## Option Pricing and Calibration with Time-changed Lévy processes

Yan Wang and Kevin Zhang

Warwick Business School

 $12\mathrm{th}$  Feb. 2013

- 1. How to find a perfect model that captures essential features of financial returns
  - empirical findings: negative skewness, high kurtosis, stochastic volatility and jumps
  - available stochastic processes: Brownian motion and jump processes (Lévy processes)
- 2. How to keep the tractability
  - Carr-Madan formula with FFT method
- 3. Empirical analysis
  - estimation
  - daily calibration

Theoretical Background: What is time-changed Lévy process?

- Lévy processes are widely used recently to model Financial returns. A Lévy process can generate a variety of distributions at a fixed time horizon. Brownian motion is a special case of Lévy processes.
- A stochastic process (X<sub>t</sub>)<sub>t≥0</sub> is said to be a Lévy process if:
  1. X<sub>0</sub> = 0 a.s. ;

2. 
$$X_t - X_s \perp X_s$$
, for any  $t > s$ ;

3.  $X_t - X_s$  is equal in distribution to  $X_{t-s}$ , for any t > s.

• Lévy processes are fully characterized by its characteristic function

$$\mathbb{E}[\exp(iuX_t)] = \exp\left(i\mu ut - \frac{1}{2}\sigma^2 u^2 t + \int_{\mathbb{R}_0} (e^{iux} - 1 - iux1_{|x|<1})\pi(dx)\right)$$

which is the Levy-Khintchine representation.

What is time-change?

- Let  $t \to T_t$  be an increasing right-continuous process with left limits satisfying the usual conditions.
- The random time  $T_t$  can be modelled as a nondecreasing semimartingale

$$T_t = \alpha_t + \int_0^t \int_0^\infty y\mu(dt, dy)$$

• Simply, we can model the random time as

$$T_t = \int_0^t v_s ds$$

where v(t) is the activity rate.

•  $T_t$  can be viewed as the business time at time t. It is driven by a stochastic activity process. A more active business day can generate higher volatility.

- Time-changed Lévy process:  $Y_t = X_{T_t}$
- Lévy processes are natural to be applied with time-change technique
  - infinitely divisible distribution
- Common choices of the activity rate of random time:
  - CIR process
  - Ornstein-Uhlenbeck (OU) process
  - Non-Gaussian OU process
- Introducing Leverage Effect
  - Pure jump innovation cannot have non-zero correlation with a pure-diffusion modelling the random time

- Economic intuition and explanation:
  - small movements and jumps
  - stochastic business time with stochastic intensity
- Flexible distribution for innovation:
  - Non-Gaussian, asymmetry and high kurtosis
- Tractability:
  - known explicit characteristic function and tractable Laplace transform of time-change
  - Fast calibration
- Fitness of modelling
  - infinite-activity jump models outperform existing models
  - potential development with the rapidly research on infinitely divisible distribution

- Empirical research suggests that diffusion models cannot be used for modelling financial returns in a quantitative sense while MJD models can only capture large movements
- Infinite activity jumps are essential and capable of modelling both large and small movements, in the absent of diffusion components:
  - VG model: Madan et al. (1998) EFR paper
  - CGMY model: Carr et al. (2002) JB paper
  - FMLS model: Carr and Wu (2003) JF paper
- Time-change technique produces stochastic volatility; however, it is very daunting task to introduce the leverage effect for time-changed Lévy models:
  - Carr and Wu (2004) JFE paper
  - Carr et al. (2003) MF paper

• Carr and Wu (2003) propose a leverage-neutral measure with which correlation can be introduced

$$\Phi(\theta) = \mathbb{E}[e^{i\theta Y_t}] = \mathbb{E}^{\theta}[e^{-T_t\Psi(\theta)}] = L^{\theta}_{T_t}(\Psi(\theta))$$
(1)

• A sketch of proof:

$$\mathbb{E}[e^{i\theta Y_t}] = \mathbb{E}[e^{i\theta Y_t + T_t\Psi(\theta) - T_t\Psi(\theta)}]$$
$$= \mathbb{E}[M_t(\theta)e^{-T_t\Psi(\theta)}]$$
$$= \mathbb{E}^{\theta}[e^{-T_t\Psi(\theta)}]$$

where  $M_t(\theta) = e^{i\theta Y_t + T_t \Psi(\theta)}$  can be easily proved to be a martingale under measure  $\mathbb{Q}$ .

