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Super-replication problem for the seller of an option

An agent (“seller”) promises to pay £W to another agent (“buyer”) at time T > 0.

The amount £W is random, depending on stock prices at (or up to) T.

Buyer pays deterministic amount c to seller at time 0.

Seller wishes to make sure that (s)he can meet her/his obligations at T (w. p. 1).

What c should (s)he charge to the buyer (at least) ?



Relevance of the above question I

Unless the market is complete, no perfect replication in general.

In practice, c is unrealistically high. Seller should be less stringent and contend

with meeting payment obligations with a probability close to 1 (quantile hedg-

ing, Föllmer-Leukert).

Alternatively, one may try to control the seller’s loss in case of failure: mean-

variance hedging, minimising expected shortfall or another risk-measure.



Relevance of the above question II

Natural question.

Superhedging theorems usually rely on the closedness of the set of attainable

positions in some topological vector space of random variables.

At the level of mathematics, many approaches to hedging are linked to this

closedness result.

Intimate relationship with fundamental questions: existence of arbitrage oppor-

tunities, characterization of (dual) pricing functionals, utility maximisation.



Setting

Fix a finite time horizon T > 0.

Consider a probability space (Ω,F, P) with a filtration Ft, t ∈ [0, T], FT = F.

F0 is trivial, saturated with sets of measure 0, filtration right-continuous.

We will use the optional sigma-algebra O over Ω× [0, T], generated by the class

of right-continuous, measurable and adapted processes which have left limits

(“càdlàg”).



Assets in the economy

Càdlàg, adapted process St, t ∈ [0, T], representing the price of a risky asset.

There is a riskless asset (“bank account”) with constant 1 unit price.

Portfolio position at time t is Φt in risky asset, Ψt in the riskless one.



Frictionless dynamics of the wealth process I

We assume self-financing: the overall value of the portfolio should change only

due to price fluctuations, no money is invested or withdrawn.

This means that the wealth increment on a small interval [t, t+ dt] should be

Vt+dt−Vt = Φt(St+dt− St) + Ψt(1− 1) = Φt(St+dt− St).

Hence the wealth dynamics is determined by Φt alone. Assuming continuous

trading this leads to



Dynamics of the wealth process II

Vt = V0 +
∫ T

0
ΦtdSt,

and we need to stipulate that St is a semimartingale and Φt is S-integrable (in

particular, predictable).

Large class of candidate processes for describing the asset price, but still restric-

tive. Larger class when frictions are present.



Dual characterisation of superhedging

Theorem. AssumeM(S) 6= ∅. There is Φ superhedgingW from c if and only if

c ≥ sup
Q∈M(S)

EQ[W].

El Karoui, Quenez, Kramkov, Schäl, Föllmer, Kabanov, Delbaen, Schachermayer.

Succint and logical: M(S) is the family of equivalent risk-neutral measures, i.e.

arbitrage-free pricing rules.



Markets with liquidity constraints

Trades of large volumes may influence prices, at a certain moment it may be

difficult to sell or buy a given asset. Small investor approach: their activities do

not move prices in a permanent way. The extra trading costs are not necessarily

proportional to the trading volume. Change of portfolio value over [t, t+ dt] is

Vt+dt−Vt = St[Φt+dt−Φt]− Gt(Φt+dt−Φt)

where G represents the additional cost of trading a large volume, St would be

the “hypothetical” price if no liquidity issue arose.



Discussion

Such models are around since Kyle (1985). More recently: Schied, Schöneborn,

Rogers, Singh, Almgren, Chriss and many others.

Illiquidity loss related to quadratic variation: Cetin, Soner, Touzi. Protter, Jarrow,

etc.

Large investor models. Temporal dimension of illiquidity (Cretarola, Gozzi,

Pham, Tankov).



Continuous-time model I

Bookkeeping: position in risky asset is V1
t at t. Cash position is V0

t .

The infinitesimal dynamics above leads to the evolution of our cash position as

V0
t = V0

0 −
∫ T

0
StdΦt −

∫ T

0
Gt(Φ

′
t)dt.

I.e. we assume Φt = Φ0 +
∫ t
0 fudu with fu representing trading speed.



Continuous-time model II

Then we get

V0
t = V0

0 −
∫ T

0
St ftdt−

∫ T

0
Gt( ft)dt.

We assume f ∈ Awhere

A := { f : f is O-measurable,
∫ T

0
| ft|dt < ∞}.



Continuous-time model III

Position in the risky asset is

V1
t = V1

0 +
∫ T

0
ftdt.

