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Motivation

Stock price process {St}t≥0

with known characteristic function ϕ(u)

of the log-asset price ln(ST ).

How to compute the

stock price density of ST
efficiently?

How to compute

f (k) :=
∫∞
−∞ exp(−iuk)ϕ(u) du ?

Is it possible

to price more complicated products

like barrier options?
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Overview

(1) Time-changed geometric Brownian motion (GBM)

(2) Pricing barrier options

(3) Pricing call options

(4) Extensions and examples
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Time-changed GBM
Definition

Consider a geometric Brownian motion (GBM)

dSt
St

= rdt + σdWt, (1.1)

where r ∈ R, σ > 0, and Wt is a standard Brownian motion.

Introduce a stochastic clock Λ = {Λt}t≥0 (independent of S) and consider SΛt

instead of St.

Definition 1.1 (Time-changed Brownian motion) Let Λ = {Λt}t≥0 be an
increasing stochastic process with Λ0 = 0, limt↗∞ Λt =∞ Q-a.s.. This stochastic
time-scale is used to time-change S, i.e. we consider the process SΛt

, for t ≥ 0.

Denote the Laplace transform of ΛT by ϑT (u) := E[exp(−uΛT )], u ≥ 0.
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Time-changed GBM
Motivation

Time-changed Brownian motion is convenient since:

— Natural interpretation of time-change as measure of economic activity
(’business time scale’, ’transaction clock’).

— Many well-known models can be represented as a time-changed Brownian
motion (e.g. Variance Gamma, Normal inverse Gaussian). This covers
not only Lévy-type models, but also regime-switching, Sato, or
stochastic volatility models.
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Time-changed GBM
Motivation

continuously time-changed
Brownian motion

time-changed Brownian motion

If the time change {Λt}t≥0 is continuous, it is possible to derive the first-passage
time of {SΛt

}t≥0 analytically following Hieber and Scherer [2012].
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Time-changed GBM
Motivation

down-and-out call options
(=barrier options)

call options

Peter Hieber, Time-changed Brownian motion and option pricing 7



Time-changed GBM
Example 1: Variance Gamma model

The Variance Gamma process, also known as Laplace motion, is obtained if a
GBM (drift θ, volatility σ > 0) is time-changed by a Gamma(t; 1/ν, ν) process,
ν > 0. The drift adjustment due to the jumps is ω := ln

(
1− θν − σ2ν/2

)
/ν.
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Time-changed GBM
Example 2: Markov switching model

The Markov switching model (see, e.g., Hamilton [1989]):

dSt
St

= rdt + σZt
dWt, S0 > 0, (1.2)

where Z = {Zt}t≥0 ∈ {1, 2, . . . ,M} is a time-homogeneous Markov chain with
intensity matrix Q0 and W = {Wt}t≥0 an independent Brownian motion.
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Time-changed GBM
Further examples

The class of time-changed GBM is rich. It also contains

— Stochastic volatility models: Heston model, Stein & Stein model,
Hull-White model, certain continuous limits of GARCH models.

— The Normal inverse Gaussian model.

— Sato models: For example extensions of the Variance Gamma model.

— The Ornstein-Uhlenbeck process.

The class is restricted by the fact that the time change {Λt}t≥0 is independent of
the stock price process {St}t≥0.
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Overview

(1) Time-changed geometric Brownian motion (GBM)

(2) Pricing barrier options

(3) Pricing call options

(4) Extensions and examples
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Pricing barrier options

Barrier options with payoff

1{D<St<P for 0≤t≤T} max(ST −K, 0) .
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Sample path of {St}t≥0 with a lower barrier D and an upper barrier P .
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Pricing barrier options
Transition density
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A transition density describes the probability density that the
process S starts at time 0 at S0, stays within the corridor [D,P ]

until time T > 0 and ends up at ST at time T .
(This of course implies that S0 ∈ (D, P ) and ST ∈ (D, P ).)

More formally,

p(T, S0, ST ) := Q
(
ST ∈ dx, D < St < P for 0 ≤ t ≤ T

∣∣S0 = s0

)
.
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Pricing barrier options
Transition density

Lemma 1.2 (Transition density GBM)
Consider S = {St}t≥0 with drift r ∈ R and volatility σ > 0. S starts at S0, stays
within the corridor (D,P ) until time T and ends up in ST . Its transition density is

p(T, S0, ST ) =
2 exp

(
µ
σ2 ln(ST/S0)

)
ln(P/D)

∞∑
n=1

An sin

(
nπ ln(ST )

ln(P/D)

)
exp(−λnT ) .

where

λn :=
1

2

(
µ2

σ2
+

n2π2σ2

ln(P/D)2

)
, An := sin

(
nπ ln(S0)

ln(P/D)

)
, µ := r − 1

2
σ2 .

