i+1}-Z_{i}\right)^{+}
\end{aligned}
$$

Backward iteration

- at $i=T: \theta_{T}(M)=Z_{T} \Longrightarrow \mathbb{E} \operatorname{Var}_{T}\left(\theta_{T}(M)\right)=0$
- $i+1 \leq T: M_{j}-M_{i+1}$ constructed with $\mathbb{E} V a r_{i+1} \theta_{i+1}(M)$ small
- to construct $M_{j}-M_{i}=\underbrace{M_{j}-M_{i+1}}_{\text {already constructed }}+M_{i+1}-M_{i}$ consider
- $\xi_{i+1}=M_{i+1}-M_{i}$ with $\mathbb{E}_{i} \xi_{i+1}=0$ solving

$$
\xi_{i+1}=\underset{\xi \in \Delta \mathcal{F}_{i, i+1}, \mathbb{E}_{i} \xi=0}{\arg \min } \mathbb{E}\left[\operatorname{Var}_{i}\left(\vartheta_{i+1}(M)-\xi-Z_{i}\right)^{+}\right]
$$

Useful recursion

$$
\begin{aligned}
\theta_{i}(M) & =\max \left(Z_{i}, \max _{i+1 \leq j \leq T}\left(Z_{j}-M_{j}+M_{i}\right)\right) \\
& =\max \left(Z_{i}, \theta_{i+1}(M)+M_{i}-M_{i+1}\right) \\
& =Z_{i}+\left(\theta_{i+1}(M)+M_{i}-M_{i+1}-Z_{i}\right)^{+}
\end{aligned}
$$

Backward iteration

- at $i=T: \theta_{T}(M)=Z_{T} \Longrightarrow \mathbb{E} \operatorname{Var}_{T}\left(\theta_{T}(M)\right)=0$
- $i+1 \leq T: M_{j}-M_{i+1}$ constructed with $\mathbb{E} \operatorname{Var}_{i+1} \theta_{i+1}(M)$ small
- to construct $M_{j}-M_{i}=\underbrace{M_{j}-M_{i+1}}_{\text {already constructed }}+M_{i+1}-M_{i}$ consider
- $\xi_{i+1}=M_{i+1}-M_{i}$ with $\mathbb{E}_{i} \xi_{i+1}=0$ solving

$$
\xi_{i+1}=\underset{\xi \in \Delta \mathcal{F}_{i, i+1}, \mathbb{E}_{i} \xi=0}{\arg \min } \mathbb{E}\left[\operatorname{Var}_{i}\left(\vartheta_{i+1}(M)-\xi-Z_{i}\right)^{+}\right]
$$

- set $\theta_{i}(M)=Z_{i}+\left(\theta_{i+1}(M)-\xi_{i+1}-Z_{i}\right)^{+}$

Structured increments

- let $\xi_{i}:=\xi_{i}(\beta):=\sum_{k=1}^{K} \beta_{k} \mathfrak{m}_{i+1}^{(k)}$

Structured increments

- let $\xi_{i}:=\xi_{i}(\beta):=\sum_{k=1}^{K} \beta_{k} \mathfrak{m}_{i+1}^{(k)}$

Dominating problem

$$
\begin{aligned}
\beta^{\circ}=\underset{\beta \in \mathbb{R}^{K}}{\arg \min } \mathbb{E} & {\left[\operatorname{Var}_{i}\left(\theta_{i+1}(M)-\xi_{i+1}(\beta)-Z_{i}\right)\right] } \\
& =\underset{\beta \in \mathbb{R}^{K}}{\arg \min } \mathbb{E}\left[\operatorname{Var}_{i}\left(\vartheta_{i+1}(M)-\sum_{k=1}^{K} \beta_{k} \mathfrak{m}_{i+1}^{(k)}\right)\right]
\end{aligned}
$$

Structured increments

- let $\xi_{i}:=\xi_{i}(\beta):=\sum_{k=1}^{K} \beta_{k} \mathfrak{m}_{i+1}^{(k)}$

