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Insurance Solvency in 1990s

I Deregulation of insurance markets

I Growth and competition based on unrealistic guarantees

I Solvency regulation with focus on liabilities

I No asset risk assessment

I Dot-com bubble: insurers buy equities . . .

I Insolvencies world-wide (Nissan Mutual Life, Equitable Life,
HIH Insurance Group,. . . )
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Insurance Solvency in 2000s

2001: Solvency II project initiated

2003: Swiss Solvency Test (SST) initiated

I Quantitative impacts studies (Solvency II and SST)

2008: SST mandatory for large insurers

2011: SST in force

I . . .

2016: Enforcement of Solvency II
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SST: Some Key Principles

I Risk based: market, insurance, and credit risks are quantified

I Market consistent valuation of assets and liabilities

I Total balance sheet approach

I Stress scenarios: to be aggregated for capital requirement

I Internal models encouraged: to be approved by regulator
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SST: Available and Required Capital

I Available capital C = Assets− Liabilites

I Annual loss L = C (0)− C (1)

I Required capital K = ES [L] (expected shortfall)

I Capital requirement: C > K

VaR ES 

Figure: VaR = 99%-Value at Risk, ES = 99%-Expected Shortfall
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SST Results 2011–2012

I Significant difference between business models
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 The columns are ordered by increasing size of the BEL. 

 The median and mean value of the MVM relative to the BEL amount to 4.2% and 1.7%, respective-

ly. 

 

3.1.2 Best estimate of the liability and the target capital in relation to the total assets 

 

Figure 2: BEL
*
, TC (= MVM + ES) and excess capital (EC = RBC – TC) in percentage of the total as-

sets. Weighted average of all life companies. 

 

Since the total assets are composed of the core capital (CC) and the BEL (and not of the RBC plus 

BEL), the best estimate of the liability BEL needs to be adjusted. We define BEL
* 
as the BEL minus 

hybrids plus deductions: 
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3.2.2 Best estimate of the liability and the target capital in relation to the total 

assets 

 

Figure 9: BEL
*
, TC (= MVM + ES) and the excess capital (EC = RBC – TC) in percentage of the total 

assets. Weighted average over all non-life companies. 

For the definition of BEL
*
, see section 3.1.2. 

in % of Assets BEL* MVM ES EC 

 SST 2012  85.2% 1.1% 7.0% 6.6% 

 SST 2011  83.2% 0.9% 6.7% 9.2% 

Table 4: BEL
*
, TC and EC in percentage of total assets. 
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Non-Life - comparison of liabilities over two years
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Figure: Life and non-life results. Source: FINMA SST Survey 2012
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Example

I Liabilities: 100 due in 2 years

I Risk-free discount rate is zero

I Assets: 102 corporate bonds (BBB) well diversified

I Maturity of bonds in 2 years

I Default probability: 0.5%

I Recovery rate: 40%

I Spread today: 2%

I Absolute spread volatility: 1.4%
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Example: Figure

Ist der SST zu teuer? 
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Example: Result

I Expected one-in-one hundred year loss (expected shortfall) at
maturity in 2 years is fully absorbed

I Even so there results an additional capital requirement of 3.4

I Explanation: market consistency means

1. Positive spot market value at any time (liquidation vs.
going-concern view)

2. Spread risk is fully charged (“fictitious risk”?)

I Are these costs justified, or is SST economically inefficient?
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Example: Relevance

I Spread risk accounts up to 30–50% of total risk
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3.1.4.1 Distribution of market risk components – box plots 

 

Figure 6: Distributions of market risk components, shown as box plots; all companies. For each box 

plot, the central mark is the median, the edges of the box are the 25
th
 and the 75

th
 percentiles, respec-

tively, and the whiskers extend to the most extreme data points not considered outliers, and outliers 

are plotted individually (red crosses). 
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Figure: Components of market risk. Source: FINMA SST Survey 2012
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Internal Models

I Probability space (Ω,F ,P)

I Annual loss L: random variable assigning a loss L(ω) to any
possible state of the world ω ∈ Ω

↪→ (Ω,F) is universal

↪→ P and L is insurer specific (internal model)

Assumption:

Regulator trusts the mapping L : Ω→ R (no ambiguity)

Fact:

Regulator wants to challenge P, or distribution FL(x) = P[L ≤ x ]
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Scenarios

A scenario is an event S ∈ F : a narrative description of a possible
state of the world

For factor models, this notion includes
I point scenarios S = {x ∈ Rn | xj = cj for some j}, e.g.

↪→ 1-year loss of EUR 100 mio in Eurowind,
↪→ 1-year drop of −20% for SMI,

I quadrants S = {x ∈ Rn | xj ≥ cj for some j}, e.g.

