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Motivation

Stock price process {S;}i>0
with known characteristic function p(u)
of the log-asset price In(St).
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Overview

(1) Time-changed geometric Brownian motion (GBM)
(2) Pricing barrier options
(3) Pricing call options

(4) Extensions and examples
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Time-changed GBM

Definition

Consider a geometric Brownian motion (GBM)

d
D3t _ b+ gaw,, (1.1)
St

where r € R, o > 0, and W, is a standard Brownian motion.

Introduce a stochastic clock A = {A;};>¢ (independent of S) and consider S,,
instead of S,.

Definition 1.1 (Time-changed Brownian motion) Lef A = {A;};>¢ be an
increasing stochastic process with Ay = 0, lim; -, Ay = 0o Q-a.s.. This stochastic
time-scale is used to time-change S, i.e. we consider the process Sy,, fort > 0.

Denote the Laplace transform of Ap by ¥ (u) := Elexp(—uAr)], u > 0.
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Time-changed GBM

Motivation

Time-changed Brownian motion is convenient since:

— Natural interpretation of time-change as measure of economic activity
(’business time scale’, ‘transaction clock’).

— Many well-known models can be represented as a time-changed Brownian
motion (e.g. Variance Gamma, Normal inverse Gaussian). This covers
not only Lévy-type models, but also regime-switching, Sato, or
stochastic volatility models.
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Time-changed GBM

Motivation

If the time change {A:}:>¢ is continuous, it is possible to derive the first-passage
time of {Sy, }+>0 analytically following Hieber and Scherer [2012].
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Time-changed GBM

Example 1:

The , also known as Laplace motion, is obtained if a
GBM (drift ¢, volatility o > 0) is time-changed by a Gammay(t; 1/v, v) process,
v > 0. The drift adjustment due to the jumps is w :=In (1 — 6v — o%v/2) /v.
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Time-changed GBM

Example 2: Markov switching model

The Markov switching model (see, e.g., Hamilton [1989]):
d
% =rdt+ozdW;, Sy >0, (1.2)
t
where Z = {Z;}1>0 € {1,2,..., M} is a time-homogeneous Markov chain with
intensity matrix @, and W = {WW;};~¢ an independent Brownian motion.
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Time-changed GBM

Further examples

The class of time-changed GBM is rich. It also contains

— Stochastic volatility models: Heston model, Stein & Stein model,
Hull-White model, certain continuous limits of GARCH models.

— The
— : For example extensions of the

— The

The class is restricted by the fact that the time change {A;}:>¢ is independent of
the stock price process {S;}+>o-
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Pricing barrier options

Barrier options with payoff

Lip<s,<P for 0<t<T} max(St — K, 0).
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Pricing barrier options
Transition density

1.3

. _P A transition density describes the probability density that the
process S starts at time 0 at Sy, stays within the corridor [D, P]

1.1

until time 7" > 0 and ends up at Sy at time T'.

(This of course implies that So € (D, P) and St € (D, P).)
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p(T, S0, Sr) :=Q(Sr €dr, D< S, <Pfor 0<t<T|S)=sp).

o
\l
T

Peter Hieber, Time-changed Brownian motion and option pricing

13




Pricing barrier options
Transition density

Lemma 1.2 (Transition density GBM)
Consider S = {5;}:>o with driftr € R and volatility o > 0. S starts at S, stays
within the corridor (D, P) until time T and ends up in Sy. Its transition density is

2 eXp(ﬂg ST/SO ) °© n hl(ST)
in( = 22T (=, T).
1550 = a2 (g ) D
where
1 (p*  nPrio? [ nmln(Sy) 1,
— (L T g, i R0 =r— o2,
A 2(02+1n(P/D)2 eI Dy ) F TR

Proof: Cox and Miller [1965], see also Pelsser [2000].
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Pricing barrier options
Transition density

Theorem 1.3 (Transition density time-changed GBM)

Consider S = {5}~ with driftr € R and volatility o > 0, time-changed by
independent {\; }:>o with Laplace transform ¥ (u). S starts at S, stays within
the corridor (D, P) until time T and ends up in Sy. Its transition density is

Qexp(% ln(ST/SO)> 0 _ (nmln(Sy)
p(T, Sy, St) = n(P/D) ; A, sm(m) V() -

where

1 (p? nPr’o? . (nmwIn(Sy) 1,
Ap == — ), A,= — ], =r——0°.
2 ( 2 Sm(ln(P/D) TR
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Pricing barrier options
Transition density

Proof 1 (Transition density time-changed GBM)

If the time-change { A}~ is continuous, we are — conditional on Ap — back in
the case of Brownian motion.

Then, by Lemma 1.2

- 1
p(Ar, Sy, ) = const. Z A, sin(mT n(aj)) exp(—A A7) .

