Portfolio optimization with Quasiconvex Risk Measures

Emanuela Rosazza Gianin
University of Milano-Bicocca, Italy
(joint work with Elisa Mastrogiacomo)

AMaMeF and Banach Center Conference Warsaw, June 10-15, 2013

Agenda

Agenda

- preliminaries

Agenda

- preliminaries
- formulation of the problem and motivation

Agenda

- preliminaries
- formulation of the problem and motivation
- characterization of the solution of the optimization problem with quasiconvex risk measures

Agenda

- preliminaries
- formulation of the problem and motivation
- characterization of the solution of the optimization problem with quasiconvex risk measures
- analysis of the efficient frontier in the quasiconvex case

Portfolio optimization problem

- dates back to Markowitz (1987) in the mean-variance setting

Portfolio optimization problem

- dates back to Markowitz (1987) in the mean-variance setting
- later revisited by many authors by replacing variance with quantiles or suitable risk measures

Portfolio optimization problem

- dates back to Markowitz (1987) in the mean-variance setting
- later revisited by many authors by replacing variance with quantiles or suitable risk measures
- basic idea:
given n assets with returns (or Profit \& Losses) given by $X_{1}, X_{2}, \ldots, X_{n}$ (and the corresponding vector X), choose the optimal portfolio's weights $w=\left(w_{1}, \ldots, w_{n}\right)$ solving

$$
\min _{\left(w_{1}, \ldots, w_{n}\right) \in W} \text { "risk associated" to } X \cdot w
$$

where $X \cdot w=w_{1} X_{1}+\ldots+w_{n} X_{n}$ and W is a subset of \mathbb{R}^{n}.

Portfolio optimization problem

- dates back to Markowitz (1987) in the mean-variance setting
- later revisited by many authors by replacing variance with quantiles or suitable risk measures
- basic idea:
given n assets with returns (or Profit \& Losses) given by $X_{1}, X_{2}, \ldots, X_{n}$ (and the corresponding vector X), choose the optimal portfolio's weights $w=\left(w_{1}, \ldots, w_{n}\right)$ solving

$$
\min _{\left(w_{1}, \ldots, w_{n}\right) \in W} \text { "risk associated" to } X \cdot w
$$

where $X \cdot w=w_{1} X_{1}+\ldots+w_{n} X_{n}$ and W is a subset of \mathbb{R}^{n}. e.g.

- $W=\left\{w \in \mathbb{R}^{n}: w \geq 0 ; \sum_{i=1}^{n} w_{i}=1\right\}$

Portfolio optimization problem

- dates back to Markowitz (1987) in the mean-variance setting
- later revisited by many authors by replacing variance with quantiles or suitable risk measures
- basic idea:
given n assets with returns (or Profit \& Losses) given by $X_{1}, X_{2}, \ldots, X_{n}$ (and the corresponding vector X), choose the optimal portfolio's weights $w=\left(w_{1}, \ldots, w_{n}\right)$ solving

$$
\min _{\left(w_{1}, \ldots, w_{n}\right) \in W} \text { "risk associated" to } X \cdot w
$$

where $X \cdot w=w_{1} X_{1}+\ldots+w_{n} X_{n}$ and W is a subset of \mathbb{R}^{n}. e.g.

- $W=\left\{w \in \mathbb{R}^{n}: w \geq 0 ; \sum_{i=1}^{n} w_{i}=1\right\}$
- $W_{1}=\{w \in W: E[w \cdot X]=\mu\}$, with μ target return

State of the art

- Markowitz: risk = variance
- risk measured by a coherent risk measure:
- VaR and CVaR: Gaivoronski and Pflug (2005)
- CVaR: Rockafellar and Uryasev $(2000,2002)$
- Bertsimas et al. (2004)

State of the art

- Markowitz: risk = variance
- risk measured by a coherent risk measure:
- VaR and CVaR: Gaivoronski and Pflug (2005)
- CVaR: Rockafellar and Uryasev $(2000,2002)$
- Bertsimas et al. (2004)
- risk measured by a convex risk measure: Mataramvura and Øksendal (2008), Ruszczynski and Shapiro (2006), ...

State of the art

- Markowitz: risk = variance
- risk measured by a coherent risk measure:
- VaR and CVaR: Gaivoronski and Pflug (2005)
- CVaR: Rockafellar and Uryasev $(2000,2002)$
- Bertsimas et al. (2004)
- risk measured by a convex risk measure: Mataramvura and Øksendal (2008), Ruszczynski and Shapiro (2006), ...
- optimized certainty equivalent: Ben-Tal and Teboulle (2007)
- ...

State of the art

- Markowitz: risk = variance
- risk measured by a coherent risk measure:
- VaR and CVaR: Gaivoronski and Pflug (2005)
- CVaR: Rockafellar and Uryasev $(2000,2002)$
- Bertsimas et al. (2004)
- risk measured by a convex risk measure: Mataramvura and Øksendal (2008), Ruszczynski and Shapiro (2006), ...
- optimized certainty equivalent: Ben-Tal and Teboulle (2007)
- ...