↪→ 1-year change in EURCHF ≤ −20%,
↪→ 1-year change European Credit Spreads AAA ≥ 50%.
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Scenarios from a Regulatory point of view

“Mit den SST-Szenarien sollen die Mängel aus verteilungsbasierten
Modellen korrigiert werden. So können analytische Modelle
extreme Ereignisse oft nur unzureichend abbilden, sowohl in Bezug
auf die Heavy-Tailedness der Randverteilungen als auch in Bezug
auf die so genannte Tail-Dependency.”

— FINMA, Wegleitung für die Erarbeitung des SST-Berichtes 2013, 2012
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SST Scenario Aggregation

Given by FINMA
I Scenarios S1, . . . ,Sd along with auxiliary probabilities πi > 0

↪→ In general, πi 6= P[Si ]

↪→ It is natural to set S0 = Ω and π0 = 1−
∑d

i=1 πi

Source: FOPI, SST Technical Documents, 2006
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SST Scenario Aggregation

Ansatz

I Scenario Si causes an extra-ordinary loss

`i = E[L | Si ]− E[L]

to be determined by actuary, with `0 = 0

I Loss distribution conditional on scenario Si is FL(x − `i )
Aggregation

I Replace FL(x) by aggregated loss distribution

F aggr
L (x) =

d∑
i=0

πiFL(x − `i )

Scenario Aggregation in the Swiss Solvency Test 19/66



SST Scenario Aggregation
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SST Scenario Aggregation
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SST Scenario Aggregation
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SST Method: Discussion

I Fact: F aggr
L (x) is the cdf of L + Z for an independent

extra-ordinary loss random variable Z with P[Z = `i ] = πi

I Lemma:

ESaggr[L] = ES[L + Z ] ≥ ES[L] + E[Z ]

I Consequence: if E[Z ] > 0 then

ESaggr[L] > ES[L]

no matter how conservative the internal model for L is

⇒ scenario aggregation penalizes conservative internal models
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SST Method: Discussion

I No control on how far F aggr
L (x) from FL(x) is

I No control on how far ESaggr(L) from ES(L) is

I Confusion among stakeholders about “double-counting”

I High degree of subjectivity about auxiliary weights πi

I Capital is increased even if scenario is not in tail loss event

I Aggregation is on the level of FL(x), not P
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A Moment’s Reflection on Stress Tests

I Stress test: selected states of the world ωi ∈ Ω

I Leads to a maximal insurer specific loss ` = maxi L(ωi )

I Internal model (null hypothesis) P passes the stress test if not
rejected on significance level 1− α = 1%. That is, if

` ≤ VaRα(L)

I Equivalently,
P[S ] ≥ 1− α

for the scenario S = {L ≥ `}
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Definition of Views

I Given a collection of scenarios S1, . . . ,Sd ∈ F
I Given a vector of target probabilities c = (c1, . . . , cd)>

I Define S0 = Ω \ ∪di=1Si

I Denote M = set of probability measures on (Ω,F)

I Views on Q ∈M:

Q[Si ] ≥ ci , i = 1, . . . , d (views)
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Views in Terms of Atoms

I Let U0, . . . ,Un be the atoms of S = σ(S1, . . . ,Sd):

S0 = U0, Si = ∪j∈J(i)Uj , i = 1, . . . , d

I Views on Q ∈M:∑
j∈J(i) qj ≥ ci , i = 1, . . . , d (views)

for vector qj = Q[Uj ]

I Views in matrix form:
Aq ≥ c (views)

for matrix Aij = 1J(i)(j)
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Scenario Aggregation

I Modification of internal model: find minimizer for

minimize d(Q,P)

subject to (views)

with domain M

I d(·,P) measures the difference from P on M
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φ-Divergence

I φ-divergence

d(Q,P) =

{
E[φ(dQ/dP)], if Q� P
+∞, otherwise

where φ is convex, and strictly convex at 1 with φ(1) = 0

I Standard measure for difference of Q from P in statistics,
Csiszar (1963)

I Fact: d(Q,P) is not a metric, but convex in Q
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Examples and Facts

I Examples:

φ(t) =


t log t, relative entropy

(
√

t − 1)2, Hellinger distance

|t − 1|p, Lp-distance, p ≥ 1

I Facts:

‖dQ/dP− 1‖1 ≤
√

2dE (Q,P)

dH(Q,P) ≤ ‖dQ/dP− 1‖1 ≤
√

2dH(Q,P)

‖dQ/dP− 1‖1 = 2 dTV (Q,P) total variation

I Fact: all but the L1-distance are strictly convex in Q
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Robustness Check

I Question: is the capital requirement robust under minimum
φ-divergence scenario aggregation?