We assume that G is O⊗B(R)-measurable, Gt(·) is convex for all t, a.s.

Also, Gt(·) ≥ Gt(0) ≥ 0 and G·(·) is a.s. locally bounded (slightly less suffices).

Gt(0) > 0 is possible: just being present in the market may be costly. We also

need that supt Gt(0) is a bounded random variable.



Key assumption: superlinearity

We assume there is an optional process Ht such that inft∈[0,T]Ht is an a.s. posi-

tive random variable and

Gt(x) ≥ Ht|x|
a

almost surely for some a > 1.

Typical specification: Gt(x) := l x2 for some l > 0.

If we took Gt := l St|x| we would just get proportional transaction costs.

We fix some 1 < b < a.



Dual liquidity function

It seems reasonable to suppose that for large volumes trading costs grow in a

superlinear way. Our results do not cover (though formally coincide with) the

case of transaction costs which is rather “singular”.

Fenchel-Legendre conjugate:

G∗
t (y) := sup

x∈R
[xy− Gt(x)].

If Gt(x) := l x2 then G∗
t (x) := x2/(4l).



Hedging theorem - idealized version

The following result holds for finite Ω:

Theorem. There exists f such that V0
0 = c, V1

0 = 0 and at the terminal date

V0
T ≥ W and V1

T ≥ 0 if and only if one has

c ≥ EQ[W]− EQ[
∫ T

0
G∗
t (Zt − St)],

for all Q ∼ P and all non-negative Q-martingales Z.

Usual term + penalty term. In the transaction cost/classical cases this formula

reduces to the superhedging theorem in the respective settings (though our re-

sult does not subsume those theorems).



Hedging theorem

In general we need to fix a reference probability Q ∈ P̃(W) - this set of probabil-

ities will be defined later.

Theorem. There exists f such that V0
0 = c, V1

0 = 0 and at the terminal date

V0
T ≥ W and V1

T ≥ 0 if and only if one has

c ≥ EQ′[W]− EQ′[
∫ T

0
G∗
t (Zt − St)],

for all Q′ ≪ P and positive Q′-martingales Z such that ZT(dQ
′/dQ), dQ′/dQ

are bounded.



Integrability condition

Let P̃ denote the set of Q ∼ P such that the random variables
∫ T

0
H

b/(b−a)
t (1+ |St|)

ba/(a−b)dt,

∫ T

0
sup
|x|≤N

Gt(x)dt,N ∈ N,
∫ T

0
|St|dt,

are all Q-integrable. For a (possibly multidimensional) random variable W we

define

P̃(W) := {Q ∈ P̃ : EQ|W| < ∞}.



Literature

Discrete-time market models: Astic and Touzi, Pennanen and Penner, Dolinsky

and Soner.

Continuous-time models: more specific settings, different trading mechanism,

Cetin, Soner and Touzi. Limiting procedure: Dolinsky and Soner.

General, intuitive expression. Works without specific assumptions on themodel.

There is no assumption on S (apart from being càdlàg adapted).



Line of argument - under liquidity constraints

Absence of arbitrage is not necessary for a dual characterisation of the super-

hedging price.

Moreover, absence of arbitrage can be characterised using the superhedging the-

orem.

The superhedging price is the supremum of possible (shadow) prices. The for-

mula in the present case suggests that it is actually a supremum of all possible

expectations minus a penalization term.



Utility maximisation I

Let u : R → R be concave and nondecreasing. Consider a random endowment

W and fix an initial capital c. Let E|u(c+ B+W)| < ∞ hold where

B :=
∫ T

0
G∗
t (−St)dt < ∞ a.s.

under our assumptions.

We restrict the set of admissible strategies to

A
′(u) = { f ∈ A : V1

T(c, f ) = 0, Eu−(V
0
T(c, f ) +W) < ∞}.



Utility maximisation II

Theorem. There is f ∗ ∈ A′(u) such that

Eu(V0
T(c, f

∗) +W) = sup
f∈A′(u)

Eu(V0
T(c, f ) +W).

General existence theorem. Just like in Cetin and Rogers, there is no need to

assume absence of arbitrage, only a concrete integrability condition (ensuring

well-posedness).



Conclusion

We derive benefits from the superhedging theorem under liquidity constraints

which are similar to the ones we enjoy in the frictionless case.

No scalable arbitrage. Superhedging result holds regardless of having arbitrage

or not.

Extensions: general superlinear functions ? (Works in discrete time.) Calculable

bounds (certainly trivial) ? Indifference pricing ?