Dominating problem

$$
\begin{aligned}
\beta^{\circ}=\underset{\beta \in \mathbb{R}^{K}}{\arg \min } \mathbb{E} & {\left[\operatorname{Var}_{i}\left(\theta_{i+1}(M)-\xi_{i+1}(\beta)-Z_{i}\right)\right] } \\
& =\underset{\beta \in \mathbb{R}^{K}}{\arg \min } \mathbb{E}\left[\operatorname{Var}_{i}\left(\vartheta_{i+1}(M)-\sum_{k=1}^{K} \beta_{k} \mathfrak{m}_{i+1}^{(k)}\right)\right]
\end{aligned}
$$

Implies original problem

$$
\begin{aligned}
& \underset{\beta \in \mathbb{R}^{\kappa}}{\arg \min } \mathbb{E}\left[\operatorname{Var}_{i}\left(\theta_{i+1}(M)-\xi_{i+1}(\beta)-Z_{i}\right)^{+}\right] \\
& \\
& \leq \mathbb{E}\left[\operatorname{Var}_{i}\left(\theta_{i+1}(M)-\xi_{i+1}\left(\beta^{\circ}\right)-Z_{i}\right)\right] \\
& \quad=\mathbb{E}\left|\theta_{i+1}(M)-\xi_{i+1}\left(\beta^{\circ}\right)-\mathbb{E}_{\mathbf{i}} \theta_{i}(\mathrm{M})\right|^{2}
\end{aligned}
$$

Linear regression problem

$$
\left[\beta^{\circ}, \gamma^{\circ}\right]=\underset{\beta \in \mathbb{R}^{\kappa}, \gamma \in \mathbb{R}^{\kappa_{1}}}{\arg \min } \mathbb{E}\left|\theta_{i+1}(M)-\sum_{k=1}^{K} \beta_{k} \mathfrak{m}_{i+1}^{(k)}-\sum_{k=1}^{K_{1}} \gamma_{k} \psi_{k}\left(i, X_{i}\right)\right|^{2}
$$

Linear regression problem

$$
\left[\beta^{\circ}, \gamma^{\circ}\right]=\underset{\beta \in \mathbb{R}^{K}, \gamma \in \mathbb{R}^{K_{1}}}{\arg \min } \mathbb{E}\left|\theta_{i+1}(M)-\sum_{k=1}^{K} \beta_{k} \mathfrak{m}_{i+1}^{(k)}-\sum_{k=1}^{K_{1}} \gamma_{k} \psi_{k}\left(i, X_{i}\right)\right|^{2}
$$

- another set of basis function $\psi_{k}(t, x), k=1, \ldots, K_{1}$
- $\gamma^{\circ}=\underset{\gamma \in \mathbb{R}^{K_{1}}}{\arg \min } \mathbb{E}\left|\mathbb{E}_{i} \theta_{i+1}(M)-\sum_{k=1}^{K_{1}} \gamma_{k} \psi_{k}\left(i, X_{i}\right)\right|^{2}$

Linear regression problem

$$
\left[\beta^{\circ}, \gamma^{\circ}\right]=\underset{\beta \in \mathbb{R}^{K}, \gamma \in \mathbb{R}^{K_{1}}}{\arg \min } \mathbb{E}\left|\theta_{i+1}(M)-\sum_{k=1}^{K} \beta_{k} \mathfrak{m}_{i+1}^{(k)}-\sum_{k=1}^{K_{1}} \gamma_{k} \psi_{k}\left(i, X_{i}\right)\right|^{2}
$$

- another set of basis function $\psi_{k}(t, x), k=1, \ldots, K_{1}$
- $\gamma^{\circ}=\underset{\gamma \in \mathbb{R}^{K_{1}}}{\arg \min } \mathbb{E}\left|\mathbb{E}_{i} \theta_{i+1}(M)-\sum_{k=1}^{K_{1}} \gamma_{k} \psi_{k}\left(i, X_{i}\right)\right|^{2}$
- as by-product $\mathcal{C}_{i}(x):=\sum_{k=1}^{K_{1}} \gamma_{k}^{\circ} \psi_{k}(i, x)$
- stopping rule $\tau:=\inf \left\{i \geq 0: Z_{i} \geq \sum_{k=1}^{K_{1}} \gamma_{k}^{\circ} \psi\left(i, X_{i}\right)\right\}$