Proof: Cox and Miller [1965], see also Pelsser [2000].

Peter Hieber, Time-changed Brownian motion and option pricing 14



Pricing barrier options
Transition density

Theorem 1.3 (Transition density time-changed GBM)
Consider S = {St}t≥0 with drift r ∈ R and volatility σ > 0, time-changed by
independent {Λt}t≥0 with Laplace transform ϑT (u). S starts at S0, stays within
the corridor (D,P ) until time T and ends up in ST . Its transition density is

p(T, S0, ST ) =
2 exp

(
µ
σ2 ln(ST/S0)

)
ln(P/D)

∞∑
n=1

An sin

(
nπ ln(ST )

ln(P/D)

)
ϑT(λn) .

where

λn :=
1

2

(
µ2

σ2
+

n2π2σ2

ln(P/D)2

)
, An := sin

(
nπ ln(S0)

ln(P/D)

)
, µ := r − 1

2
σ2 .
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Pricing barrier options
Transition density

Proof 1 (Transition density time-changed GBM)

If the time-change {Λt}t≥0 is continuous, we are – conditional on ΛT – back in
the case of Brownian motion.

Then, by Lemma 1.2

p(ΛT , S0, x) = const.

∞∑
n=1

An sin

(
nπ ln(x)

ln(P/D)

)
exp(−λnΛT ) .

From this,

EQ
[
p(ΛT , S0, x)

]
= const.

∞∑
n=1

An sin

(
nπ ln(x)

ln(P/D)

)
E
[
exp(−λnΛT )

]
= const.

∞∑
n=1

An sin

(
nπ ln(x)

ln(P/D)

)
ϑT(λn) .
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Pricing barrier options

Theorem 1.4 (Barrier options, Escobar/Hieber/Scherer (2013))
Consider S = {St}t≥0 with drift r ∈ R and volatility σ > 0, continuously
time-changed by independent {Λt}t≥0 with Laplace transform ϑT (u). S starts at
S0. Conditional on {D < St < P, for 0 ≤ t ≤ T}, the price of a down-and-out call
option with strike K and maturity T is

DOC(0) =
2

ln(P/D)

∞∑
n=1

ϑT(λn)An ·

·
∫ P

D

max
(
ST −K, 0

)
sin

(
nπ ln(ST )

ln(P/D)

)
exp
( µ
σ2

ln(ST/S0)
)
dST ,

where

λn :=
1

2

(
µ2

σ2
+

n2π2σ2

ln(P/D)2

)
, An := sin

(
nπ ln(S0)

ln(P/D)

)
, µ := r − 1

2
σ2 .
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Pricing barrier options

Proof 2 (Barrier options)

DOC(0) =

∫ P

D

max
(
ST −K, 0

)
p(T, S0, ST ) dST

= const.

∞∑
n=1

An ϑT(λn)

∫ P

D

max
(
ST −K, 0

)
sin

(
nπ ln(ST )

ln(P/D)

)
exp
( µ
σ2

ln(ST/S0)
)
dST .

The integral
∫ P
D max

(
ST −K, 0

)
sin
(
nπ ln(ST )
ln(P/D)

)
dST can be computed explicitly.

The same ideas apply to any other down-and-out contract
(e.g. bonus certificates, digital options).
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Pricing barrier options
Numerical example

Implementation:

DOC(0) = const.

∞∑
n=1

fn(K)ϑT(λn)

≈ const.

N∑
n=1

fn(K)ϑT(λn) .

Error bounds for the truncation parameter N are available for many models.
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Overview

down-and-out call options
(=barrier options)

call options
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Pricing call options
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Sample path of {St}t≥0 with a lower barrier D and an upper barrier P .
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Pricing call options
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Sample path of {St}t≥0 with a lower barrier D and an upper barrier P .
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Pricing call options
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Sample path of {St}t≥0 with a lower barrier D and an upper barrier P .

A barrier option can approximate a call option, i.e.

1{D<St<P for 0≤t≤1} max(S1 −K, 0) ≈ max(S1 −K, 0) .
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Pricing call options
Numerical example

(Vanilla) Call options can be approximated by barrier options.

