Time-changed Brownian motion and option pricing

Peter Hieber
Chair of Mathematical Finance, TU Munich

6th AMaMeF Warsaw, June 13th 2013

Partially joint with
Marcos Escobar (RU Toronto),
Matthias Scherer (TU Munich).
Motivation

Stock price process $\{S_t\}_{t \geq 0}$ with known characteristic function $\varphi(u)$ of the log-asset price $\ln(S_T)$.

How to compute the **stock price density** of S_T efficiently?

How to compute $f(k) := \int_{-\infty}^{\infty} \exp(-iku) \varphi(u) \, du$?

Is it possible to price more complicated products like **barrier options**?
Overview

(1) **Time-changed geometric Brownian motion (GBM)**
(2) Pricing barrier options
(3) Pricing call options
(4) Extensions and examples
Time-changed GBM

Definition

Consider a geometric Brownian motion (GBM)

\[
\frac{dS_t}{S_t} = rd_t + \sigma dW_t, \quad (1.1)
\]

where \(r \in \mathbb{R}, \sigma > 0, \) and \(W_t \) is a standard Brownian motion.

Introduce a stochastic clock \(\Lambda = \{\Lambda_t\}_{t \geq 0} \) (independent of \(S \)) and consider \(S_{\Lambda_t} \) instead of \(S_t \).

Definition 1.1 (Time-changed Brownian motion) Let \(\Lambda = \{\Lambda_t\}_{t \geq 0} \) be an increasing stochastic process with \(\Lambda_0 = 0, \lim_{t \to \infty} \Lambda_t = \infty \) \(\mathbb{Q} \)-a.s.. This stochastic time-scale is used to time-change \(S \), i.e. we consider the process \(S_{\Lambda_t}, \) for \(t \geq 0 \).

Denote the Laplace transform of \(\Lambda_T \) by \(\vartheta_T(u) := \mathbb{E}[\exp(-u\Lambda_T)], \) \(u \geq 0 \).
Time-changed GBM

Motivation

Time-changed Brownian motion is convenient since:

— Natural interpretation of time-change as measure of economic activity (‘business time scale’, ’transaction clock’).

— Many well-known models can be represented as a time-changed Brownian motion (e.g. Variance Gamma, Normal inverse Gaussian). This covers not only Lévy-type models, but also regime-switching, Sato, or stochastic volatility models.
If the time change $\{\Lambda_t\}_{t \geq 0}$ is continuous, it is possible to derive the first-passage time of $\{S_{\Lambda_t}\}_{t \geq 0}$ analytically following Hieber and Scherer [2012].
Time-changed GBM

Motivation

call options

down-and-out call options
(=barrier options)
Time-changed GBM
Example 1: Variance Gamma model

The Variance Gamma process, also known as Laplace motion, is obtained if a GBM (drift θ, volatility $\sigma > 0$) is time-changed by a $\text{Gamma}(t; 1/\nu, \nu)$ process, $\nu > 0$. The drift adjustment due to the jumps is $\omega := \ln \left(1 - \theta \nu - \sigma^2 \nu/2\right)/\nu$.

![Sample paths of time-changed GBM](image)
Time-changed GBM

Example 2: Markov switching model

The Markov switching model (see, e.g., Hamilton [1989]):

\[
\frac{dS_t}{S_t} = r dt + \sigma_{Z_t} dW_t, \quad S_0 > 0,
\]

(1.2)

where \(Z = \{Z_t\}_{t \geq 0} \in \{1, 2, \ldots, M\} \) is a time-homogeneous Markov chain with intensity matrix \(Q_0 \) and \(W = \{W_t\}_{t \geq 0} \) an independent Brownian motion.
The class of time-changed GBM is rich. It also contains

— The Normal inverse Gaussian model.

— Sato models: For example extensions of the Variance Gamma model.

— The Ornstein-Uhlenbeck process.

The class is restricted by the fact that the time change $\{\Lambda_t\}_{t \geq 0}$ is independent of the stock price process $\{S_t\}_{t \geq 0}$.
Overview

(1) Time-changed geometric Brownian motion (GBM)

(2) Pricing barrier options

(3) Pricing call options

(4) Extensions and examples
Pricing barrier options

Barrier options with payoff

\[
1_{\{D < S_t < P \text{ for } 0 \leq t \leq T\}} \max(S_T - K, 0).
\]

Sample path of \(\{S_t\}_{t \geq 0} \) with a lower barrier \(D \) and an upper barrier \(P \).
A **transition density** describes the probability density that the process S starts at time 0 at S_0, stays within the corridor $[D, P]$ until time $T > 0$ and ends up at S_T at time T.

