Scenario Aggregation for Solvency Regulation

Damir Filipović (joint with Mathieu Cambou)

Swiss Finance Institute Ecole Polytechnique Fédérale de Lausanne

6th AMaMeF and Banach Center Conference Warsaw, 11 June 2013

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum φ-Divergence Approach Minimum φ-Divergence Scenario Aggregation Robustness of Capital Requirement Solving the Optimization Problem Example: Relative Entropy

Case Studies

Case Study 1 Case Study 2

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum φ-Divergence Approach
 Minimum φ-Divergence Scenario Aggregation
 Robustness of Capital Requirement
 Solving the Optimization Problem
 Example: Relative Entropy

Case Studies

Case Study 1 Case Study 2

Insurance Solvency in 1990s

- Deregulation of insurance markets
- Growth and competition based on unrealistic guarantees
- Solvency regulation with focus on liabilities
- No asset risk assessment
- Dot-com bubble: insurers buy equities
- Insolvencies world-wide (Nissan Mutual Life, Equitable Life, HIH Insurance Group,...)

Insurance Solvency in 2000s

2001: Solvency II project initiated

2003: Swiss Solvency Test (SST) initiated

Quantitative impacts studies (Solvency II and SST)

2008: SST mandatory for large insurers

2011: SST in force

▶ ...

2016: Enforcement of Solvency II

SST: Some Key Principles

- ▶ Risk based: market, insurance, and credit risks are quantified
- Market consistent valuation of assets and liabilities
- Total balance sheet approach
- **Stress scenarios**: to be aggregated for capital requirement
- Internal models encouraged: to be approved by regulator

SST: Available and Required Capital

- Available capital C = Assets Liabilites
- Annual loss L = C(0) C(1)
- Required capital K = ES[L] (expected shortfall)
- Capital requirement: C > K

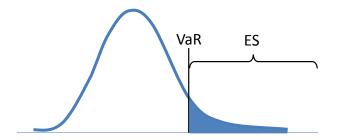


Figure: VaR = 99%-Value at Risk, ES = 99%-Expected Shortfall

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum φ-Divergence Approach
 Minimum φ-Divergence Scenario Aggregation
 Robustness of Capital Requirement
 Solving the Optimization Problem
 Example: Relative Entropy

Case Studies

Case Study 1 Case Study 2

SST Results 2011–2012

Significant difference between business models

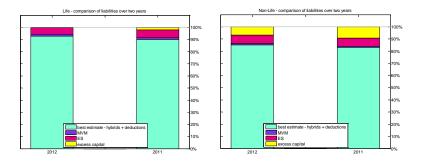
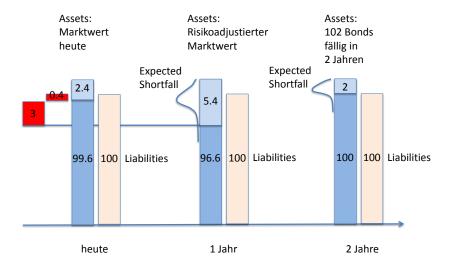


Figure: Life and non-life results. Source: FINMA SST Survey 2012

Example

- Liabilities: 100 due in 2 years
- Risk-free discount rate is zero
- Assets: 102 corporate bonds (BBB) well diversified
- Maturity of bonds in 2 years
- Default probability: 0.5%
- Recovery rate: 40%
- Spread today: 2%
- Absolute spread volatility: 1.4%

Example: Figure



Example: Result

- Expected one-in-one hundred year loss (expected shortfall) at maturity in 2 years is fully absorbed
- Even so there results an additional capital requirement of 3.4
- Explanation: market consistency means
 - 1. Positive spot market value at any time (liquidation vs. going-concern view)
 - 2. Spread risk is fully charged ("fictitious risk"?)
- Are these costs justified, or is SST economically inefficient?