GOAL:

extension of the portfolio optimization problem to quasiconvex risk measures and study of the related efficient frontier

Review on risk measures

It is well known that a risk measure ρ is a functional

$$
\rho: \mathcal{X} \rightarrow \overline{\mathbb{R}}
$$

quantifying the riskiness of financial positions whose returns (or P\&L's) are represented by random variables in the space \mathcal{X}.

Review on risk measures

It is well known that a risk measure ρ is a functional

$$
\rho: \mathcal{X} \rightarrow \overline{\mathbb{R}}
$$

quantifying the riskiness of financial positions whose returns (or P\&L's) are represented by random variables in the space \mathcal{X}.

- coherent risk measures: Artzner et al. (1999), Delbaen (2000)
- convex risk measures: Föllmer and Schied (2002), Frittelli and RG (2002)

Review on risk measures

It is well known that a risk measure ρ is a functional

$$
\rho: \mathcal{X} \rightarrow \overline{\mathbb{R}}
$$

quantifying the riskiness of financial positions whose returns (or P\&L's) are represented by random variables in the space \mathcal{X}.

- coherent risk measures: Artzner et al. (1999), Delbaen (2000)
- convex risk measures: Föllmer and Schied (2002), Frittelli and RG (2002)

Recently, Cerreia-Vioglio et al. (2011) (see also Drapeau and Kupper (2010), Frittelli and Maggis (2011)) pointed out that the right formulation of diversification of risk is quasiconvexity:

Review on risk measures

It is well known that a risk measure ρ is a functional

$$
\rho: \mathcal{X} \rightarrow \overline{\mathbb{R}}
$$

quantifying the riskiness of financial positions whose returns (or P\&L's) are represented by random variables in the space \mathcal{X}.

- coherent risk measures: Artzner et al. (1999), Delbaen (2000)
- convex risk measures: Föllmer and Schied (2002), Frittelli and RG (2002)

Recently, Cerreia-Vioglio et al. (2011) (see also Drapeau and Kupper (2010), Frittelli and Maggis (2011)) pointed out that the right formulation of diversification of risk is quasiconvexity:

$$
\text { if } \rho(X), \rho(Y) \leq \rho(Z) \quad \Rightarrow \rho(\alpha X+(1-\alpha) Y) \leq \rho(Z), \forall \alpha \in(0,1)
$$

Risk measures

For a monotone risk measure:

- quasi-convexity \Rightarrow convexity
- equivalence is true under cash-additivity of ρ

Risk measures

For a monotone risk measure:

- quasi-convexity \Rightarrow convexity
- equivalence is true under cash-additivity of ρ

Any monotone quasiconvex cash-subadditive risk measures ρ on L^{∞} can be represented as

$$
\rho(X)=\max _{Q \in \mathcal{M}_{1, f}} K\left(E_{Q}[-X], Q\right)
$$

where $\mathcal{M}_{1, f}$ denotes the set of (finitely additive) probabilities and K is a suitable functional
see Cerreia-Vioglio et al. (2011), Drapeau and Kupper (2010), Frittelli and Maggis (2011) (and Penot and Volle (1990))
with quasiconvex risk measures, the optimization problem becomes a min-max problem:

$$
\min _{w \in W} \max _{Q \in \mathcal{M}} K\left(E_{Q}[-X \cdot w], Q\right) .
$$

with quasiconvex risk measures, the optimization problem becomes a min-max problem:

$$
\min _{w \in W} \max _{Q \in \mathcal{M}} K\left(E_{Q}[-X \cdot w], Q\right)
$$

HENCE
min-max Theorems and notions of subdifferentiability for quasiconvex functions are needed!
with quasiconvex risk measures, the optimization problem becomes a min-max problem:

$$
\min _{w \in W} \max _{Q \in \mathcal{M}} K\left(E_{Q}[-X \cdot w], Q\right)
$$

HENCE

min-max Theorems and notions of subdifferentiability for quasiconvex functions are needed!
... the problem above reduces to

$$
\min _{w \in W} \max _{Q \in \mathcal{M}}\left\{E_{Q}[-X \cdot w]-G(Q)\right\}
$$

for convex risk measures (with extra assumptions)!

Useful notions of Quasiconvex analysis

Let \mathcal{X} be a topological vector space and \mathcal{X}^{*} its dual space.
A function $f: \mathcal{X} \rightarrow \mathbb{R}$ is quasiconvex if

$$
\{X \in \mathcal{X}: f(X) \leq c\} \text { is a convex set (for any } c \in \mathbb{R} \text {) }
$$

or, equivalently, if

$$
f(\alpha X+(1-\alpha) Y) \leq \max \{f(X) ; f(Y)\}, \quad \forall \alpha \in(0,1), X, Y \in \mathcal{X}
$$

in order to solve the minimization problem $\min _{X \in C} f(X)$, necessary and sufficient conditions are available in the literature, based on different notions of subdifferentiability and normal cones
in order to solve the minimization problem $\min _{X \in C} f(X)$, necessary and sufficient conditions are available in the literature, based on different notions of subdifferentiability and normal cones

