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Overview

» Local vol model: recreates marginals of a given diffusion (via
call price surface)

> Inconsistent with jumps in the underlying
» Local Lévy models

» We propose a simple truncation to improve the classical
diffusion local vol model

» Quantifying the blowup of local vol for small time



Local volatility (r = 0 for simplicity)
> If an underlying satisfies
dS:/Se = o(t, S¢)dW,
then call prices C(K, T) satisfy the forward PDE
OrC(K, T) = 3K?0(K, T)*0kx C(K, T).
» Conversely: The local volatility model
dSt/St = O10c(St, t)dW,

reproduces a given smooth call price surface C, where:
» Dupire’s formula (1994)
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Using Dupire’s formula for models with jumps

» Suppose that C(K, T) is generated from a model with jumps

» Variance gamma model: Call price not C? w.r.t. strike (but
works for T large)

» Jumps cause blowup of local vol as T — 0, hence local vol
model may be ill-defined (Cont, Gu 2012).

» Even if Dupire’s formula is well-defined, the local vol model
may not match the marginals of the jump process.



Local Lévy models

v

Carr, Geman, Madan, Yor 2004

» Dynamics

dSt == 0'(51_-_, t)St_th
(e = D, (e, du) — s, 5)(d, du)
» mis an integer valued random measure independent of W

> L is its compensator

» o and m are chosen to reproduce a given call price surface



Local Lévy models

» Local speed function ag:
(s, ,s)(dx, dt) = ao(S:—, t)v(dx)dt
» Call price PIDE:
Cr = 30%(K, T)K?Ckk
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» 1 is double exponential tail of Lévy measure:

_ 2 —e)p(dx) z<0
Wz) = {foo(ex —ef)v(dx) z>0
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Calculating the model parameters from the call price
surface

» PIDE parameter identification: get o, ag, v from call price
surface

> lll-posed inverse problem

» Kindermann, Albrecher, Mayer, Engl 2008: Tikhonov
regularization for ag (speed function), given o and v

» Kindermann, Mayer 2011: Tikhonov regularization for all
parameters



Results by Cont, Gu (2012)

» Local vol models and local jump diffusion models are
incompatible

> The sets of call price surfaces they generate are disjoint

» Hence using local vol is questionable if one believes that the
underlying has jumps

» Local vol surface blows up as T — 0 if the underlying has
jumps



Our approach: regularization of local vol (Friz, G., Yor
2013)

» Local vol models: Inconsistent with jumps in underlying,
non-robust (recalibration!)

» Local Lévy models: Theoretically more sound, but harder to
implement

» We propose a “poor man's approach”: Retain local vol
dynamics, but with stochastic initial value

» Consistent with jumps in underlying
» Original call price surface recovered with arbitrary precision

» Calibration simpler than for local Lévy models



Regularization of local vol: Idea

Pick a small e > 0

v

v

Get law of underlying at time € from market data

v

Let the (properly shifted) local vol dynamics run from time €
on

v

Gives a diffusion process S¢ on the time interval [, c0)

v

As ¢ — 0, the given call price surface is recovered



Regularization of local vol: a trivial observation

» Assumption: Suppose that the given C is such that
dS/S = 010c(S, t)dW; has a well-defined solution.

» Define e-shifted local volatility
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Then the solution of dS¢/S¢ = 0.(5°,t)dW, started at
randomized spot S§ with distribution

P[SS € dK]/dK = ok C(K, ¢),
satisfies
E[(SF — K)+] =C(K, T+¢e)— C(K,T) as ¢—0.

> Key point: the assumption is not necessary!



Regularization of local vol

Theorem (Friz, G., Yor 2013): Assume that (S;) is a martingale
(possibly with jumps) with associated smooth call price surface C:

C(K, T) =E[(ST - K)'],

such that 97C > 0 and dxx C > 0, i.e. (strict) absence of calendar
and butterfly spreads.
Define e-shifted local volatility

20rC(K, T +¢)
2K, T) = o — :
o=(K, T) K20k C(K, T + ¢)

Then dS¢/5° = o.(5%, t)dW, started at randomized spot S§ with
distribution
P[S; € dK]/dK = 0k C(K, ),

admits a unique, non-explosive strong SDE solution such that

VK, T >0:E[(ST —K)"] = C(K,T) as ¢—0.