Example: Relevance

Spread risk accounts up to 30–50% of total risk

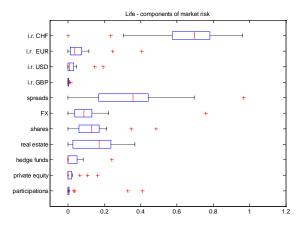


Figure: Components of market risk. Source: FINMA SST Survey 2012

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum φ-Divergence Approach Minimum φ-Divergence Scenario Aggregation Robustness of Capital Requirement Solving the Optimization Problem Example: Relative Entropy

Case Studies

Case Study 1 Case Study 2

Internal Models

• Probability space $(\Omega, \mathcal{F}, \mathbb{P})$

Annual loss L: random variable assigning a loss L(ω) to any possible state of the world ω ∈ Ω

 $\, \hookrightarrow \, (\Omega, \mathcal{F}) \text{ is universal}$

 $\hookrightarrow \mathbb{P}$ and L is insurer specific (internal model)

Assumption:

Regulator trusts the mapping $L : \Omega \to \mathbb{R}$ (no ambiguity)

Fact:

Regulator wants to challenge \mathbb{P} , or distribution $F_L(x) = \mathbb{P}[L \le x]$

Scenarios

A scenario is an event $S \in \mathcal{F}$: a narrative description of a possible state of the world

For factor models, this notion includes

- ▶ point scenarios $S = \{\mathbf{x} \in \mathbb{R}^n \mid x_j = c_j \text{ for some } j\}$, e.g.
 - $\,\hookrightarrow\,$ 1-year loss of EUR 100 mio in Eurowind,
 - $\,\hookrightarrow\,$ 1-year drop of -20% for SMI,
- quadrants $S = \{ \mathbf{x} \in \mathbb{R}^n \mid x_j \ge c_j \text{ for some } j \}$, e.g.
 - \hookrightarrow 1-year change in EURCHF $\leq -20\%$,
 - \hookrightarrow 1-year change European Credit Spreads AAA \geq 50%.

Scenarios from a Regulatory point of view

"Mit den SST-Szenarien sollen die Mängel aus verteilungsbasierten Modellen korrigiert werden. So können analytische Modelle extreme Ereignisse oft nur unzureichend abbilden, sowohl in Bezug auf die Heavy-Tailedness der Randverteilungen als auch in Bezug auf die so genannte Tail-Dependency."

- FINMA, Wegleitung für die Erarbeitung des SST-Berichtes 2013, 2012

Given by FINMA

▶ Scenarios S_1, \ldots, S_d along with auxiliary probabilities $\pi_i > 0$

$$\mapsto$$
 In general, $\pi_i
eq \mathbb{P}[S_i]$

 \hookrightarrow It is natural to set $S_0 = \Omega$ and $\pi_0 = 1 - \sum_{i=1}^d \pi_i$

Scenario	Probability of occurrence
Industrial	0.5%
Pandemic	1%
Accident on a works outing	0.5%
Accident: Panic in a football stadium	Type 2: not relevant for target capital.
Hail scenario	Type 2: not relevant for target capital.
Disability	0.5%
Daily allowance for sickness	0.5%

Source: FOPI, SST Technical Documents, 2006

Ansatz

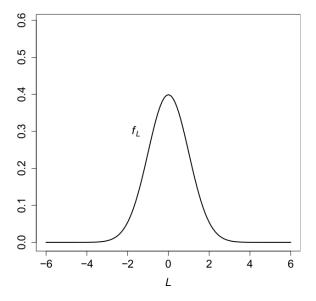
Scenario S_i causes an extra-ordinary loss

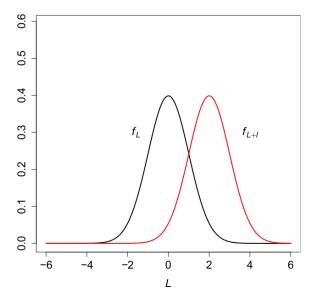
$$\ell_i = \mathbb{E}[L \mid S_i] - \mathbb{E}[L]$$

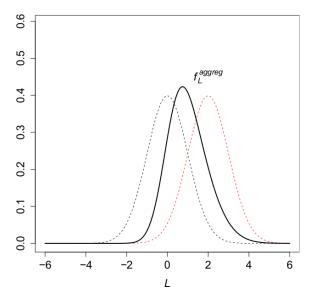
to be determined by actuary, with $\ell_0=0$