- Greenberg-Pierskalla subdifferential of f at \bar{X} :

$$
\partial^{G P} f(\bar{X}) \triangleq\left\{X^{*} \in \mathcal{X}^{*}:\left\langle X^{*}, X-\bar{X}\right\rangle<0, \forall X \text { s.t. } f(X)<f(\bar{X})\right\}
$$

in order to solve the minimization problem $\min _{X \in C} f(X)$, necessary and sufficient conditions are available in the literature, based on different notions of subdifferentiability and normal cones

- Greenberg-Pierskalla subdifferential of f at \bar{X} :

$$
\partial^{G P} f(\bar{X}) \triangleq\left\{X^{*} \in \mathcal{X}^{*}:\left\langle X^{*}, X-\bar{X}\right\rangle<0, \forall X \text { s.t. } f(X)<f(\bar{X})\right\}
$$

- star subdifferential of f at \bar{X} :

$$
\partial^{(*)} f(\bar{X}) \triangleq\left\{X^{*} \in \mathcal{X}^{*}:\left\langle X^{*}, X-\bar{X}\right\rangle \leq 0, \forall X \text { s.t. } f(X)<f(\bar{X})\right\}
$$

in order to solve the minimization problem $\min _{X \in C} f(X)$, necessary and sufficient conditions are available in the literature, based on different notions of subdifferentiability and normal cones

- Greenberg-Pierskalla subdifferential of f at \bar{X} :

$$
\partial^{G P} f(\bar{X}) \triangleq\left\{X^{*} \in \mathcal{X}^{*}:\left\langle X^{*}, X-\bar{X}\right\rangle<0, \forall X \text { s.t. } f(X)<f(\bar{X})\right\}
$$

- star subdifferential of f at \bar{X} :

$$
\partial^{(*)} f(\bar{X}) \triangleq\left\{X^{*} \in \mathcal{X}^{*}:\left\langle X^{*}, X-\bar{X}\right\rangle \leq 0, \forall X \text { s.t. } f(X)<f(\bar{X})\right\}
$$

- normal cone at $\bar{X} \in C$ to a convex subset C of \mathcal{X} :

$$
N(C, \bar{X}) \triangleq\left\{X^{*} \in \mathcal{X}^{*}:\left\langle X^{*}, X-\bar{X}\right\rangle \leq 0 \text { for any } X \in C\right\}
$$

see Penot and Zalinescu (2003) and Penot (2003)

Setting and assumptions

- \mathcal{X} space of risky positions on a given (Ω, \mathcal{F}, P)

Setting and assumptions

- \mathcal{X} space of risky positions on a given (Ω, \mathcal{F}, P)
$\mathcal{X}=L^{p}(\Omega, \mathcal{F}, P)$, with $p \in[1,+\infty]$
- $p \in[1,+\infty)$: norm topology
- $p=+\infty$: weak topology $\sigma\left(L^{\infty}, L^{1}\right)$

Setting and assumptions

- \mathcal{X} space of risky positions on a given (Ω, \mathcal{F}, P)
$\mathcal{X}=L^{p}(\Omega, \mathcal{F}, P)$, with $p \in[1,+\infty]$
- $p \in[1,+\infty)$: norm topology
- $p=+\infty$: weak topology $\sigma\left(L^{\infty}, L^{1}\right)$
- \mathcal{X}^{*} its dual space

Setting and assumptions

- \mathcal{X} space of risky positions on a given (Ω, \mathcal{F}, P)
$\mathcal{X}=L^{p}(\Omega, \mathcal{F}, P)$, with $p \in[1,+\infty]$
- $p \in[1,+\infty)$: norm topology
- $p=+\infty$: weak topology $\sigma\left(L^{\infty}, L^{1}\right)$
- \mathcal{X}^{*} its dual space
- \mathcal{P} set of all probability measures $Q \ll P$ such that $\frac{d Q}{d P} \in \mathcal{X}^{*}$

Optimization problem

Optimization problem

$$
\begin{equation*}
\min _{Z \in C} \rho(F(Z)), \tag{1}
\end{equation*}
$$

Optimization problem

$$
\begin{equation*}
\min _{Z \in C} \rho(F(Z)) \tag{1}
\end{equation*}
$$

where:

- C is a convex, closed and compact subset of a Banach normed vector space \mathcal{Z}

Optimization problem

$$
\begin{equation*}
\min _{Z \in C} \rho(F(Z)) \tag{1}
\end{equation*}
$$

where:

- C is a convex, closed and compact subset of a Banach normed vector space \mathcal{Z}
- ρ is a risk measure (to be specified)

Optimization problem

$$
\begin{equation*}
\min _{Z \in C} \rho(F(Z)), \tag{1}
\end{equation*}
$$

where:

- C is a convex, closed and compact subset of a Banach normed vector space \mathcal{Z}
- ρ is a risk measure (to be specified)
- $F: \mathcal{Z} \rightarrow \mathcal{X}$ is a concave functional

Optimization problem

$$
\begin{equation*}
\min _{Z \in C} \rho(F(Z)) \tag{1}
\end{equation*}
$$

where:

- C is a convex, closed and compact subset of a Banach normed vector space \mathcal{Z}
- ρ is a risk measure (to be specified)
- $F: \mathcal{Z} \rightarrow \mathcal{X}$ is a concave functional
e.g.
$\mathcal{Z}=\mathbb{R}^{n}, F(Z)=Z \cdot X$ with $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ (portfolio weights) and $X=\left(X_{1}, \ldots, X_{n}\right)$ (assets' vector)

For a convex risk measure...