(This of course implies that $S_0 \in (D, P)$ and $S_T \in (D, P)$.)

More formally,

$$p(T, S_0, S_T) := \mathbb{Q}(S_T \in dx, \ D < S_t < P \text{ for } 0 \leq t \leq T \mid S_0 = s_0).$$
Pricing barrier options
Transition density

Lemma 1.2 (Transition density GBM)
Consider $S = \{S_t\}_{t \geq 0}$ with drift $r \in \mathbb{R}$ and volatility $\sigma > 0$. S starts at S_0, stays within the corridor (D, P) until time T and ends up in S_T. Its transition density is

$$p(T, S_0, S_T) = \frac{2 \exp\left(\frac{\mu}{\sigma^2} \ln(S_T/S_0)\right)}{\ln(P/D)} \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi \ln(S_T)}{\ln(P/D)}\right) \exp(-\lambda_n T).$$

where

$$\lambda_n := \frac{1}{2} \left(\frac{\mu^2}{\sigma^2} + \frac{n^2 \pi^2 \sigma^2}{\ln(P/D)^2}\right), \quad A_n := \sin\left(\frac{n\pi \ln(S_0)}{\ln(P/D)}\right), \quad \mu := r - \frac{1}{2} \sigma^2.$$

Proof: Cox and Miller [1965], see also Pelsser [2000].
Pricing barrier options
Transition density

Theorem 1.3 (Transition density time-changed GBM)
Consider \(S = \{S_t\}_{t \geq 0} \) with drift \(r \in \mathbb{R} \) and volatility \(\sigma > 0 \), time-changed by independent \(\{\Lambda_t\}_{t \geq 0} \) with Laplace transform \(\vartheta_T(u) \). \(S \) starts at \(S_0 \), stays within the corridor \((D,P) \) until time \(T \) and ends up in \(S_T \). Its transition density is

\[
p(T, S_0, S_T) = \frac{2 \exp\left(\frac{\mu}{\sigma^2} \ln(S_T/S_0)\right)}{\ln(P/D)} \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi \ln(S_T)}{\ln(P/D)}\right) \vartheta_T\left(\lambda_n\right).
\]

where

\[
\lambda_n := \frac{1}{2} \left(\frac{\mu^2}{\sigma^2} + \frac{n^2 \pi^2 \sigma^2}{\ln(P/D)^2}\right), \quad A_n := \sin\left(\frac{n\pi \ln(S_0)}{\ln(P/D)}\right), \quad \mu := r - \frac{1}{2} \sigma^2.
\]
Pricing barrier options
Transition density

Proof 1 (Transition density time-changed GBM)

If the time-change \(\{\Lambda_t\}_{t \geq 0} \) is continuous, we are – conditional on \(\Lambda_T \) – back in the case of Brownian motion.

Then, by Lemma 1.2

\[
p(\Lambda_T, S_0, x) = \text{const.} \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi \ln(x)}{\ln(P/D)}\right) \exp(-\lambda_n \Lambda_T).
\]

From this,

\[
E_Q[p(\Lambda_T, S_0, x)] = \text{const.} \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi \ln(x)}{\ln(P/D)}\right) E[\exp(-\lambda_n \Lambda_T)]
\]

\[
= \text{const.} \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi \ln(x)}{\ln(P/D)}\right) \vartheta_T(\lambda_n).
\]
Pricing barrier options

Theorem 1.4 (Barrier options, Escobar/Hieber/Scherer (2013))

Consider \(S = \{S_t\}_{t \geq 0} \) with drift \(r \in \mathbb{R} \) and volatility \(\sigma > 0 \), continuously time-changed by independent \(\{\Lambda_t\}_{t \geq 0} \) with Laplace transform \(\vartheta_T(u) \). \(S \) starts at \(S_0 \). Conditional on \(\{D < S_t < P, \text{ for } 0 \leq t \leq T\} \), the price of a down-and-out call option with strike \(K \) and maturity \(T \) is

\[
\text{DOC}(0) = \frac{2}{\ln(P/D)} \sum_{n=1}^{\infty} \vartheta_T(\lambda_n) A_n \cdot \\
\cdot \int_{D}^{P} \max(S_T - K, 0) \sin\left(\frac{n\pi \ln(S_T)}{\ln(P/D)}\right) \exp\left(\frac{\mu}{\sigma^2} \ln(S_T/S_0)\right) dS_T,
\]

where

\[
\lambda_n := \frac{1}{2} \left(\frac{\mu^2}{\sigma^2} + \frac{n^2 \pi^2 \sigma^2}{\ln(P/D)^2} \right), \quad A_n := \sin\left(\frac{n\pi \ln(S_0)}{\ln(P/D)}\right), \quad \mu := r - \frac{1}{2} \sigma^2.
\]
Pricing barrier options