- ► Loss distribution conditional on scenario S_i is $F_L(x \ell_i)$ Aggregation
 - Replace $F_L(x)$ by aggregated loss distribution

$$F_L^{\mathrm{aggr}}(x) = \sum_{i=0}^d \pi_i F_L(x - \ell_i)$$







SST Method: Discussion

Fact: F^{aggr}_L(x) is the cdf of L + Z for an independent extra-ordinary loss random variable Z with P[Z = ℓ_i] = π_i

Lemma:

$$\mathrm{ES}^{\mathrm{aggr}}[\mathcal{L}] = \mathrm{ES}[\mathcal{L} + Z] \ge \mathrm{ES}[\mathcal{L}] + \mathbb{E}[Z]$$

$$\mathrm{ES}^{\mathrm{aggr}}[\mathcal{L}] > \mathrm{ES}[\mathcal{L}]$$

no matter how conservative the internal model for L is

 \Rightarrow scenario aggregation penalizes conservative internal models

SST Method: Discussion

- No control on how far $F_L^{aggr}(x)$ from $F_L(x)$ is
- No control on how far $\mathrm{ES}^{\mathrm{aggr}}(L)$ from $\mathrm{ES}(L)$ is
- Confusion among stakeholders about "double-counting"
- High degree of subjectivity about auxiliary weights π_i
- Capital is increased even if scenario is not in tail loss event
- Aggregation is on the level of $F_L(x)$, not \mathbb{P}

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum φ-Divergence Approach Minimum φ-Divergence Scenario Aggregation Robustness of Capital Requirement Solving the Optimization Problem Example: Relative Entropy

Case Studies

Case Study 1 Case Study 2

A Moment's Reflection on Stress Tests

- Stress test: selected states of the world $\omega_i \in \Omega$
- Leads to a maximal insurer specific loss $\ell = \max_i L(\omega_i)$
- ▶ Internal model (null hypothesis) \mathbb{P} passes the stress test if not rejected on significance level $1 \alpha = 1\%$. That is, if

$$\ell \leq \operatorname{VaR}_{\alpha}(L)$$

Equivalently,

$$\mathbb{P}[S] \ge 1 - \alpha$$

for the scenario $S = \{L \ge \ell\}$

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum φ-Divergence Approach Minimum φ-Divergence Scenario Aggregation Robustness of Capital Requirement Solving the Optimization Problem Example: Relative Entropy

Case Studies

Case Study 1 Case Study 2

Definition of Views

- Given a collection of scenarios $S_1, \ldots, S_d \in \mathcal{F}$
- Given a vector of target probabilities $\mathbf{c} = (c_1, \dots, c_d)^{\top}$
- Define $S_0 = \Omega \setminus \cup_{i=1}^d S_i$
- Denote *M* = set of probability measures on (Ω, *F*)
- Views on $\mathbb{Q} \in \mathcal{M}$:

$$\mathbb{Q}[S_i] \ge c_i, \quad i = 1, \dots, d$$
 (views)

Views in Terms of Atoms

• Let
$$U_0, \ldots, U_n$$
 be the atoms of $S = \sigma(S_1, \ldots, S_d)$:

$$S_0 = U_0, \quad S_i = \cup_{j \in J(i)} U_j, \quad i = 1, \dots, d$$

• Views on $\mathbb{Q} \in \mathcal{M}$:

$$\sum_{j\in J(i)} q_j \ge c_i, \quad i=1,\ldots,d$$
 (views)

for vector $q_j = \mathbb{Q}[U_j]$

Views in matrix form:

$$A \mathbf{q} \ge \mathbf{c}$$
 (views)

for matrix $A_{ij} = 1_{J(i)}(j)$

Modification of internal model: find minimizer for

minimize $d(\mathbb{Q}, \mathbb{P})$ subject to (views)

with domain ${\cal M}$

• $d(\cdot,\mathbb{P})$ measures the difference from \mathbb{P} on \mathcal{M}

ϕ -Divergence

▶ φ-divergence

$$d(\mathbb{Q},\mathbb{P}) = egin{cases} \mathbb{E}[\phi(d\mathbb{Q}/d\mathbb{P})], & ext{if } \mathbb{Q} \ll \mathbb{P} \ +\infty, & ext{otherwise} \end{cases}$$

where ϕ is convex, and strictly convex at 1 with $\phi(1) = 0$

- ► Standard measure for difference of Q from P in statistics, Csiszar (1963)
- Fact: $d(\mathbb{Q},\mathbb{P})$ is not a metric, but convex in \mathbb{Q}

