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Objectives

1. How to find a perfect model that captures essential features of

financial returns

• empirical findings: negative skewness, high kurtosis,

stochastic volatility and jumps

• available stochastic processes: Brownian motion and jump

processes (Lévy processes)

2. How to keep the tractability

• Carr-Madan formula with FFT method

3. Empirical analysis

• estimation

• daily calibration
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Theoretical Background: What is time-changed Lévy process?

• Lévy processes are widely used recently to model Financial

returns. A Lévy process can generate a variety of distributions

at a fixed time horizon. Brownian motion is a special case of

Lévy processes.

• A stochastic process (Xt)t≥0 is said to be a Lévy process if:

1. X0 = 0 a.s. ;

2. Xt −Xs ⊥ Xs, for any t > s;

3. Xt −Xs is equal in distribution to Xt−s , for any t > s.

• Lévy processes are fully characterized by its characteristic

function

E[exp(iuXt)] = exp

(

iµut−
1

2
σ2u2t+

t

∫

R0

(eiux − 1− iux1|x|<1)π(dx)

)

which is the Levy-Khintchine representation.
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Theoretical Background: What is time-changed Lévy process?

What is time-change?

• Let t → Tt be an increasing right-continuous process with left

limits satisfying the usual conditions.

• The random time Tt can be modelled as a nondecreasing

semimartingale

Tt = αt +

∫ t

0

∫ ∞

0

yµ(dt, dy)

• Simply, we can model the random time as

Tt =

∫ t

0

vsds

where v(t) is the activity rate.

• Tt can be viewed as the business time at time t. It is driven by

a stochastic activity process. A more active business day can

generate higher volatility.
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Theoretical Background: What is time-changed Lévy process?

• Time-changed Lévy process: Yt = XTt

• Lévy processes are natural to be applied with time-change

technique

– infinitely divisible distribution

• Common choices of the activity rate of random time:

– CIR process

– Ornstein-Uhlenbeck (OU) process

– Non-Gaussian OU process

• Introducing Leverage Effect

– Pure jump innovation cannot have non-zero correlation with

a pure-diffusion modelling the random time
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Theoretical Background: Advantages of time-changed Lévy processes

• Economic intuition and explanation:

– small movements and jumps

– stochastic business time with stochastic intensity

• Flexible distribution for innovation:

– Non-Gaussian, asymmetry and high kurtosis

• Tractability:

– known explicit characteristic function and tractable Laplace

transform of time-change

– Fast calibration

• Fitness of modelling

– infinite-activity jump models outperform existing models

– potential development with the rapidly research on

infinitely divisible distribution
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Motivations: How to introduce Leverage Effect

• Empirical research suggests that diffusion models cannot be

used for modelling financial returns in a quantitative sense

while MJD models can only capture large movements

• Infinite activity jumps are essential and capable of modelling

both large and small movements, in the absent of diffusion

components:

– VG model: Madan et al. (1998) EFR paper

– CGMY model: Carr et al. (2002) JB paper

– FMLS model: Carr and Wu (2003) JF paper

• Time-change technique produces stochastic volatility; however,

it is very daunting task to introduce the leverage effect for

time-changed Lévy models:

– Carr and Wu (2004) JFE paper

– Carr et al. (2003) MF paper
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What is the solution?

• Carr and Wu (2003) propose a leverage-neutral measure with

which correlation can be introduced

Φ(θ) = E[eiθYt ] = Eθ[e−TtΨ(θ)] = Lθ
Tt
(Ψ(θ)) (1)

• A sketch of proof:

E[eiθYt ] = E[eiθYt+TtΨ(θ)−TtΨ(θ)]

= E[Mt(θ)e
−TtΨ(θ)]

= Eθ[e−TtΨ(θ)]

where Mt(θ) = eiθYt+TtΨ(θ) can be easily proved to be a

martingale under measure Q.
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Proposition: Leverage-neutral Measure