Let  $(\Omega, \mathcal{F}, \mathbb{Q})$  be a complete probability space and  $(F_t)_{t\geq 0}$  be a Filtration satisfying the usual conditions. For a time-changed Lévy process  $Y_t = X_{T_t}$  under the  $\mathbb{Q}$  measure, the characteristic function of  $Y_t$  is

$$\Phi_{Y_t}(\theta) = \mathbb{E}[\exp(iuY_t)] = \mathbb{E}^M[\exp(-T_t\Psi(u))] = L_T^M(\Psi_X(u))$$

where  $\mathbb{E}[\cdot]$  and  $\mathbb{E}^{M}[\cdot]$  denote expectations under measure  $\mathbb{Q}$  and  $\mathbb{M}$ , respectively. The complex-valued measure  $\mathbb{M}$  is absolutely continuous with respect to  $\mathbb{Q}$  and the Radon-Nikodym derivative is defined by

$$M_t(u) = \frac{dM(u)}{dQ} = \exp(iuY_t + T_t\Psi_X(u))$$

- Last task: derive  $L_T(\theta) = \mathbb{E}\left[\exp\left(-\theta \int_0^t v_s ds\right)\right]$
- Affine activity rate models

$$L_{T_t}(u) = \exp\left(-b(t)z_0 - c(t)\right)$$
(2)

where b(t) and c(t) are scalar functions.

• Filipovic (2001) shows that the infinite generator of a activity rate process v(t) has the representation of

$$Af(x) = \frac{1}{2}xf''(x) + (a' - \kappa x)f'(x) + \int_{R_0^+} (f(x+y) - f(x) - f(y)(1 \wedge y))(m(dy) + \mu(dy))$$
(3)

• Is there any problem? not practical

- Since closed-form solutions of ODEs are not obtainable, numerical methods are needed.
- Traditional Pricing of Heston model and Lévy models rely on the Carr-Madan formula and Fast Fourier Transform (FFT).
  - Thousands of ODEs must be solved numerically and simultaneously:  $N \ge 4096$
  - Adaptive Runge-Kutta methods do not perform well as solving c(t) requires the whole information of b(t)

- Fast Fourier Transform (FFT) and Carr-Madan Formula (See Carr and Madan(1999))
  - stable, easy-implemented
  - a large number of sampling points required  $(N \ge 4096)$
  - restrictive as sampling must be equally spaced
- Fractional FFT (FrFT) (See Chourdakis (2005))
  - faster than FFT as less sampling points are needed
  - equally spacing still required
- Direct Integration (See Attari (2004))
  - very fast
  - accuracy is unstable
- COS Expansion introduced in Fang and Oosterlee (2008)
  - very limited sampling points are required to have the desired accuracy

• The underlying process used is a special case of the  $\alpha$ -stable process. The characteristic function of an  $\alpha$ -stable process  $L_t$  is

$$\Phi(u) = E[e^{iuL_1}] = \exp\left(iu\theta - |u|^\alpha \sigma^\alpha \left(1 - i\beta(sgnu)\tan\frac{\pi\alpha}{2}\right)\right)$$
(4)

- Carr and Wu (2003) modify the original α-stable process and name the "new" process Finite Moment Log Stable (FMLS) process by setting β = -1, in order to ensure finite moments of returns. It can be further simplified by normalization of σ = 1 and abandon the drift θ.
- It admits only negative jumps and is of infinite activity and infinite variation.

• Fix a complete probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  with a filtration  $\{\mathcal{F}_t\}$  satisfying the usual conditions. Suppose the spot price follows:

$$S_{t} = S_{0} \exp\left((r-q)t + \sigma L_{T_{t}}^{\alpha_{1},-1} - \xi T_{t}\right)$$

$$T_{t} = \int_{0}^{t} (v_{s}^{1} + v_{s}^{2})ds$$

$$dv_{t}^{1} = \kappa^{1}(1-v_{t}^{1})dt + \beta^{1}dL_{t}^{\alpha_{1},1}$$

$$dv_{t}^{2} = \kappa^{2}(1-v_{t}^{2})dt + \beta^{2}dL_{t}^{\alpha_{2},1}$$
(5)

where r and q are the risk-free rate and dividend rate, and  $\xi$  is the convexity correction.  $L_t^{\alpha_1,-1}$  is a standard FMLS process with parameter  $\alpha_1$ .  $L_t^{\alpha_1,1}$  is the mirror image of  $L_t^{\alpha_1,-1}$ .

The parameter set is {α<sub>1</sub>, α<sub>2</sub>, β<sub>1</sub>, β<sub>2</sub>, σ, κ<sup>1</sup>, κ<sup>2</sup>}. It has both long-run and short-run volatility effect with only 7 parameters, compared to 5 parameters of the Heston model.