Examples and Facts

Examples:

$$\phi(t) = \begin{cases} t \log t, & \text{relative entropy} \\ (\sqrt{t} - 1)^2, & \text{Hellinger distance} \\ |t - 1|^p, & L^p\text{-distance}, \ p \ge 1 \end{cases}$$

$$egin{aligned} &\|d\mathbb{Q}/d\mathbb{P}-1\|_1 \leq \sqrt{2d_{\mathcal{E}}(\mathbb{Q},\mathbb{P})}\ &\|d\mathbb{Q}/d\mathbb{P}-1\|_1 \leq \sqrt{2d_{\mathcal{H}}(\mathbb{Q},\mathbb{P})}\ &\|d\mathbb{Q}/d\mathbb{P}-1\|_1 = 2\,d_{TV}(\mathbb{Q},\mathbb{P}) \end{aligned}$$
 total variation

▶ Fact: all but the L¹-distance are strictly convex in Q

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum ϕ -Divergence Approach Minimum ϕ -Divergence Scenario Aggregation Robustness of Capital Requirement Solving the Optimization Problem

Example: Relative Entropy

Case Studies

Case Study 1 Case Study 2

Robustness Check

- Question: is the capital requirement robust under minimum *φ*-divergence scenario aggregation?
- ► In other words: is VaR and ES continuous with respect to d(Q, P) ?

Recall Definitions of VaR and ES

Value at risk

$$\operatorname{VaR}(X) = q_{\alpha}^{-}(X), \quad \text{left } \alpha \text{-quantile}$$

Expected shortfall

$$ES(X) = \frac{1}{1-\alpha} \mathbb{E}\left[(X-q)^+ \right] + q$$

= $\frac{1}{1-\alpha} \left(\mathbb{E}[X \ \mathbb{1}_{\{X>q\}}] + q \left(\mathbb{P}[X \le q] - \alpha \right) \right)$

for any lpha-quantile $q\in [q^-_lpha(X),q^+_lpha(X)]$

\blacktriangleright Folk theorem: VaR is more robust than ES

Lemma for Value at Risk

Lemma 4.1.
If
$$d\mathbb{P}_n/d\mathbb{P} \to 1$$
 in L^1 then

$$\sup_{x} |\mathbb{P}_n[X \le x] - \mathbb{P}[X \le x]| \to 0$$
and
 $q_{\alpha}^-(X) \le \liminf_n q_n \le \limsup_n q_n \le q_{\alpha}^+(X)$
for any sequence (q_n) of α -quantiles of X, for any $X \in L^0$.

Non-Robustness of Value at Risk: Example

• Define X = 0 or 1 with $\mathbb{P}[X = 0] = \alpha$

Define

$$d\mathbb{P}_n/d\mathbb{P} = \begin{cases} 1 + (1 - \alpha)(-1)^n/(\alpha n), & \text{on } \{X = 0\}\\ 1 + (-1)^{n+1}/n, & \text{on } \{X = 1\} \end{cases}$$

VaR does not converge:

$$\operatorname{VaR}_n(X) = egin{cases} 0 = q_{lpha}^-(X), & ext{for } n ext{ even} \ 1 = q_{lpha}^+(X), & ext{for } n ext{ odd} \end{cases}$$

Robustness of Expected Shortfall

Theorem 4.2. Let $p \in [1, \infty]$. If $d\mathbb{P}_n/d\mathbb{P} \to 1$ in L^p then $\mathrm{ES}_n(X) \to \mathrm{ES}(X)$ for all $X \in L^r$, where $p^{-1} + r^{-1} = 1$.