Let ρ be a monotone convex risk measure represented by

$$
\begin{equation*}
\rho(X)=\sup _{Q \in \mathcal{P}_{0}}\left\{E_{Q}[-X]-G(Q)\right\} \tag{2}
\end{equation*}
$$

for some convex Isc penalty functional G and for some convex, closed and compact set \mathcal{P}_{0}.

For a convex risk measure...

Let ρ be a monotone convex risk measure represented by

$$
\begin{equation*}
\rho(X)=\sup _{Q \in \mathcal{P}_{0}}\left\{E_{Q}[-X]-G(Q)\right\} \tag{2}
\end{equation*}
$$

for some convex Isc penalty functional G and for some convex, closed and compact set \mathcal{P}_{0}.
Let $\bar{Z} \in \mathcal{Z}, \bar{Q} \in \mathcal{P}_{0}$ and F be concave and continuous at \bar{Z}. Suppose that \bar{Z} is not a minimizer for $E_{\bar{Q}}[-F(\cdot)]$ and that ρ is continuous at $\bar{X}=F(\bar{Z})$.

For a convex risk measure...

Let ρ be a monotone convex risk measure represented by

$$
\begin{equation*}
\rho(X)=\sup _{Q \in \mathcal{P}_{0}}\left\{E_{Q}[-X]-G(Q)\right\} \tag{2}
\end{equation*}
$$

for some convex Isc penalty functional G and for some convex, closed and compact set \mathcal{P}_{0}.
Let $\bar{Z} \in \mathcal{Z}, \bar{Q} \in \mathcal{P}_{0}$ and F be concave and continuous at \bar{Z}. Suppose that \bar{Z} is not a minimizer for $E_{\bar{Q}}[-F(\cdot)]$ and that ρ is continuous at $\bar{X}=F(\bar{Z})$.
(\bar{Z}, \bar{Q}) is a saddle point of $E_{\bar{Q}}[-F(\bar{Z})]-G(Q)$ iff

$$
\partial E_{\bar{Q}}[-F(\bar{Z})] \cap(-N(C, \bar{Z})) \neq\{0\} \quad \text { and } \quad \bar{Q} \in \partial \rho(\bar{X})
$$

If the condition above is satisfied, then (\bar{Z}, \bar{Q}) is an optimal solution of the optimization problem.
see Proposition 6.4 of Ruszczynski and Shapiro (2006)

Remark

the assumption that \bar{Z} is not a minimizer for $E_{\bar{Q}}[-F(\cdot)]$ is quite reasonable.

Remark

the assumption that \bar{Z} is not a minimizer for $E_{\bar{Q}}[-F(\cdot)]$ is quite reasonable.
Consider, indeed, $\mathcal{Z}=\mathbb{R}^{n}$ and $F(Z)=Z \cdot X$ for a fixed $X=\left(X_{1}, \ldots, X_{n}\right)$ and assume that one asset is riskless (i.e. $X_{1}>0$ P-a.s.).

Remark

the assumption that \bar{Z} is not a minimizer for $E_{\bar{Q}}[-F(\cdot)]$ is quite reasonable.
Consider, indeed, $\mathcal{Z}=\mathbb{R}^{n}$ and $F(Z)=Z \cdot X$ for a fixed $X=\left(X_{1}, \ldots, X_{n}\right)$ and assume that one asset is riskless (i.e. $X_{1}>0$ P-a.s.).

Hence, \bar{Z} could not be a local minimizer for $E_{\bar{Q}}[-F(\cdot)]$.

Extension to the quasiconvex case

Problem

What about the optimization problem with quasiconvex risk measures?

Extension to the quasiconvex case

Problem

What about the optimization problem with quasiconvex risk measures?

Assumption (A)

$$
\begin{equation*}
\rho(X)=\sup _{Q \in \mathcal{P}_{0}} K\left(E_{Q}[-X], Q\right) \tag{3}
\end{equation*}
$$

where:

Extension to the quasiconvex case

Problem

What about the optimization problem with quasiconvex risk measures?

Assumption (A)

$$
\begin{equation*}
\rho(X)=\sup _{Q \in \mathcal{P}_{0}} K\left(E_{Q}[-X], Q\right) \tag{3}
\end{equation*}
$$

where:

- \mathcal{P}_{0} is a closed, convex subset of \mathcal{P};

Extension to the quasiconvex case

Problem

What about the optimization problem with quasiconvex risk measures?

Assumption (A)

$$
\begin{equation*}
\rho(X)=\sup _{Q \in \mathcal{P}_{0}} K\left(E_{Q}[-X], Q\right) \tag{3}
\end{equation*}
$$

where:

- \mathcal{P}_{0} is a closed, convex subset of \mathcal{P};
- $K: \mathbb{R} \times \mathcal{P} \rightarrow \mathbb{R}$ is increasing, lower semi-continuous and quasiconvex in the first variable;

Extension to the quasiconvex case

Problem

What about the optimization problem with quasiconvex risk measures?

