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Introduction

I Electricity producers sell their production in open power markets.

I They need hedging instruments to cover both price and volume risk.

I We study financial option contracts, formulated as a stochastic
control problem, with a payoff structure of a call option.

I Case I: Maximal and minimal total volume constraint.

I Case II: Maximal total volume constraint and penalty.

Aim
Study the optimal exercise policy under Case I and Case II.
Maximal constraint has been studied in Benth, F.E., Lempa, J., Nilssen,
T. (2010), On Optimal Exercise of Swing Options in Electricity Market.
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Case I

Maximal constraint

I There is a maximum amount of power that can be produced.

I Agreements in the contract.

Minimal constraint
In the contract agreement a certain amount of power is guaranteed to be
delivered until maturity.
Consequence:

I The producer have to adapt his production to meet a minimal
constraint at maturity.

I He might have to produce power even if prices are low.
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Case II

Introduce a penalty if the total produced volume is below the agreement.
Consequence:

I The producer tries to adapt his production to meet the agreements
in the contract.

I Have the option to take the penalty if that is more profitable.
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Outline

I Define the controlspace.
This will specify the total volume constraints.

I Define the value of the contract.
Formulated as a stochastic control problem. It will be an option
paying money according to price levels and volume decisions.

I The associated HJB-equation.
Focus on the optimal exercise policy.

I Properties of the marginal value.
From the HJB-equation, the marginal value plays a key role in the
optimal exercise policy.
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Controlspace

Define the cumulative control Z (t) for t ∈ [0,T ] as

Z (t) =

∫ t

0

u(s)ds, (1)

where u is bounded and progressively measurable w.r.t the filtration
generated by the underlyning price process X . Z represents the total
volume and we can think of u as the production rate.

Admissible controls
Define the set Um(t,T ) of admissible controls u(s) for s ∈ [t,T ] as:

I (1) holds and u(s) ∈ [0, ū].

I Z (T ) ≤ M (Maximal constraint when M < ūT )

I Z (s) ≥ `(s) := m − ū(T − s) (Minimal constraint when m > 0)

Note that the last condition is always fullfilled for t ∈ [0, t̃], t̃ := T − m
ū ,

since Z (0) = 0 and a non-decreasing process.
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The stochastic control problem

Define the price process X on (Ω,F ,F,P) as a strong solution to

dX (s) = µ(s,X (s))ds + σ(s,X (s))dW (s), X (t) = x . (2)

We define the value function on S := [0,T ]× [`(s)1(s > t̃),M]× R.

Value function: Case I

V (t, z , x) = sup
u∈Um(t,T )

Etxz

[∫ T

t

e−r(s−t)(Xs − K )usds)

]
(3)

Value function: Case II

V (t, z , x) = sup
u∈U0(t,T )

Etxz

[∫ T

t

e−r(s−t)(Xs − K )usds + g(Z (T ))

]
(4)
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Interpretation

In both cases we have an option paying out the accumulated value of the
difference between the price and the strike K . This payment is scaled by
the production rate. Thus, an option paying money according to price
levels and volume decisions.

Case II

I Increase the set of admissible controls to U0(t,T ).

I There is no restriction on the set of admissible controls such that we
are guaranteed to have produced a minimal volume of m at maturity.

I Interpret the terminal cost function g as a penalty function if
Z (T ) < m. Define

g(Z (T )) := α(m − Z (T ))+, α < 0. (5)

I We can think think of m as an ”indirect” minimal constraint,
appearing as a penalty boarder.
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The HJB equation

Via dynamic programing and a verification theorem, the solution to the
controlproblems is given as a solution to the HJB equation

Vt(t, z , x)+
1

2
σ2(t, x)Vxx(t, z , x) + µ(t, x)Vx(t, z , x)− rV (t, z , x)

+ sup
u
{u(t)(x − K + Vz(t, z , x))} = 0, (6)

with appropriate boundary conditions, which are different for the two
cases.

Optimal exercise rule
The boundary x − K + Vz(t, z , x) plays a key role. Define

û(t) =

{
ū, X (t)− K > −Vz(t,Z (t),X (t)),

0, X (t)− K ≤ −Vz(t,Z (t),X (t)),
(7)

for all t ∈ [0,T ].

We now investigate the marginal value, ∂V
∂z , for case I and II separately.
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Case I: Marginal Value.

Define the time for which the total minimal volume constraint is reached
as

tm := inf{s ∈ [t,T ] : Zs ≥ m}. (8)

Proposition
Let 0 < m < M < ūT , then

∂V

∂z
≥ 0 for t ∈ [0, tm)

∂V

∂z
≤ 0 for t ∈ [tm,T ]
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Case I: Interpretation

Recall the optimal exercise rule X (t)− K > −Vz(t,Z (t),X (t)).
If z < m:

I The usage of the option increase its value.

I Since the marginal value is non-negative, it is optimal to exercise
even for a non-positvie payoff.

If z ≥ m:

I The usage of the option will lower its value.

I Since the marginal value is non-positive, it is optimal to exercise
only for non-negative payoff.

If m = 0, i.e we have no minimal constraint, then the marginal value is
non-positive.
The minimal constraint advance the optimal exercise of the option.
For the case m ≡ 0 it has been shown that the introduction of a maximal
constraint postpone the optimal exercise.
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Case II: Marginal Value.

Recall:

V (t, z , x) = sup
u∈U0(t,T )

Etxz

[∫ T

t

e−r(s−t)(Xs − K )usds + α(m − Z (T ))+

]
.

(9)

Proposition
For M < ūT

∂V

∂z
(t, z , x) ≤ −α1(m − z > 0) (10)

Marcus Eriksson Energy Derivatives with Volume Control



Case II: Interpretation

Suppose we start below the penalty boarder, i.e ∂V
∂z (t, z , x) ≤ −α.

I Due to the penalty, the optimal exercise may be advanced.

I The producer may exercise for a negative payoff to avoid penalty, or
choose to take a penalty ( If that is more profitable ).

Suppose we know that Z (T ) < m: Then it can be shown that
∂V
∂z (t, z , x) = −α. I.e, it is optimal to exercise as long as the payoff is
greater than α < 0.
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Summary

I Given a mathematical formulation for contracts, to hedge for price
and volume risk. This is particulary usefull in the powermarket.

I Deduced that the marginal value plays a key role in finding the
optimal exercise strategy.

I The introduction of a total maximal volume constraint postpone the
optimal exercise policy.

I The introduction of a total minimal volume constraint or a penalty
advance the optimal exercise policy.
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