Let (Ω,F ,Q) be a complete probability space and (Ft)t≥0 be a

Filtration satisfying the usual conditions. For a time-changed Lévy

process Yt = XTt
under the Q measure, the characteristic function

of Yt is

ΦYt
(θ) = E[exp(iuYt)] = EM [exp(−TtΨ(u))] = LM

T (ΨX(u))

where E[·] and EM [·] denote expectations under measure Q and M,

respectively. The complex-valued measure M is absolutely

continuous with respect to Q and the Radon-Nikodym derivative is

defined by

Mt(u) =
dM(u)

dQ
= exp(iuYt + TtΨX(u))
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Derive the Activity Generator

• Last task: derive LT (θ) = E

[

exp
(

−θ
∫ t

0
vsds

)]

• Affine activity rate models

LTt
(u) = exp (−b(t)z0 − c(t)) (2)

where b(t) and c(t) are scalar functions.

• Filipovic (2001) shows that the infinite generator of a activity

rate process v(t) has the representation of

Af(x) =
1

2
xf ′′(x) + (a′ − κx)f ′(x)+

+

∫

R
+

0

(f(x+ y)− f(x)− f(y)(1 ∧ y)) (m(dy) + µ(dy))

(3)

• Is there any problem? not practical
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Derive the Activity Generator

• Since closed-form solutions of ODEs are not obtainable,

numerical methods are needed.

• Traditional Pricing of Heston model and Lévy models rely on

the Carr-Madan formula and Fast Fourier Transform (FFT).

– Thousands of ODEs must be solved numerically and

simultaneously: N ≥ 4096

– Adaptive Runge-Kutta methods do not perform well as

solving c(t) requires the whole information of b(t)
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Pricing Methods for European Options

• Fast Fourier Transform (FFT) and Carr-Madan Formula (See

Carr and Madan(1999))

– stable, easy-implemented

– a large number of sampling points required (N ≥ 4096)

– restrictive as sampling must be equally spaced

• Fractional FFT (FrFT) (See Chourdakis (2005))

– faster than FFT as less sampling points are needed

– equally spacing still required

• Direct Integration (See Attari (2004))

– very fast

– accuracy is unstable

• COS Expansion introduced in Fang and Oosterlee (2008)

– very limited sampling points are required to have the

desired accuracy
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Underlying Process and Proposed model

• The underlying process used is a special case of the α-stable

process. The characteristic function of an α-stable process Ltis

Φ(u) = E[eiuL1 ] = exp
(

iuθ − |u|ασα
(

1− iβ(sgnu) tan
πα

2

))

(4)

• Carr and Wu (2003) modify the original α-stable process and

name the “new” process Finite Moment Log Stable (FMLS)

process by setting β = −1, in order to ensure finite moments of

returns. It can be further simplified by normalization of σ = 1

and abandon the drift θ.

• It admits only negative jumps and is of infinite activity and

infinite variation.
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Underlying Process and Proposed model

• Fix a complete probability space (Ω,F ,P) with a filtration {Ft}

satisfying the usual conditions. Suppose the spot price follows:

St = S0 exp
(

(r − q)t+ σL
α1,−1
Tt

− ξTt

)

Tt =

∫ t

0

(v1s + v2s)ds

dv1t = κ1(1− v1t )dt+ β1dL
α1,1
t

dv2t = κ2(1− v2t )dt+ β2dL
α2,1
t (5)

where r and q are the risk-free rate and dividend rate, and ξ is

the convexity correction. Lα1,−1
t is a standard FMLS process

with parameter α1. L
α1,1
t is the mirror image of Lα1,−1

t .

• The parameter set is {α1, α2, β1, β2, σ, κ
1, κ2}. It has both

long-run and short-run volatility effect with only 7 parameters,

compared to 5 parameters of the Heston model.
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Numerical Pricing Framework

• The proposed model admits the leverage effect, because there is

dependence between St and Tt.

• Solving (5) is extremely hard as the iteration rule cannot be

applied, due to the dependence.

• Applying the leverage-neutral measure, we can derive ODEs for

(5); however, they cannot be solved analytically.

• Numerically solving is too time-consuming, especially because

of the requirement of Carr-Madan method.