- The proposed model admits the leverage effect, because there is dependence between  $S_t$  and  $T_t$ .
- Solving (5) is extremely hard as the iteration rule cannot be applied, due to the dependence.
- Applying the leverage-neutral measure, we can derive ODEs for (5); however, they cannot be solved analytically.
- Numerically solving is too time-consuming, especially because of the requirement of Carr-Madan method.
- COS expansion
  - a quick method
  - can be accelerated

• Generator of activity rate

$$Af(x) = (\kappa \eta - (\kappa + \delta)x)f'(x) + \beta^{\alpha} \int_{R_0^+} (f(x+y) - f(x) - f'(x)(1 \wedge y))\mu(dy)$$
(6)

where  $\mu(dy) = cy^{-\alpha-1}dy$  is the Lévy measure of the FMLS process,  $c = -\sec\frac{\pi\alpha}{2}\frac{1}{\Gamma(-\alpha)}$ , and  $\delta = \frac{c}{\alpha-1}$ .

• The charactersitc function is

$$\Phi(u) = L_T^M(\Psi(u)) = \exp(-b(t)v_0 - c(t))$$
(7)

where

$$b'(t) = \Psi(u) - \kappa b(t) + \sec \frac{\pi \alpha}{2} \beta [(b(t) + iu)^{\alpha} - (iu)^{\alpha}] \quad (8)$$

$$c'(t) = \kappa \eta b(t) \tag{9}$$

with initial conditions: b(t) = 0 and c(t) = 0. Unfortunately, b(t) and c(t) are not explicitly solvable.

- Solving ODEs with order 4, 5 Runge-Kutta method to solve b(t) and c(t) simultaneously
- Vector calculation and cache technique must be used to accelerate the speed
- Use COS expansion pricing method to generate accurate prices based on very limited sampling points
- Apply global search combined with local search to achieve stable calibration results

A descriptive comparison with respect to the standard Carr-Madan method

|     | СО       | S                                           | FFT  |            |                                             |  |  |
|-----|----------|---------------------------------------------|------|------------|---------------------------------------------|--|--|
| Ν   | Error    | $\operatorname{Time}(\operatorname{msec.})$ | Ν    | Error      | $\operatorname{Time}(\operatorname{msec.})$ |  |  |
| 32  | 5.18E-01 | 47                                          | 128  | 3.50E + 08 | 2.9                                         |  |  |
| 64  | 1.73E-02 | 48                                          | 256  | -3.71E+06  | 3.25                                        |  |  |
| 96  | 2.77E-03 | 66                                          | 512  | 2.17E + 01 | 4.98                                        |  |  |
| 128 | 3.75E-04 | 68                                          | 1024 | -1.92E+00  | 6.37                                        |  |  |
| 160 | 1.99E-05 | 78                                          | 2048 | 2.12E-03   | 11.24                                       |  |  |
| 192 | 3.17E-07 | 79                                          | 4096 | -2.31E-07  | 19.25                                       |  |  |

Table 1: A Comparison of Error Convergence and computation timefor COS Pricing and FFT Pricing.

|      | Heston | VG     | CGMY   | LS     | VGSV   | CGMYSV | LSSV   |
|------|--------|--------|--------|--------|--------|--------|--------|
| 1998 | 0.2792 | 0.9222 | 0.9311 | 0.4741 | 0.3812 | 0.3922 | 0.2812 |
| 1999 | 0.3061 | 0.8568 | 0.8636 | 0.4639 | 0.4149 | 0.4039 | 0.3256 |
| 2000 | 0.3709 | 0.9005 | 1.0828 | 0.4679 | 0.4171 | 0.4289 | 0.2838 |
| 2001 | 0.1663 | 0.9393 | 0.9674 | 0.5486 | 0.3208 | 0.3770 | 0.2276 |
| 2002 | 0.3223 | 1.1011 | 0.9279 | 0.5446 | 0.4627 | 0.4069 | 0.2407 |
| 2003 | 0.2951 | 1.0608 | 0.9668 | 0.5450 | 0.4058 | 0.3828 | 0.3340 |

 Table 2: Daily Calibration Results of Different Models

- Calibration results are obtained by minimizing the sum of squared pricing error between market prices and model prices. Market option data are S&P 500 index options which are collected from April 4, 1998 to May 31, 2003. The output is given in MSE(E+05).
- The model with the best performance is the LSSV model; it also exhibits excellent stability of parameters.



Figure 1: A Sample of Daily Calibration Result

- Jumps should play an important role in modelling the volatility/variance
- However, existing literature indicates that jump structure in the volatility process cannot improve the performance significantly
- Long-run and short-run volatility processes can provide better fitness
- The LSSV model outperforms the celebrated Heston model, and it also provides stable calibration results with parsimonious parameter space.
- It will lead a way to develop pure-jump stochastic volatility models incorporating the leverage effect, especially for Lévy processes.

Core contributions:

- The first attempt to investigate the fitness of time-changed Lévy models which admit the leverage effect
- Quantify the vital impact of leverage effect given time-changed Lévy models
- Construct a numerical framework that realize the leverage measure introduced by Carr and Wu (2003)
- It is a robust numerical framework that can be adopted for any kind of time-changed Lévy model
- A very decent model is proposed and evaluated, which admits leverage effect and multi-scale stochastic volatility.

## Thank You