Proof. Using previous lemma and

$$\begin{aligned} (1-\alpha) \left| \mathrm{ES}_n(X) - \mathrm{ES}(X) \right| &\leq \mathbb{E} \left[|Z_n - 1| (X - q_n)^+ \right] \\ &+ \mathbb{E} \left[\left| (X - q_n)^+ - (X - q)^+ \right| \right] + (1-\alpha) \left| q_n - q \right| \end{aligned}$$

for any converging (sub-)sequence of α -quantiles $q_n \rightarrow q$.

Robustness of Expected Shortfall

Theorem 4.2. Let $p \in [1, \infty]$. If $d\mathbb{P}_n/d\mathbb{P} \to 1$ in L^p then $\mathrm{ES}_n(X) \to \mathrm{ES}(X)$ for all $X \in L^r$, where $p^{-1} + r^{-1} = 1$.

Proof.

Using previous lemma and

$$egin{aligned} (1-lpha) \left| \mathrm{ES}_n(X) - \mathrm{ES}(X)
ight| &\leq \mathbb{E} \left[|Z_n - 1| (X - q_n)^+
ight] \ &+ \mathbb{E} \left[\left| (X - q_n)^+ - (X - q)^+
ight|
ight] + (1 - lpha) \left| q_n - q
ight| \end{aligned}$$

for any converging (sub-)sequence of α -quantiles $q_n \rightarrow q$.

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum φ-Divergence Approach Minimum φ-Divergence Scenario Aggregation Robustness of Capital Requirement Solving the Optimization Problem Example: Relative Entropy

Case Studies

Case Study 1 Case Study 2

Back to the Optimization Problem

Modification of internal model: find minimizer for

$$\begin{array}{ll} \text{minimize} & d(\mathbb{Q},\mathbb{P}) \\ \text{subject to} & (\text{views}) \end{array} \tag{P}$$

with domain ${\cal M}$

Lemma 4.3.

For every $\mathbb{R} \ll \mathbb{P}$ satisfying the views there exists a

 $\mathbb{R}' \in \mathcal{Q} := \{\mathbb{Q} \ll \mathbb{P} \mid d\mathbb{Q}/d\mathbb{P} \text{ is } S\text{-measurable}\}$

satisfying the views and $d(\mathbb{R}',\mathbb{P}) \leq d(\mathbb{R},\mathbb{P})$.

Proof. Set $d\mathbb{R}'/d\mathbb{P} = \mathbb{E}\left[d\mathbb{R}/d\mathbb{P} \mid S\right]$ and use Jensen's inequality.

Existence and Uniqueness

▶ Note dim Q = n + 1: identify $\mathbb{Q} \in Q$ with **q** by

$$q_j = \mathbb{Q}[U_j], \quad j = 0, \ldots, n$$

Theorem 4.4.

There exists a solution of (P) in Q. Moreover, if ϕ is strictly convex then the solution is unique.

Solution of Optimization Problem

- Define $\mathbf{p} \in (0,1)^{n+1}$ by $p_j = \mathbb{P}[U_j]$
- The optimization problem (P) reduces to

$$\begin{array}{ll} \text{minimize} & \sum_{j=0}^n p_j \, \phi(q_j/p_j) \\ \text{subject to} & A \, \mathbf{q} \geq \mathbf{c} & (\mathsf{P}) \\ & \mathbf{1}^\top \mathbf{q} = \mathbf{1} \end{array}$$

with domain $(0,1)^{n+1}$

- Solution via dual problem or Kuhn–Tucker (FOC) conditions
- ▶ Reference e.g. Boyd and Vandenberghe (2004)

Special Case: d = 1 Scenario

Corollary 4.5. For d = 1 scenario S_1 a (the) solution to (P) is given by

$$rac{d\mathbb{Q}^*}{d\mathbb{P}} = rac{1-\max\{c_1,p_1\}}{p_0}\, \mathbb{1}_{\mathcal{S}_0} + rac{\max\{c_1,p_1\}}{p_1}\, \mathbb{1}_{\mathcal{S}_1}$$

independently of the choice of the (strictly) convex divergence function ϕ .

Proof.