I In other words: is VaR and ES continuous with respect to
d(Q,P) ?

Minimum φ-Divergence Approach 34/66



Recall Definitions of VaR and ES

I Value at risk

VaR(X ) = q−α (X ), left α-quantile

I Expected shortfall

ES(X ) =
1

1− α
E
[
(X − q)+

]
+ q

=
1

1− α
(
E[X 1{X>q}] + q (P[X ≤ q]− α)

)
for any α-quantile q ∈ [q−α (X ), q+

α (X )]

I Folk theorem: VaR is more robust than ES . . .
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Lemma for Value at Risk

Lemma 4.1.
If dPn/dP→ 1 in L1 then

sup
x
|Pn[X ≤ x ]− P[X ≤ x ]| → 0

and
q−α (X ) ≤ lim inf

n
qn ≤ lim sup

n
qn ≤ q+

α (X )

for any sequence (qn) of α-quantiles of X , for any X ∈ L0.
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Non-Robustness of Value at Risk: Example

I Define X = 0 or 1 with P[X = 0] = α

I Define

dPn/dP =

{
1 + (1− α)(−1)n/(αn), on {X = 0}
1 + (−1)n+1/n, on {X = 1}

I VaR does not converge:

VaRn(X ) =

{
0 = q−α (X ), for n even

1 = q+
α (X ), for n odd
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Robustness of Expected Shortfall

Theorem 4.2.
Let p ∈ [1,∞]. If dPn/dP→ 1 in Lp then

ESn(X )→ ES(X )

for all X ∈ Lr , where p−1 + r−1 = 1.

Proof.
Using previous lemma and

(1− α) |ESn(X )− ES(X )| ≤ E
[
|Zn − 1|(X − qn)+

]
+ E

[∣∣(X − qn)+ − (X − q)+
∣∣]+ (1− α) |qn − q|

for any converging (sub-)sequence of α-quantiles qn → q.
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Back to the Optimization Problem

I Modification of internal model: find minimizer for

minimize d(Q,P)

subject to (views)
(P)

with domain M

Lemma 4.3.
For every R� P satisfying the views there exists a

R′ ∈ Q := {Q� P | dQ/dP is S-measurable}

satisfying the views and d(R′,P) ≤ d(R,P).

Proof.
Set dR′/dP = E [dR/dP | S] and use Jensen’s inequality.
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Existence and Uniqueness

I Note dimQ = n + 1: identify Q ∈ Q with q by

qj = Q[Uj ], j = 0, . . . , n

Theorem 4.4.
There exists a solution of (P) in Q. Moreover, if φ is strictly
convex then the solution is unique.
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Solution of Optimization Problem

I Define p ∈ (0, 1)n+1 by pj = P[Uj ]

I The optimization problem (P) reduces to

minimize
∑n

j=0 pj φ(qj/pj)

subject to Aq ≥ c

1>q = 1

(P)

with domain (0, 1)n+1

I Solution via dual problem or Kuhn–Tucker (FOC) conditions

I Reference e.g. Boyd and Vandenberghe (2004)
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Special Case: d = 1 Scenario

Corollary 4.5.

For d = 1 scenario S1 a (the) solution to (P) is given by

dQ∗

dP
=

1−max{c1, p1}
p0

1S0 +
max{c1, p1}

p1
1S1

independently of the choice of the (strictly) convex divergence
function φ.

Proof.
Convexity of φ implies that q1 7→ d(Q(q1),P) is non-decreasing in
q1 for q1 > p1.
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Special Case: Stress Testing (d = 1 Scenario)

I Recall stress testing is equivalent to d = 1 views

Q[S1] ≥ 1− α

on the scenario S1 = {L ≥ `} with ` = maxi L(ωi )

I In this case we obtain a closed form expression for ES:

Corollary 4.6.

The expected shortfall under Q∗ given in Corollary 4.5 satisfies

ESQ∗, α(L) = ESP,max{P[L<`],α}(L).
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Relative Entropy: Dual Problem

I The Lagrangian function is

L(q, λ, ν) =
n∑

j=0

qj log
qj

pj
+ λ>(c− Aq) + ν

(
1>q− 1

)
I The dual problem is

minimize
∑n

j=0 pje
(A>λ)j−ν−1 − c>λ+ ν

subject to λ ≥ 0
(DP)

with domain λ ∈ Rd and ν ∈ R
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Relative Entropy: Slater’s Condition