Again: Black-Scholes model (r = 0, σ = 0.2), T = 1, K = 80.

(D;P ) barrier price N comp. time

(0.7; 1.3) 12.21580525385 7 0.1ms

(0.6; 1.4) 13.08137347245 9 0.1ms

(0.4; 2.7) 21.18586311986 22 0.1ms

(0.1; 7.4) 21.18592951321 44 0.1ms

call price comp. time

21.18592951321 1.2ms

— Computation of barrier options faster than Black-Scholes formulaa.

— Accuracy of approximation is very high.

aThe call option was priced using blsprice.m in Matlab (version 2009a).
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Numerical example

Stock price process {St}t≥0

with known characteristic function ϕ(u)

of the log-asset price ln(ST ).

How to compute

E
[
(ST −K)+

]
:=
∫∞

0 exp(−iuk) ρ
(
ϕ(u), u

)
du ?
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Numerical example
Alternatives

— Fast Fourier pricing: Most popular approach, see Carr and Madan [1999].
Many extensions, e.g., Raible [2000], Chourdakis [2004].

— Black-Scholes (BS) approximation: Works for time-changed Brownian
motion, see Albrecher et al. [2013].

E
[
(ST −K)+

]
≈ const.

N∑
n=1

Bn C
BS
(
µn, σn, K

)
.

— COS Method: Closest to our approach, see Fang and Oosterlee [2008].

E
[
(ST −K)+

]
≈ const.

N∑
n=1

Cn(K) Re
(
ϕ
( nπ

a− b

)
e−inπ

b
a−b

)
.

— Rational approximations: Works for time-changed Brownian motion, see
Pistorius and Stolte [2012]. Uses Gauss-Legendre quadrature.

E
[
(ST −K)+

]
≈ const.

N∑
n=1

Dn(K)

(
M∑
m=1

cm
xn + dm

)
ϑT(xn) .
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Numerical example
Parameter set

Variance Gamma model Markov switching model

	 parameter set ⊕
θ -0.10 -0.20 -0.30
ν 0.10 0.20 0.30
σ 0.15 0.30 0.45
T 0.10 0.25 1.00

	 parameter set ⊕
σ1 0.10 0.20 0.30
σ2 0.10 0.15 0.20
λ1 0.10 0.50 1.00
λ2 0.10 1.00 2.00
T 0.10 0.25 1.00

The parameters sets were obtained from Chourdakis [2004].

We use 31 equidistant strikes K out of [85, 115], the current price is S0 = 100.

The rows 	 and ⊕ allow us to test many different parameter sets to adequately
compare the different numerical techniques.
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Numerical example
Results I: Pricing call options

Variance Gamma model (char. fct. decays hyperbolically)

our approach FFT COS method BS approx.

N 100 4096 200 10

average comp. time 0.5ms 4.9ms 1.4ms 0.3ms

average rel. error 4.5e-08 2.0e-07 3.5e-07 5.4e-05

max. rel. error 2.7e-07 5.8e-07 2.6e-06 3.0e-04

sample price 20.76524 20.76523 20.76524 20.76105

Numerical comparison on different parameter sets following Chourdakis [2004].
A sample price was obtained using K = 80 and the average parameter set from
slide 26. The barriers (D;P ) were set to (exp(−3); exp(3)).
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Numerical example
Results II: Pricing call options

Absolute error vs. number of terms N : Variance Gamma model.
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Numerical example
Results III: Pricing call options

Absolute error vs. number of terms N : Markov switching model.
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Numerical example
Results IV: Pricing call options

Logarithmic error vs. number of terms N : Markov switching model.
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Numerical example
Discussion

— Our approach and the Fang and Oosterlee [2008] results are extremely fast
for quickly (e.g. exponentially) decaying characteristic functions.

— High accuracy (e.g. 1e–10) is possible since one avoids any kind of
discretization. Error bounds are available.

— Evaluation of several strikes comes at almost no cost.

— Apart from option pricing, one is able to evaluate densities or distributions
with known characteristic function.
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Summary

continuously time-changed
Brownian motion

time-changed Brownian motion
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Summary

down-and-out call options
(=barrier options)

call options
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Discontinuous time-change

Example of a discontinuous time-change. While the original process {Bt}t≥0

(black) hits the barrier, the time-changed process {BΛt
}t≥0 (grey) does not. This

is not possible if the time-change is continuous; then all barrier crossings are
observed until time ΛT .
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