Convexity of ϕ implies that $q_1 \mapsto d(\mathbb{Q}(q_1), \mathbb{P})$ is non-decreasing in q_1 for $q_1 > p_1$.

Special Case: d = 1 Scenario

Corollary 4.5. For d = 1 scenario S_1 a (the) solution to (P) is given by

$$rac{d\mathbb{Q}^*}{d\mathbb{P}} = rac{1-\max\{c_1,p_1\}}{p_0}\, \mathbb{1}_{\mathcal{S}_0} + rac{\max\{c_1,p_1\}}{p_1}\, \mathbb{1}_{\mathcal{S}_1}$$

independently of the choice of the (strictly) convex divergence function ϕ .

Proof.

Convexity of ϕ implies that $q_1 \mapsto d(\mathbb{Q}(q_1), \mathbb{P})$ is non-decreasing in q_1 for $q_1 > p_1$.

Special Case: Stress Testing (d = 1 Scenario)

• Recall stress testing is equivalent to d = 1 views

$$\mathbb{Q}[S_1] \ge 1 - \alpha$$

on the scenario $S_1 = \{L \ge \ell\}$ with $\ell = \max_i L(\omega_i)$

▶ In this case we obtain a closed form expression for ES:

Corollary 4.6.

The expected shortfall under \mathbb{Q}^* given in Corollary 4.5 satisfies

$$\mathrm{ES}_{\mathbb{Q}^*,\,\alpha}(L) = \mathrm{ES}_{\mathbb{P},\,\max\{\mathbb{P}[L<\ell],\alpha\}}(L).$$

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum ϕ -Divergence Approach

Minimum ϕ -Divergence Scenario Aggregation Robustness of Capital Requirement Solving the Optimization Problem Example: Relative Entropy

Case Studies Case Study 1 Case Study 2

Relative Entropy: Dual Problem

The Lagrangian function is

$$L(\mathbf{q},\lambda,
u) = \sum_{j=0}^{n} q_j \log rac{q_j}{p_j} + \lambda^{ op} (\mathbf{c} - A\mathbf{q}) +
u \left(\mathbf{1}^{ op} \mathbf{q} - 1
ight)$$

The dual problem is

minimize
$$\sum_{j=0}^{n} p_j e^{(A^{\top}\lambda)_j - \nu - 1} - \mathbf{c}^{\top}\lambda + \nu$$

subject to $\lambda \ge 0$ (DP)

with domain $\lambda \in \mathbb{R}^d$ and $\nu \in \mathbb{R}$

Relative Entropy: Slater's Condition

- Slater's condition: $\exists \mathbf{q} > 0$ such that $A \mathbf{q} \ge \mathbf{c}$ and $\mathbf{1}^{\top} \mathbf{q} = 1$
- If Slater's condition holds then there exists a unique minimizer (λ*, ν*) of the dual problem (DP), and strong duality holds:

$$q_j^* = p_j e^{(A^{\top} \lambda^*)_j - \nu^* - 1}$$
 $j = 0, \dots, d$

Relative Entropy: Kuhn–Tucker Conditions

If Slater's condition holds then the Kuhn–Tucker conditions are necessary and sufficient for optimality:

$$\lambda \ge \mathbf{0}, \quad A \mathbf{q} \ge \mathbf{c}, \quad \lambda^{\top} (A \mathbf{q} - \mathbf{c}) = \mathbf{0}$$

 $\mathbf{1}^{\top} q = 1$
 $\log \mathbf{q} - \log \mathbf{p} + \mathbf{1} - A^{\top} \lambda + \nu \mathbf{1} = \mathbf{0}$

Relative Entropy: Explicit Solution for Disjoint Scenarios

Lemma 4.7.