— In(P/D)
From this,
Eg [p(/\T, So, )| = const. Z A, sm(nﬂg;%))) E [oxp(—/\n/\T)}
B . ( nmin(x)
= const. Z A, Sm(ln(P/D)) V().

n=1
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Pricing barrier options

Theorem 1.4 (Barrier options, Escobar/Hieber/Scherer (2013))

Consider S = {S;}:>¢ with driftr € R and volatility o > 0, continuously
time-changed by independent { A, },~, with Laplace transform ¥(u). S starts at
So- Conditional on {D < S; < P,for0 <t < T}, the price of a down-and-out call
option with strike K and maturity T is

DOC(0) = i PQ D) > (M) Ay
P nm In( St
./D maX(ST — K, O) sin(WﬁD))) exp(% ln(ST/SO)) dSr,
where

1 [ nPrio? . (nmIn(SH) I
Mm==-|—=+——1|, A, = — ], =7 ——0°.
> <02 T (P/D) "wmepmpy ) T TR°
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Pricing barrier options

Proof 2 (Barrier options)

P
DOC(0) = / maX(ST — K, O) p(T, Sy, S7) dST

D

= const. i Ap97(\) /DP maX(ST — K, 0) sin (%) exp(% ln(ST/SO)) dSt .

The integral [ ZJ; max(Sr — K, 0) sin(?flr(ljﬂ%)) dSr can be computed explicitly.

The same ideas apply to any other down-and-out contract
(e.g. bonus certificates, digital options).
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Pricing barrier options
Numerical example

Implementation:

©. 9]

DOC(0) = const. Y ful ) I7(An)

n=1

N

~ const. an(K) Ir(An) -

n=1

Error bounds for the truncation parameter N are available for many models.
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Pricing call options
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Pricing call options
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Pricing call options
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A barrier option can approximate a call option, i.e.

]1{D<St<P for 0<t<1} maX(Sl — K, O) ~ maX(Sl - K, O) :
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Pricing call options
Numerical example

(Vanilla) Call options can be approximated by barrier options.
Again: Black-Scholes model (r =0,0 =0.2), T =1, K = 0.

(D; P) barrier price N comp. time call price comp. time
(0.7;1.3) 12.21580525385 7 0.1ms

(0.6; 1.4) 13.08137347245 9 0.1ms

(0.4;2.7) 21.18586311986 22 0.1ms

(0.1;7.4) 21.18592951321 44 0.1ms 21.18592951321 1.2ms

— Computation of barrier options faster than Black-Scholes formula?®.

— Accuracy of approximation is very high.

aThe call option was priced using blsprice.min Matlab (version 2009a).
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Numerical example

Stock price process {S;}i>0
with known characteristic function p(u)
of the log-asset price In(St).
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Numerical example
Alternatives

— Fast Fourier pricing: Most popular approach, see Carr and Madan [1999].

Many extensions, e.g., Raible [2000], Chourdakis [2004].

— Black-Scholes (BS) approximation: Works for time-changed Brownian
motion, see Albrecher et al. [2013].

N
E|(Sr — K)*| ~ const. Z B, CBS(,un, o, K).

n=1

— COS Method: Closest to our approach, see Fang and Oosterlee [2008].

E[(Sr — K)*] = const. EN: Cn(K) Re (gp(anj[) e_m”ﬁ)

— Rational approximations: Works for time-changed Brownian motion, see
Pistorius and Stolte [2012]. Uses Gauss-Legendre quadrature.

E|(Sr— K)"| ~ canst.ZDn(K) (Z Cm ) Vr(xy,) .

— T, +dp,
m=1
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Numerical example
Parameter set

Variance Gamma model

© parameterset &

arameter set
©_Pp © o1 0.10 0.20 0.30

0010 -0-20 030 oy 0.10 0.15 0.20
v 0.10 0.20 0.30

A 0.10 0.50 1.00
o 0.15 0.30 0.45 o 010 100 500
T 0.10 0.25 1.00 2 ' '

T 0.10 0.25 1.00

The parameters sets were obtained from Chourdakis [2004].
We use 31 equidistant strikes K out of 85, 115], the current price is Sy = 100.

The rows & and & allow us to test many different parameter sets to adequately
compare the different numerical techniques.

Peter Hieber, Time-changed Brownian motion and option pricing




Numerical example
Results I: Pricing call options

Variance Gamma model (char. fct. decays hyperbolically)

our approach  FFT COS method BS approx.
N 100 4096 200 10
average comp. time 0.5ms 4.9ms 1.4ms 0.3ms
average rel. error 4.5e-08 2.0e-07 3.5e-07 5.4e-05
max. rel. error 2.7e-07 5.8e-07 2.6e-06 3.0e-04
sample price 20.76524 20.76523 20.76524 20.76105

Numerical comparison on different parameter sets following Chourdakis [2004].
A sample price was obtained using K = 80 and the average parameter set from
slide 26. The barriers (D; P) were set to (exp(—3); exp(3)).
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Numerical example
Results Il: Pricing call options

Absolute error vs. number of terms N: Variance Gamma model.
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Numerical example
Results lll: Pricing call options

Absolute error vs. number of terms V:
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Numerical example
Results IV: Pricing call options

Logarithmic error vs. number of terms N:
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Numerical example
Discussion

— Our approach and the Fang and Oosterlee [2008] results are extremely fast
for quickly (e.g. exponentially) decaying characteristic functions.

— High accuracy (e.g. 1e—10) is possible since one avoids any kind of
discretization. Error bounds are available.

— Evaluation of several strikes comes at almost no cost.

— Apart from option pricing, one is able to evaluate densities or distributions
with known characteristic function.
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Discontinuous time-change

Example of a discontinuous time-change. While the original process { B;}:>¢
(black) hits the barrier, the time-changed process { By, }+>o (grey) does not. This
is not possible if the time-change is continuous; then all barrier crossings are

observed until time Ar.
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