Proof 2 (Barrier options)

\[
DOC(0) = \int_D \max(S_T - K, 0) \ p(T, S_0, S_T) \ dS_T
\]

\[
= \text{const.} \sum_{n=1}^{\infty} A_n \varphi_T(\lambda_n) \int_D \max(S_T - K, 0) \ \sin\left(\frac{n\pi \ln(S_T)}{\ln(P/D)}\right) \ \exp\left(\frac{\mu}{\sigma^2} \ln(S_T/S_0)\right) \ dS_T.
\]

The integral \(\int_D \max(S_T - K, 0) \ \sin\left(\frac{n\pi \ln(S_T)}{\ln(P/D)}\right) \ dS_T \) can be computed explicitly.

The same ideas apply to any other down-and-out contract

(e.g. **bonus certificates**, **digital options**).
Pricing barrier options
Numerical example

Implementation:

\[
DOC(0) = \text{const.} \sum_{n=1}^{\infty} f_n(K) \vartheta_T(\lambda_n) \\
\approx \text{const.} \sum_{n=1}^{N} f_n(K) \vartheta_T(\lambda_n).
\]

Error bounds for the truncation parameter \(N \) are available for many models.
Overview

call options

down-and-out call options
(=barrier options)
Pricing call options

Sample path of $\{S_t\}_{t \geq 0}$ with a lower barrier D and an upper barrier P.
Pricing call options

Sample path of $\{S_t\}_{t \geq 0}$ with a lower barrier D and an upper barrier P.
Pricing call options

Sample path of \(\{ S_t \}_{t \geq 0} \) with a lower barrier \(D \) and an upper barrier \(P \).

A barrier option can **approximate** a call option, i.e.

\[
\mathbb{1}_{\{ D < S_t < P \text{ for } 0 \leq t \leq 1 \}} \max(S_1 - K, 0) \approx \max(S_1 - K, 0).
\]
Pricing call options
Numerical example

(Vanilla) **Call options** can be approximated by **barrier options**.
Again: **Black-Scholes** model \((r = 0, \sigma = 0.2), \, T = 1, \, K = 80\).

<table>
<thead>
<tr>
<th>((D; P))</th>
<th>barrier price</th>
<th>(N)</th>
<th>comp. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.7; 1.3)</td>
<td>12.21580525385</td>
<td>7</td>
<td>0.1ms</td>
</tr>
<tr>
<td>(0.6; 1.4)</td>
<td>13.08137347245</td>
<td>9</td>
<td>0.1ms</td>
</tr>
<tr>
<td>(0.4; 2.7)</td>
<td>21.18586311986</td>
<td>22</td>
<td>0.1ms</td>
</tr>
<tr>
<td>(0.1; 7.4)</td>
<td>21.18592951321</td>
<td>44</td>
<td>0.1ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>call price</th>
<th>comp. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.18592951321</td>
<td>1.2ms</td>
</tr>
</tbody>
</table>

— Computation of barrier options faster than Black-Scholes formula\(^a\).

— Accuracy of approximation is very high.

\(^a\)The call option was priced using `blaprice.m` in Matlab (version 2009a).
Overview

(1) Time-changed geometric Brownian motion (GBM)
(2) Pricing barrier options
(3) Pricing call options
(4) Extensions and examples
Numerical example

Stock price process $\{S_t\}_{t \geq 0}$
with known characteristic function $\varphi(u)$
of the log-asset price $\ln(S_T)$.