If the d scenarios S_1, \ldots, S_d are mutually disjoint then the unique solution to (P) is given by

$$q_{j}^{*} = \max\left\{c_{j}, \ p_{j}rac{1-\sum_{i=k^{*}+1}^{d}c_{i}}{\sum_{i=0}^{k^{*}}p_{i}}
ight\}$$

where k^* is the integer determined by

$$\sum_{i=0}^{k^*+1} p_i \left(\frac{c_{k^*+1}}{p_{k^*+1}} - \frac{c_i}{p_i} \right) > 1 - \sum_{i=0}^d c_i \ge \sum_{i=0}^{k^*} p_i \left(\frac{c_{k^*}}{p_{k^*}} - \frac{c_i}{p_i} \right)$$

and we assume w.l.o.g. that $\frac{c_0}{p_0} < \cdots < \frac{c_d}{p_d}$ with $c_0 := 0$.

Relative Entropy: Example

- d = 2 disjoint scenarios S_1 , S_2
- Target probabilities $\mathbf{c} = (0.2, 0.2)^{\top}$

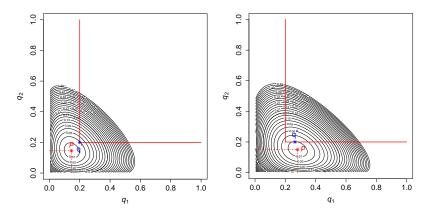


Figure: Contour plots for $(p_1, p_2)^{ op} \leq \mathbf{c}$ (left), $p_1 > c_1$, $p_2 < c_2$ (right)

Relative Entropy: More on Solutions

- ► In the paper we also provide explicit solutions for d = 2 overlapping scenarios S₁, S₂
- In general: numerical solution of dual problem

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum φ-Divergence Approach
 Minimum φ-Divergence Scenario Aggregation
 Robustness of Capital Requirement
 Solving the Optimization Problem
 Example: Relative Entropy

Case Studies Case Study 1 Case Study 2

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum φ-Divergence Approach
 Minimum φ-Divergence Scenario Aggregation
 Robustness of Capital Requirement
 Solving the Optimization Problem
 Example: Relative Entropy

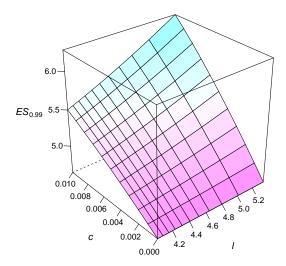
Case Studies Case Study 1 Case Study 2

Case Study 1: Setup

- Loss $L \sim \mathcal{N}(0, 10.2)$
- Compare scenario aggregation using SST and minimum entropy method

Case Study 1: SST Method

- d = 1 scenario with probability c and extra-ordinary loss ℓ
- Recall: $F_L^{\text{aggr}}(x) = (1-c) F_L(x) + c F_L(x-\ell)$



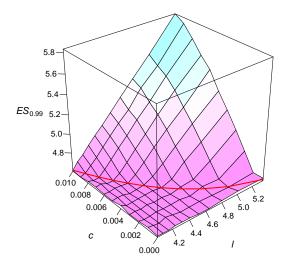
Case Studies

Figure: Sensitivity of $\mathrm{ES}^{\mathrm{aggr}}[L]$ with respect to *c* and ℓ

Case Study 1: Minimum Entropy Method

•
$$d = 1$$
 scenario $S_1 = \{L \ge \ell\}$

• View: $\mathbb{Q}[L \ge \ell] \ge c$ for some auxiliary level c



Case Studies

Figure: Sensitivity of $ES_{\mathbb{O}^*}[L]$ with respect to *c* and ℓ

Case Study 1: Difference SST - Minimum Entropy Method

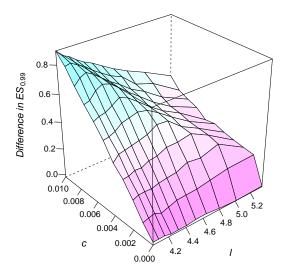


Figure: $\mathrm{ES}^{\mathrm{aggr}}[\mathcal{L}] - \mathrm{ES}_{\mathbb{Q}^*}[\mathcal{L}]$ as function of *c* and ℓ

Case Study 1 (Stress Test): Minimum Entropy Method

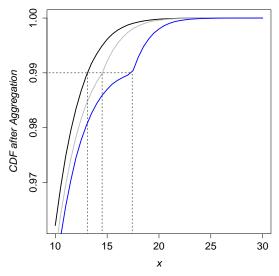


Figure: Impact on cumulative distribution function for $\ell = VaR_{\alpha}(L)$ with $\alpha = 0.99$ (black), $\alpha = 0.995$ (grey), $\alpha = 0.999$ (blue) Case Studies 58/66

Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum φ-Divergence Approach
 Minimum φ-Divergence Scenario Aggregation
 Robustness of Capital Requirement
 Solving the Optimization Problem
 Example: Relative Entropy

Case Studies Case Study 1 Case Study 2

Case Study 2: Setup

- ▶ Two risk factors (X_1, X_2) normal with mean **0**, and $var(X_1) = 1$, $var(X_2) = 4$, and $corr(X_1, X_2) = -0.5$
- X₁: change in interest rates
- X_2 : risk factor related to CAT events with reinsurance
- Loss

$$L = \max\{X_1, -1\} + \max\{\min\{X_2, 5\}, -1\}$$

is capped in X₂ (reinsurance), and gains are capped at 1
d = 2 scenarios

$$S_1 = \{X_1 \ge 1, X_2 \ge 1\}$$
 and $S_2 = \{X_1 < -2\}$

Case Study 2: Shortfall Region

► Shortfall region W = {L > VaR_{0.99}(L)} overlaps with S₁,

 $W \cap S_1 \neq \emptyset$

but not with S_2 ,

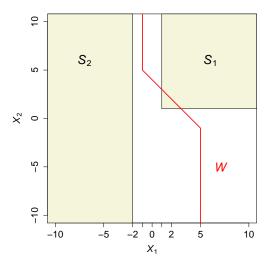
$$W \cap S_2 = \emptyset$$

• Extra-ordinary losses caused by S_1 and S_2 are positive

 $\ell_1 = \mathbb{E}[L \mid S_1] - \mathbb{E}[L] = 2.7, \quad \ell_2 = \mathbb{E}[L \mid S_2] - \mathbb{E}[L] = 0.9$

SST aggregation of S₂ leads to a capital increase even though S₂ does not intersect with the shortfall region W

Case Study 2: Scenarios and Shortfall Region



Case Studies

Figure: Scenarios S_1 , S_2 , shortfall region W

Case Study 2: SST Method

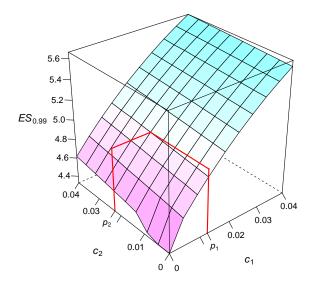


Figure: Sensitivity of $\mathrm{ES}^{\mathrm{aggr}}[L]$ with respect to c_1 and c_2

Case Study 2: Minimum Entropy Method

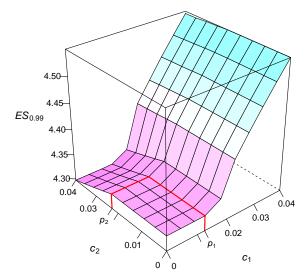


Figure: Sensitivity of $ES_{\mathbb{Q}^*}[L]$ with respect to c_1 and c_2

Case Study 2: Difference SST - Minimum Entropy Method

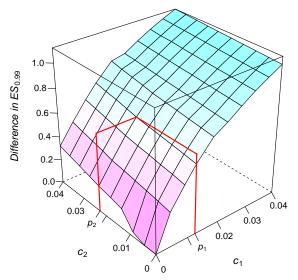


Figure: $\mathrm{ES}^{\mathrm{aggr}}[\mathcal{L}] - \mathrm{ES}_{\mathbb{Q}^*}[\mathcal{L}]$ as function of c_1 and c_2

Conclusion

- Risk-based market-consistent solvency regime comes along with intended and unintended consequences
- Scenario aggregation is vital part of risk-based solvency regulation
- Current SST method subject to critical review
- Minimum \u03c6-divergence approach is a coherent scenario aggregation method:
 - No penalty for conservative internal models
 - Focus on tail loss events
 - Control over distance from internal model
 - Robustness of capital requirement
 - Highly tractable (closed form solutions sometimes)