Assumption (A)

$$
\begin{equation*}
\rho(X)=\sup _{Q \in \mathcal{P}_{0}} K\left(E_{Q}[-X], Q\right) \tag{3}
\end{equation*}
$$

where:

- \mathcal{P}_{0} is a closed, convex subset of \mathcal{P};
- $K: \mathbb{R} \times \mathcal{P} \rightarrow \mathbb{R}$ is increasing, lower semi-continuous and quasiconvex in the first variable;
- $L(X, Q) \triangleq K\left(E_{Q}[X], Q\right)$ is quasi-convex and Isc in X and quasi-concave and upper semi-continuous in Q.

Link with qco risk measures?

Link with qco risk measures?

- if $K(t, Q)$ is increasing, Isc and quasiconvex in t, then the corresponding risk measure

$$
\begin{equation*}
\rho(X)=\sup _{Q \in \mathcal{P}} K\left(E_{Q}[-X], Q\right) \tag{4}
\end{equation*}
$$

is Isc, quasiconvex and monotone on L^{p} (for $\left.p \in[1,+\infty]\right)$

Link with qco risk measures?

- if $K(t, Q)$ is increasing, Isc and quasiconvex in t, then the corresponding risk measure

$$
\begin{equation*}
\rho(X)=\sup _{Q \in \mathcal{P}} K\left(E_{Q}[-X], Q\right) \tag{4}
\end{equation*}
$$

is Isc, quasiconvex and monotone on L^{p} (for $p \in[1,+\infty]$)

- vice versa: if $\rho: L^{p} \rightarrow \mathbb{R} \cup\{-\infty\} \cup\{+\infty\}$ is a quasiconvex and monotone risk measure satisfying $\rho(0)=0$ and continuity from above, then it can be represented as in (4) for some suitable functional R
see Cerreia-Vioglio et al. (2011), Drapeau and Kupper (2010), Frittelli and Maggis (2011)

Link with qco risk measures?

- if $K(t, Q)$ is increasing, Isc and quasiconvex in t, then the corresponding risk measure

$$
\begin{equation*}
\rho(X)=\sup _{Q \in \mathcal{P}} K\left(E_{Q}[-X], Q\right) \tag{4}
\end{equation*}
$$

is Isc, quasiconvex and monotone on L^{p} (for $p \in[1,+\infty]$)

- vice versa: if $\rho: L^{p} \rightarrow \mathbb{R} \cup\{-\infty\} \cup\{+\infty\}$ is a quasiconvex and monotone risk measure satisfying $\rho(0)=0$ and continuity from above, then it can be represented as in (4) for some suitable functional R
see Cerreia-Vioglio et al. (2011), Drapeau and Kupper (2010), Frittelli and Maggis (2011)
Hence: any risk measure satisfying Assumption (A) is quasiconvex!

Remarks on Assumption (A)

Remarks on Assumption (A)

- Assumption (A) generalizes the one true in the convex case. For convex risk measures satisfying monotonicity, cash-additivity and Isc:

$$
L(X, Q)=E_{Q}[X]-G(Q)
$$

with G convex and lower semi-continuous. So, L is affine and Isc in X, concave and usc in Q.

Remarks on Assumption (A)

- Assumption (A) generalizes the one true in the convex case.

For convex risk measures satisfying monotonicity, cash-additivity and Isc:

$$
L(X, Q)=E_{Q}[X]-G(Q)
$$

with G convex and lower semi-continuous. So, L is affine and Isc in X, concave and usc in Q.

- an example of L (not reducing to the one of convex case) and satisfying hypothesis in (A):

$$
L(X, Q)=E_{Q}[X] \wedge \gamma-G(Q)
$$

for a given $\gamma \in \mathbb{R}$ and for a convex and Isc G

Optimization problem in the general (quasiconvex) case...

Proposition
Let ρ satisfy Assumption (A).

Optimization problem in the general (quasiconvex) case...

Proposition

Let ρ satisfy Assumption (A).
If C is a convex, closed and compact subset of \mathcal{Z} and $F: \mathcal{Z} \rightarrow \mathcal{X}$ is a concave and continuous from above functional, then

$$
\begin{equation*}
\min _{Z \in C} \sup _{Q \in \mathcal{P}_{0}} K\left(E_{Q}[-F(Z)], Q\right)=\sup _{Q \in \mathcal{P}_{0}} \inf _{Z \in C} K\left(E_{Q}[-F(Z)], Q\right) . \tag{5}
\end{equation*}
$$

Optimization problem in the general (quasiconvex) case..