I Slater’s condition: ∃q > 0 such that Aq ≥ c and 1>q = 1

I If Slater’s condition holds then there exists a unique minimizer
(λ∗, ν∗) of the dual problem (DP), and strong duality holds:

q∗j = pje
(A>λ∗)j−ν∗−1 j = 0, . . . , d
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Relative Entropy: Kuhn–Tucker Conditions

If Slater’s condition holds then the Kuhn–Tucker conditions are
necessary and sufficient for optimality:

λ ≥ 0, Aq ≥ c, λ>(Aq− c) = 0

1>q = 1

log q− log p + 1− A>λ+ ν1 = 0
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Relative Entropy: Explicit Solution for Disjoint Scenarios

Lemma 4.7.
If the d scenarios S1, . . . ,Sd are mutually disjoint then the unique
solution to (P) is given by

q∗j = max

{
cj , pj

1−
∑d

i=k∗+1 ci∑k∗

i=0 pi

}

where k∗ is the integer determined by

k∗+1∑
i=0

pi

(
ck∗+1

pk∗+1
− ci

pi

)
> 1−

d∑
i=0

ci ≥
k∗∑
i=0

pi

(
ck∗

pk∗
− ci

pi

)
and we assume w.l.o.g. that c0

p0
< · · · < cd

pd
with c0 := 0.
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Relative Entropy: Example

I d = 2 disjoint scenarios S1, S2

I Target probabilities c = (0.2, 0.2)>
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Figure: Contour plots for (p1, p2)> ≤ c (left), p1 > c1, p2 < c2 (right)
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Relative Entropy: More on Solutions

I In the paper we also provide explicit solutions for d = 2
overlapping scenarios S1, S2

I In general: numerical solution of dual problem
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Case Study 1: Setup

I Loss L ∼ N (0, 10.2)

I Compare scenario aggregation using SST and minimum
entropy method
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Case Study 1: SST Method
I d = 1 scenario with probability c and extra-ordinary loss `
I Recall: F aggr

L (x) = (1− c) FL(x) + c FL(x − `)
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Case Study 1: Minimum Entropy Method
I d = 1 scenario S1 = {L ≥ `}
I View: Q[L ≥ `] ≥ c for some auxiliary level c
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Case Study 1: Difference SST - Minimum Entropy Method
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Case Study 1 (Stress Test): Minimum Entropy Method
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Figure: Impact on cumulative distribution function for ` = VaRα(L) with
α = 0.99 (black), α = 0.995 (grey), α = 0.999 (blue)
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Outline

Risk-Based Solvency Regulation

Is Risk-Based Market Consistency Too Expensive?

Scenario Aggregation in the Swiss Solvency Test

Minimum φ-Divergence Approach
Minimum φ-Divergence Scenario Aggregation
Robustness of Capital Requirement
Solving the Optimization Problem
Example: Relative Entropy
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Case Study 2: Setup

I Two risk factors (X1,X2) normal with mean 0, and
var(X1) = 1, var(X2) = 4, and corr(X1,X2) = −0.5

I X1: change in interest rates

I X2: risk factor related to CAT events with reinsurance

I Loss
L = max{X1,−1}+ max{min{X2, 5},−1}

is capped in X2 (reinsurance), and gains are capped at 1

I d = 2 scenarios

S1 = {X1 ≥ 1, X2 ≥ 1} and S2 = {X1 < −2}
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Case Study 2: Shortfall Region

I Shortfall region W = {L > VaR0.99(L)} overlaps with S1,

W ∩ S1 6= ∅

but not with S2,
W ∩ S2 = ∅

I Extra-ordinary losses caused by S1 and S2 are positive

`1 = E[L | S1]− E[L] = 2.7, `2 = E[L | S2]− E[L] = 0.9

I SST aggregation of S2 leads to a capital increase even though
S2 does not intersect with the shortfall region W
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Case Study 2: Scenarios and Shortfall Region
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Case Study 2: SST Method
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Figure: Sensitivity of ESaggr[L] with respect to c1 and c2
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Case Study 2: Minimum Entropy Method
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Figure: Sensitivity of ESQ∗ [L] with respect to c1 and c2
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Case Study 2: Difference SST - Minimum Entropy Method
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Figure: ESaggr[L]− ESQ∗ [L] as function of c1 and c2
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Conclusion

I Risk-based market-consistent solvency regime comes along
with intended and unintended consequences

I Scenario aggregation is vital part of risk-based solvency
regulation

I Current SST method subject to critical review

I Minimum φ-divergence approach is a coherent scenario
aggregation method:

I No penalty for conservative internal models
I Focus on tail loss events
I Control over distance from internal model
I Robustness of capital requirement
I Highly tractable (closed form solutions sometimes)
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