How to compute
$$\mathbb{E}[(S_T - K)^+] := \int_0^\infty \exp(-iuk) \rho(\varphi(u), u) \, du.$$
Numerical example
Alternatives

— **Fast Fourier pricing**: Most popular approach, see Carr and Madan [1999]. Many extensions, e.g., Raible [2000], Chourdakis [2004].

\[
\mathbb{E}[(S_T - K)^+] \approx \text{const.} \sum_{n=1}^{N} B_n \, C_{BS}(\mu_n, \sigma_n, K).
\]

— **Black-Scholes (BS) approximation**: Works for time-changed Brownian motion, see Albrecher et al. [2013].

\[
\mathbb{E}[(S_T - K)^+] \approx \text{const.} \sum_{n=1}^{N} B_n \, C_{BS}(\mu_n, \sigma_n, K).
\]

— **COS Method**: Closest to our approach, see Fang and Oosterlee [2008].

\[
\mathbb{E}[(S_T - K)^+] \approx \text{const.} \sum_{n=1}^{N} C_n(K) \, \text{Re}\left(\varphi\left(\frac{n\pi}{a-b}\right) e^{-in\pi\frac{b}{a-b}}\right).
\]

\[
\mathbb{E}[(S_T - K)^+] \approx \text{const.} \sum_{n=1}^{N} D_n(K) \left(\sum_{m=1}^{M} c_m \left(\frac{e^{x_n}}{x_n + d_m}\right) \vartheta_T(x_n)\right).
\]
Numerical example
Parameter set

Variance Gamma model

<table>
<thead>
<tr>
<th>⊖ parameter set</th>
<th>⊖ parameter set</th>
<th>⊖ parameter set</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>-0.10</td>
<td>-0.20</td>
</tr>
<tr>
<td>ν</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>σ</td>
<td>0.15</td>
<td>0.30</td>
</tr>
<tr>
<td>T</td>
<td>0.10</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Markov switching model

<table>
<thead>
<tr>
<th>⊖ parameter set</th>
<th>⊖ parameter set</th>
<th>⊖ parameter set</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ₁</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>σ₂</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>λ₁</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td>λ₂</td>
<td>0.10</td>
<td>1.00</td>
</tr>
<tr>
<td>T</td>
<td>0.10</td>
<td>0.25</td>
</tr>
</tbody>
</table>

The parameters sets were obtained from Chourdakis [2004].

We use 31 equidistant strikes \(K \) out of \([85, 115]\), the current price is \(S_0 = 100 \).

The rows ⊖ and ⊖ allow us to test many different parameter sets to adequately compare the different numerical techniques.
Numerical example
Results I: Pricing call options

Variance Gamma model (char. fct. decays hyperbolically)

<table>
<thead>
<tr>
<th></th>
<th>our approach</th>
<th>FFT</th>
<th>COS method</th>
<th>BS approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>100</td>
<td>4096</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>average comp. time</td>
<td>0.5ms</td>
<td>4.9ms</td>
<td>1.4ms</td>
<td>0.3ms</td>
</tr>
<tr>
<td>average rel. error</td>
<td>4.5e-08</td>
<td>2.0e-07</td>
<td>3.5e-07</td>
<td>5.4e-05</td>
</tr>
<tr>
<td>max. rel. error</td>
<td>2.7e-07</td>
<td>5.8e-07</td>
<td>2.6e-06</td>
<td>3.0e-04</td>
</tr>
<tr>
<td>sample price</td>
<td>20.76524</td>
<td>20.76523</td>
<td>20.76524</td>
<td>20.76105</td>
</tr>
</tbody>
</table>

Numerical comparison on different parameter sets following [Chourdakis 2004](#).
A sample price was obtained using \(K = 80 \) and the average parameter set from slide 26. The barriers \((D; P)\) were set to \((\exp(-3); \exp(3))\).
Numerical example
Results II: Pricing call options

Absolute error vs. number of terms N: Variance Gamma model.
Numerical example
Results III: Pricing call options

Absolute error vs. number of terms N: Markov switching model.
Numerical example
Results IV: Pricing call options

Logarithmic error vs. number of terms N: Markov switching model.
Numerical example

Discussion

— Our approach and the Fang and Oosterlee [2008] results are extremely fast for quickly (e.g. exponentially) decaying characteristic functions.

— High accuracy (e.g. 1e–10) is possible since one avoids any kind of discretization. Error bounds are available.

— Evaluation of several strikes comes at almost no cost.

— Apart from option pricing, one is able to evaluate densities or distributions with known characteristic function.
Summary

continuously time-changed Brownian motion

continuously time-changed Brownian motion
Summary

call options

down-and-out call options
(=barrier options)

Discontinuous time-change

Example of a discontinuous time-change. While the original process $\{B_t\}_{t \geq 0}$ (black) hits the barrier, the time-changed process $\{B_{\Lambda_t}\}_{t \geq 0}$ (grey) does not. This is not possible if the time-change is continuous; then all barrier crossings are observed until time Λ_T.

![Diagram showing Brownian motion and time change]

Brownian motion

calendar time t

Time change Λ_t

calendar time t