Regularization of local vol: Proof idea 1/4

> Let ¢°(dS, T) be the law of S, and p°(S, T) be the density
of 574

» Calculate

Then let e — 0.
> Need to show 5% g ST4e



Regularization of local vol: Proof idea 2/4

> Define 0rC(K.T +2)
+e
(K, T) =
“(K.T) pe(K, T)
> p° satisfies the Fokker-Plack equation

Okk(a°p°) = Orp°

» Note: a°(S, t)Jss is the generator of S°.



Regularization of local vol: Proof idea 3/4

» For any test function,

P57 — ol55) — [ a°(S%. 00550 ()

is a martingale.
» Take expectation:

/@(Sq(dSt /gp d50+// (S, )" (S)q°(dS, s)

for any smooth ¢ with compact support.

» Hence g° is also a (weak) solution of the Fokker-Planck
equation



Regularization of local vol: Proof idea 4/4

» So our result is a corollary of the following uniqueness
theorem (Pierre 2012):

» U:=(0,00) xR

» Let a: (t,x) € U— a(t,x) € R, be a continuous function
with a(t,x) > 0 for (t,x) € U, and let u be a probability
measure with [ |x|u(dx) < oc.

» Then there exists at most one family of probability measures
(p(t,dx),t > 0) such that

» t >0 — p(t,dx) is weakly continuous
» p(0, dx) = u(dx) and

Otp — Oux(ap) =0 in D'(V)

(i.e., in the sense of Schwartz distributions on the open set U.)



Brief side remark about peacocks

v

A peacock (PCOC=processus croissant pour |'ordre convexe)
is an integrable process (X;) such that

t — E[)(Xt)] increases for every convex 1.

» If X has the same one-dimensional marginals as some
martingale, then X is a peacock (Jensen's inequality).

> Kellerer's theorem (1972): The converse is also true.
» Hirsch, Roynette, Yor (2012): New proof + extension.

» Part of the proof resembles our construction. In particular,
Pierre's uniqueness theorem is used.



Quantifying the blowup of local vol in jump models

» Recall Dupire's formula:
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» Example: NIG model. Density Ok C explicit,and ~ T for
small T.
071 C tends to a constant (by forward PIDE).

» Hence the blowup in the NIG model:

1
Tloc(K, )~ 5 K# 50, T =0,



Quantifying the blowup of local vol in jump models

» More examples for off-the-money blowup (K # Sy fixed):
0120c(K7 T)~1/T (Merton jump diffusion)
oK, T) ~ l/ﬁ (Kou's diffusion)

02 (K,T)~1/T (Normal inverse Gaussian)



General asymptotic formula for local vol (De Marco, Friz,
G. 2013)

» log moment generating function (X7 = log S7)
m(s, T) = log E[exp(sX7)]

» saddle point 3(k, T)

=k

S$=S§

0
Em(sv T)

» Asymptotic approximation for “extreme” K or T:

28%m(s, T)

0-120C(K7 T) ~ S(S _ 1)

s=8(k,T)



General asymptotic formula for local vol: proof idea

» Moment generating function (X7 = log S1):
M(s, T) := E[exp(sXT)], m(s, T) :=log M(s, T)
» Dupire's formula + Fourier inversion
207 C
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ffjooo e~ ksl\/l(s, T)ds

GlOC(K T)

» Saddle point method: Leading terms are integrands evaluated
at saddle point — cancellation



Summary

v

Small time shift in local vol allows to accommodate jumps

v

Small-maturity smile (usually steep) from market data; no
need for steep wings of local vol function

v

Asymptotic consistency proof by Pierre's uniquenes theorem
for Fokker-Planck equations

v

Future work: numerical tests (robust recalibration?)
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