• COS expansion

– a quick method

– can be accelerated
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Numerical Pricing Framework

• Generator of activity rate

Af(x) = (κη − (κ+ δ)x)f ′(x)+

βα

∫

R
+

0

(f(x+ y)− f(x)− f ′(x)(1 ∧ y))µ(dy) (6)

where µ(dy) = cy−α−1dy is the Lévy measure of the FMLS

process, c = −secπα2
1

Γ(−α) , and δ = c
α−1 .

• The charactersitc function is

Φ(u) = LM
T (Ψ(u)) = exp(−b(t)v0 − c(t)) (7)

where

b′(t) = Ψ(u)− κb(t) + sec
πα

2
β[(b(t) + iu)α − (iu)α] (8)

c′(t) = κηb(t) (9)

with initial conditions: b(t) = 0 and c(t) = 0. Unfortunately,

b(t) and c(t) are not explicitly solvable.
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Numerical Pricing Framework

• Solving ODEs with order 4, 5 Runge-Kutta method to solve

b(t) and c(t) simultaneously

• Vector calculation and cache technique must be used to

accelerate the speed

• Use COS expansion pricing method to generate accurate prices

based on very limited sampling points

• Apply global search combined with local search to achieve

stable calibration results
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Numerical Pricing Framework

A descriptive comparison with respect to the standard Carr-Madan

method

COS FFT

N Error Time(msec.) N Error Time(msec.)

32 5.18E-01 47 128 3.50E+08 2.9

64 1.73E-02 48 256 -3.71E+06 3.25

96 2.77E-03 66 512 2.17E+01 4.98

128 3.75E-04 68 1024 -1.92E+00 6.37

160 1.99E-05 78 2048 2.12E-03 11.24

192 3.17E-07 79 4096 -2.31E-07 19.25

Table 1: A Comparison of Error Convergence and computation time

for COS Pricing and FFT Pricing.
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Empirical Results and Analysis: Daily Calibration

Heston VG CGMY LS VGSV CGMYSV LSSV

1998 0.2792 0.9222 0.9311 0.4741 0.3812 0.3922 0.2812

1999 0.3061 0.8568 0.8636 0.4639 0.4149 0.4039 0.3256

2000 0.3709 0.9005 1.0828 0.4679 0.4171 0.4289 0.2838

2001 0.1663 0.9393 0.9674 0.5486 0.3208 0.3770 0.2276

2002 0.3223 1.1011 0.9279 0.5446 0.4627 0.4069 0.2407

2003 0.2951 1.0608 0.9668 0.5450 0.4058 0.3828 0.3340

Table 2: Daily Calibration Results of Different Models

• Calibration results are obtained by minimizing the sum of

squared pricing error between market prices and model prices.

Market option data are S&P 500 index options which are

collected from April 4, 1998 to May 31, 2003. The output is

given in MSE(E+05).

• The model with the best performance is the LSSV model; it

also exhibits excellent stability of parameters.
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Empirical Results and Analysis: Daily Calibration
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Figure 1: A Sample of Daily Calibration Result
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Empirical Results and Analysis: Fitness and stability

• Jumps should play an important role in modelling the

volatility/variance

• However, existing literature indicates that jump structure in

the volatility process cannot improve the performance

significantly

• Long-run and short-run volatility processes can provide better

fitness

• The LSSV model outperforms the celebrated Heston model,

and it also provides stable calibration results with

parsimonious parameter space.

• It will lead a way to develop pure-jump stochastic volatility

models incorporating the leverage effect, especially for Lévy

processes.
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Contribution and Conclusion

Core contributions:

• The first attempt to investigate the fitness of time-changed

Lévy models which admit the leverage effect

• Quantify the vital impact of leverage effect given time-changed

Lévy models

• Construct a numerical framework that realize the leverage

measure introduced by Carr and Wu (2003)

• It is a robust numerical framework that can be adopted for any

kind of time-changed Lévy model

• A very decent model is proposed and evaluated, which admits

leverage effect and multi-scale stochastic volatility.

22



Thank You