Proposition

Let ρ satisfy Assumption (A).
If C is a convex, closed and compact subset of \mathcal{Z} and $F: \mathcal{Z} \rightarrow \mathcal{X}$ is a concave and continuous from above functional, then

$$
\begin{equation*}
\min _{Z \in C} \sup _{Q \in \mathcal{P}_{0}} K\left(E_{Q}[-F(Z)], Q\right)=\sup _{Q \in \mathcal{P}_{0}} \inf _{Z \in C} K\left(E_{Q}[-F(Z)], Q\right) . \tag{5}
\end{equation*}
$$

Moreover, if \mathcal{P}_{0} is (weakly-) compact, then

$$
\begin{equation*}
\min _{Z \in C} \sup _{Q \in \mathcal{P}_{0}} K\left(E_{Q}[-F(Z)], Q\right)=\max _{Q \in \mathcal{P}_{0}} \inf _{Z \in C} K\left(E_{Q}[-F(Z)], Q\right) . \tag{6}
\end{equation*}
$$

Optimization problem in the general (quasiconvex) case..

Proposition

Let ρ satisfy Assumption (A).
If C is a convex, closed and compact subset of \mathcal{Z} and $F: \mathcal{Z} \rightarrow \mathcal{X}$ is a concave and continuous from above functional, then

$$
\begin{equation*}
\min _{Z \in C} \sup _{Q \in \mathcal{P}_{0}} K\left(E_{Q}[-F(Z)], Q\right)=\sup _{Q \in \mathcal{P}_{0}} \inf _{Z \in C} K\left(E_{Q}[-F(Z)], Q\right) . \tag{5}
\end{equation*}
$$

Moreover, if \mathcal{P}_{0} is (weakly-) compact, then

$$
\begin{equation*}
\min _{Z \in C} \sup _{Q \in \mathcal{P}_{0}} K\left(E_{Q}[-F(Z)], Q\right)=\max _{Q \in \mathcal{P}_{0}} \inf _{Z \in C} K\left(E_{Q}[-F(Z)], Q\right) . \tag{6}
\end{equation*}
$$

Proof: application of Minimax Theorem of Sion (1958) (revisited by Tuy (2004)).

Optimization problem in the general (quasiconvex) case..

Proposition

Let ρ satisfy Assumption (A).
If C is a convex, closed and compact subset of \mathcal{Z} and $F: \mathcal{Z} \rightarrow \mathcal{X}$ is a concave and continuous from above functional, then

$$
\begin{equation*}
\min _{Z \in C} \sup _{Q \in \mathcal{P}_{0}} K\left(E_{Q}[-F(Z)], Q\right)=\sup _{Q \in \mathcal{P}_{0}} \inf _{Z \in C} K\left(E_{Q}[-F(Z)], Q\right) . \tag{5}
\end{equation*}
$$

Moreover, if \mathcal{P}_{0} is (weakly-) compact, then

$$
\begin{equation*}
\min _{Z \in C} \sup _{Q \in \mathcal{P}_{0}} K\left(E_{Q}[-F(Z)], Q\right)=\max _{Q \in \mathcal{P}_{0}} \inf _{Z \in C} K\left(E_{Q}[-F(Z)], Q\right) . \tag{6}
\end{equation*}
$$

Proof: application of Minimax Theorem of Sion (1958) (revisited by Tuy (2004)).
Consequence: existence of a saddle point of $K\left(E_{Q}[-F(Z)], Q\right)$ if \mathcal{P}_{0} is (weakly-)compact.

Main result

Let ρ satisfy assumption (A) with \mathcal{P}_{0} (weakly-) compact and F be concave and continuous.

Main result

Let ρ satisfy assumption (A) with \mathcal{P}_{0} (weakly-) compact and F be concave and continuous.
Let $\bar{Z} \in \mathcal{Z}, \bar{Q} \in \mathcal{P}_{0}, \bar{X}=F(\bar{Z})$ and suppose that \bar{Z} is not a local minimizer for $K_{\bar{Q}}\left(E_{\bar{Q}}[-F(\cdot)]\right)$.

Main result

Let ρ satisfy assumption (A) with \mathcal{P}_{0} (weakly-) compact and F be concave and continuous.
Let $\bar{Z} \in \mathcal{Z}, \bar{Q} \in \mathcal{P}_{0}, \bar{X}=F(\bar{Z})$ and suppose that \bar{Z} is not a local minimizer for $K_{\bar{Q}}\left(E_{\bar{Q}}[-F(\cdot)]\right)$.
(\bar{Z}, \bar{Q}) is a saddle point of $K_{Q}\left(E_{Q}[-F(Z)]\right)$ iff

$$
\begin{equation*}
\partial^{(*)} E_{\bar{Q}}[-F(\bar{Z})] \cap(-N(C, \bar{Z})) \neq\{0\} \quad \text { and } \quad \bar{Q} \in \partial^{G P} \rho(\bar{X}) \tag{7}
\end{equation*}
$$

If the condition above is satisfied, then (\bar{Z}, \bar{Q}) is an optimal solution of the optimization problem.
the previous result extends the one by Ruszczynski and Shapiro (2006).
the previous result extends the one by Ruszczynski and Shapiro (2006).

INDEED

the previous result extends the one by Ruszczynski and Shapiro (2006).

INDEED

For a convex risk measure, the Fenchel-Moreau subdifferential at \bar{X} is

$$
\partial f(\bar{X})=\left\{Q \in \mathcal{P}: f(X) \geq f(\bar{X})+E_{Q}[X-\bar{X}] \text { for any } X \in \mathcal{X}\right\}
$$

the previous result extends the one by Ruszczynski and Shapiro (2006).