Linear regression problem

$$
\left[\beta^{\circ}, \gamma^{\circ}\right]=\underset{\beta \in \mathbb{R}^{\kappa}, \gamma \in \mathbb{R}^{K_{1}}}{\arg \min } \mathbb{E}\left|\theta_{i+1}(M)-\sum_{k=1}^{K} \beta_{k} \mathfrak{m}_{i+1}^{(k)}-\sum_{k=1}^{K_{1}} \gamma_{k} \psi_{k}\left(i, X_{i}\right)\right|^{2}
$$

- another set of basis function $\psi_{k}(t, x), k=1, \ldots, K_{1}$
- $\gamma^{\circ}=\underset{\gamma \in \mathbb{R}^{K_{1}}}{\arg \min } \mathbb{E}\left|\mathbb{E}_{i} \theta_{i+1}(M)-\sum_{k=1}^{K_{1}} \gamma_{k} \psi_{k}\left(i, X_{i}\right)\right|^{2}$
- as by-product $\mathcal{C}_{i}(x):=\sum_{k=1}^{K_{1}} \gamma_{k}^{\circ} \psi_{k}(i, x)$
- stopping rule $\tau:=\inf \left\{i \geq 0: Z_{i} \geq \sum_{k=1}^{K_{1}} \gamma_{k}^{\circ} \psi\left(i, X_{i}\right)\right\}$

Primal dual algorithm

- $Y_{0}^{*} \leq Y_{0}^{u p}=\mathbb{E} \max _{0 \leq j \leq T}\left(Z_{j}-\sum_{j=1}^{i} \sum_{k=1}^{K} \beta_{k}^{\circ} \mathfrak{m}_{\mathfrak{j}}\right)$
- $Y_{0}^{*} \geq Y_{0}^{\text {low }}=\mathbb{E} Z_{\tau}$

Remark

- Lévy-Itô setting typically has

$$
\begin{aligned}
\xi_{i+1}(\beta)=\sum_{k=1}^{N_{1}} \beta_{k}^{c} & \int_{T_{i}}^{T_{i+1}} \varphi_{k}^{c}\left(s, X_{s}\right) d W_{s} \\
& +\sum_{k=1}^{N_{2}} \beta_{k}^{d} \int_{T_{i}}^{T_{i+1}} \varphi_{k}^{d}\left(s, X_{s}, u\right) d \widetilde{N}(d s, d u)
\end{aligned}
$$

Remark

- Lévy-Itô setting typically has

$$
\begin{aligned}
\xi_{i+1}(\beta)=\sum_{k=1}^{N_{1}} \beta_{k}^{c} & \int_{T_{i}}^{T_{i+1}} \varphi_{k}^{c}\left(s, X_{s}\right) d W_{s} \\
& +\sum_{k=1}^{N_{2}} \beta_{k}^{d} \int_{T_{i}}^{T_{i+1}} \varphi_{k}^{d}\left(s, X_{s}, u\right) d \widetilde{N}(d s, d u)
\end{aligned}
$$

- thus the class of martingales is spanned by

$$
\mathfrak{m}_{i+1}^{(k)}=\int_{T_{i}}^{T_{i+1}} \varphi_{k}^{c}\left(s, X_{s}\right) d W_{s}+\int_{T_{i}}^{T_{i+1}} \varphi_{k}^{d}\left(s, X_{s}, u\right) d \widetilde{N}(d s, d u)
$$

Remark

- Lévy-Itô setting typically has

$$
\begin{aligned}
\xi_{i+1}(\beta)=\sum_{k=1}^{N_{1}} \beta_{k}^{c} & \int_{T_{i}}^{T_{i+1}} \varphi_{k}^{c}\left(s, X_{s}\right) d W_{s} \\
& +\sum_{k=1}^{N_{2}} \beta_{k}^{d} \int_{T_{i}}^{T_{i+1}} \varphi_{k}^{d}\left(s, X_{s}, u\right) d \widetilde{N}(d s, d u)
\end{aligned}
$$

- thus the class of martingales is spanned by

$$
\mathfrak{m}_{i+1}^{(k)}=\int_{T_{i}}^{T_{i+1}} \varphi_{k}^{c}\left(s, X_{s}\right) d W_{s}+\int_{T_{i}}^{T_{i+1}} \varphi_{k}^{d}\left(s, X_{s}, u\right) d \widetilde{N}(d s, d u)
$$

- careful choice of φ^{c}, φ^{d} essential

Virtue of variance minimizing property

If the class of martingales spanned by $\mathfrak{m}_{i+1}^{(k)}$ is "rich" enough, the regression

$$
\left[\beta^{\circ}, \gamma^{\circ}\right]=\underset{\beta \in \mathbb{R}^{K}, \gamma \in \mathbb{R}^{K_{1}}}{\arg \min } \mathbb{E}\left|\theta_{i+1}(M)-\sum_{k=1}^{K} \beta_{k} \mathfrak{m}_{i+1}^{(k)}-\sum_{k=1}^{K_{1}} \gamma_{k} \psi_{k}\left(i, X_{i}\right)\right|^{2}
$$

can be realized with a small sample size

Numerical experiment

Market setup

- W_{t}^{d} independent Brownian motions
- risk-neutral dynamics of D assets

$$
d X_{t}^{d}=(r-\delta) X_{t}^{d} d t+\sigma X_{t}^{d} d W_{t}^{d}, \quad d=1, \ldots, D
$$

Benchmark products

- Bermudan basket-put: $Z_{t}\left(X_{t}\right)=e^{-r t}\left(K-\frac{X_{t}^{1}+\ldots+X_{t}^{D}}{D}\right)^{+}$
- Bermudan max-call: $Z_{t}\left(X_{t}\right)=e^{-r t}\left(\max \left(X_{t}^{1}, \ldots, X_{t}^{D}\right)-K\right)^{+}$

Basket put

Table: Lower and upper bounds for Bermudan basket-put on 5 assets with parameters $r=0.05, \delta=0, \sigma=0.2, K=100, T=3$ and different $J=$ exercise rights and $x_{0}=$ spot price

J	x_{0}	Low (SD)	Up (SD)	BKS Price Interval
	90	$10.000(0.000)$	$10.000(0.000)$	$[10.000,10.004]$
3	100	$2.164(0.007)$	$2.168(0.005)$	$[2.154,2.164]$
	110	$0.539(0.004)$	$0.555(0.003)$	$[0.535,0.540]$
	90	$10.000(0.000)$	$10.000(0.000)$	$[10.000,10.000]$
6	100	$2.407(0.006)$	$2.432(0.005)$	$[2.359,2.412]$
	110	$0.573(0.003)$	$0.608(0.003)$	$[0.569,0.580]$
	90	$10.000(0.0000)$	$10.000(0.000)$	$[10.000,10.005]$
9	100	$2.475(0.0063)$	$2.539(0.006)$	$[2.385,2.502]$
	110	$0.5915(0.0034)$	$0.635(0.003)$	$[0.577,0.600]$

Regression sample size: 1000
Upper bound simulation sample size: 1000

Bermudan max-call

Table: Lower and upper bounds for Bermudan max-call with parameters $r=0.05, \delta=0.1, \sigma=0.2, K=100, T=3$ and different D and x_{0}.

D	x_{0}	Low (SD)	Up (SD)	A\&B price interval
	90	$8.0556(0.021)$	$8.15284(0.014)$	$[8.053,8.082]$
2	100	$13.8850(0.027)$	$14.0145(0.019)$	$[13.892,13.934]$
	110	$21.3671(0.0319)$	$21.5187(0.022)$	$[21.316,21.359]$
	90	$16.5973(0.0296)$	$16.7718(0.027)$	$[16.602,16.655]$
5	100	$26.1325(0.0356)$	$26.3440(0.031)$	$[26.109,26.292]$
	110	$36.7348(0.0403)$	$37.0431(0.039)$	$[36.704,36.832]$

Regression sample size: 1000
Upper bound simulation sample size: 1000

Thanks for your attention!