INDEED

For a convex risk measure, the Fenchel-Moreau subdifferential at \bar{X} is

$$
\partial f(\bar{X})=\left\{Q \in \mathcal{P}: f(X) \geq f(\bar{X})+E_{Q}[X-\bar{X}] \text { for any } X \in \mathcal{X}\right\}
$$

Moreover, it is easy to prove that:

Proposition

If $E_{\bar{Q}}[-F(\cdot)]$ is continuous at \bar{Z} and \bar{Z} is not a minimizer of $E_{\bar{Q}}[-F(\cdot)]$, and ρ is continuous at $\bar{X}=F(\bar{Z})$, the following conditions are equivalent:
the previous result extends the one by Ruszczynski and Shapiro (2006).

INDEED

For a convex risk measure, the Fenchel-Moreau subdifferential at \bar{X} is

$$
\partial f(\bar{X})=\left\{Q \in \mathcal{P}: f(X) \geq f(\bar{X})+E_{Q}[X-\bar{X}] \text { for any } X \in \mathcal{X}\right\}
$$

Moreover, it is easy to prove that:

Proposition

If $E_{\bar{Q}}[-F(\cdot)]$ is continuous at \bar{Z} and \bar{Z} is not a minimizer of $E_{\bar{Q}}[-F(\cdot)]$, and ρ is continuous at $\bar{X}=F(\bar{Z})$, the following conditions are equivalent:

- $\partial\left(-E_{\bar{Q}}\left(\partial F_{\omega}(\bar{Z})\right)\right) \cap(-N(C, \bar{Z})) \neq \emptyset$ and $\bar{Q} \in \partial \rho(\bar{X})$
the previous result extends the one by Ruszczynski and Shapiro (2006).

INDEED

For a convex risk measure, the Fenchel-Moreau subdifferential at \bar{X} is

$$
\partial f(\bar{X})=\left\{Q \in \mathcal{P}: f(X) \geq f(\bar{X})+E_{Q}[X-\bar{X}] \text { for any } X \in \mathcal{X}\right\}
$$

Moreover, it is easy to prove that:

Proposition

If $E_{\bar{Q}}[-F(\cdot)]$ is continuous at \bar{Z} and \bar{Z} is not a minimizer of $E_{\bar{Q}}[-F(\cdot)]$, and ρ is continuous at $\bar{X}=F(\bar{Z})$, the following conditions are equivalent:

- $\partial\left(-E_{\bar{Q}}\left(\partial F_{\omega}(\bar{Z})\right)\right) \cap(-N(C, \bar{Z})) \neq \emptyset$ and $\bar{Q} \in \partial \rho(\bar{X})$
- $\partial^{(*)}\left(-E_{\bar{Q}}(F(\bar{Z}))\right) \cap(-N(C, \bar{Z})) \neq\{0\}$ and $\bar{Q} \in \partial^{G P} \rho(\bar{X})$,
where $E_{\bar{Q}}\left(\partial F_{\omega}(\bar{Z})\right)=\left\{E_{\bar{Q}}\left[Z^{*}\right]: Z^{*} \in \mathcal{Z}^{*}\right.$ and $\left.Z^{*}(\omega) \in \partial F_{\omega}(\bar{Z})\right\}$.

Efficient frontier

given:

- $X=\left(X_{1}, \ldots, X_{n}\right)$ a given random vector of assets' returns

Efficient frontier

given:

- $X=\left(X_{1}, \ldots, X_{n}\right)$ a given random vector of assets' returns
- r_{p} a (reasonable) target expected return

Efficient frontier

given:

- $X=\left(X_{1}, \ldots, X_{n}\right)$ a given random vector of assets' returns
- r_{p} a (reasonable) target expected return
- $W \triangleq\left\{w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}: w \geq 0 ; w \cdot \mathbf{1}=1\right\}$ the set of all admissible portfolio's weights, where w_{i} stands for the percentage invested in asset i

Efficient frontier

given:

- $X=\left(X_{1}, \ldots, X_{n}\right)$ a given random vector of assets' returns
- r_{p} a (reasonable) target expected return
- $W \triangleq\left\{w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}: w \geq 0 ; w \cdot \mathbf{1}=1\right\}$ the set of all admissible portfolio's weights, where w_{i} stands for the percentage invested in asset i
and the mean-risk optimization problem

$$
\min \rho(X \cdot w)
$$

subject to $w \in W ; E[X \cdot w] \geq r_{p}$

Efficient frontier

given:

- $X=\left(X_{1}, \ldots, X_{n}\right)$ a given random vector of assets' returns
- r_{p} a (reasonable) target expected return
- $W \triangleq\left\{w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}: w \geq 0 ; w \cdot \mathbf{1}=1\right\}$ the set of all admissible portfolio's weights, where w_{i} stands for the percentage invested in asset i
and the mean-risk optimization problem

$$
\min \rho(X \cdot w)
$$

subject to $w \in W ; E[X \cdot w] \geq r_{p} \quad \rightsquigarrow$ constraint set C

Efficient frontier

given:

- $X=\left(X_{1}, \ldots, X_{n}\right)$ a given random vector of assets' returns
- r_{p} a (reasonable) target expected return
- $W \triangleq\left\{w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}: w \geq 0 ; w \cdot \mathbf{1}=1\right\}$ the set of all admissible portfolio's weights, where w_{i} stands for the percentage invested in asset i
and the mean-risk optimization problem

$$
\min \rho(X \cdot w)
$$

subject to $w \in W ; E[X \cdot w] \geq r_{p} \rightsquigarrow$ constraint set C or
subject to $w \in W ; E[X \cdot w]=r_{p}$

Efficient frontier

given:

- $X=\left(X_{1}, \ldots, X_{n}\right)$ a given random vector of assets' returns
- r_{p} a (reasonable) target expected return
- $W \triangleq\left\{w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}: w \geq 0 ; w \cdot \mathbf{1}=1\right\}$ the set of all admissible portfolio's weights, where w_{i} stands for the percentage invested in asset i
and the mean-risk optimization problem

$$
\min \rho(X \cdot w)
$$

subject to $w \in W ; E[X \cdot w] \geq r_{p} \rightsquigarrow$ constraint set C or
subject to $w \in W ; E[X \cdot w]=r_{p} \rightsquigarrow$ constraint set \tilde{C}

Problems:

Problems:

- minimum attained?

Problems:

- minimum attained? Yes!

Problems:

- minimum attained? Yes!
- shape and properties of the efficient frontier (graph of $\rho(X \cdot \bar{w}(r))$, with $\bar{w}(r)$ optimal solution with target $r)$?

Problems:

- minimum attained? Yes!
- shape and properties of the efficient frontier (graph of $\rho(X \cdot \bar{w}(r))$, with $\bar{w}(r)$ optimal solution with target $r)$?

Known results:

efficient frontier (with constraint set \tilde{C}) is convex for shortfall risk measures (Bertsimas et al. (2004)) and for Haezendonck-Goovaerts risk measures (Bellini and RG (2008))

Problems:

- minimum attained? Yes!
- shape and properties of the efficient frontier (graph of $\rho(X \cdot \bar{w}(r))$, with $\bar{w}(r)$ optimal solution with target $r)$?

Known results:

efficient frontier (with constraint set \tilde{C}) is convex for shortfall risk measures (Bertsimas et al. (2004)) and for Haezendonck-Goovaerts risk measures (Bellini and RG (2008))

Our result (under assumption (A)):

Problems:

- minimum attained? Yes!
- shape and properties of the efficient frontier (graph of $\rho(X \cdot \bar{w}(r))$, with $\bar{w}(r)$ optimal solution with target $r)$?

Known results:

efficient frontier (with constraint set \tilde{C}) is convex for shortfall risk measures (Bertsimas et al. (2004)) and for Haezendonck-Goovaerts risk measures (Bellini and RG (2008))

Our result (under assumption (A)):

- the efficient frontier is the graph of a quasiconvex function:

$$
r \mapsto \rho(X \cdot \bar{w}(r)) \quad \text { quasiconvex }
$$

both for C and \tilde{C}

Problems:

- minimum attained? Yes!
- shape and properties of the efficient frontier (graph of $\rho(X \cdot \bar{w}(r))$, with $\bar{w}(r)$ optimal solution with target $r)$?

Known results:

efficient frontier (with constraint set \tilde{C}) is convex for shortfall risk measures (Bertsimas et al. (2004)) and for Haezendonck-Goovaerts risk measures (Bellini and RG (2008))

Our result (under assumption (A)):

- the efficient frontier is the graph of a quasiconvex function:

$$
r \mapsto \rho(X \cdot \bar{w}(r)) \quad \text { quasiconvex }
$$

both for C and \tilde{C}

- in general, not convex

Problems:

- minimum attained? Yes!
- shape and properties of the efficient frontier (graph of $\rho(X \cdot \bar{w}(r))$, with $\bar{w}(r)$ optimal solution with target $r)$?

Known results:

efficient frontier (with constraint set \tilde{C}) is convex for shortfall risk measures (Bertsimas et al. (2004)) and for Haezendonck-Goovaerts risk measures (Bellini and RG (2008))

Our result (under assumption (A)):

- the efficient frontier is the graph of a quasiconvex function:

$$
r \mapsto \rho(X \cdot \bar{w}(r)) \quad \text { quasiconvex }
$$

both for C and \tilde{C}

- in general, not convex \rightsquigarrow Example

Example

Take $\rho(X)=f(E[-X])$, with

$$
f(x)=\left\{\begin{aligned}
-1 ; & x<-\frac{1}{2} \\
1-4^{-x} ; & x \geq-\frac{1}{2}
\end{aligned}\right.
$$

and $X=\left(X_{1}, X_{2}\right)$ such that $E\left[X_{1}\right]<\frac{1}{4}<\frac{1}{2}<E\left[X_{2}\right]$.
The efficient frontier (wrt \tilde{C}) is not convex.
Consider, for instance, $r_{p_{1}}=\frac{1}{2}, r_{p_{2}}=\frac{1}{4}$ and $\alpha=\frac{1}{2}$.

Thank you for your attention!!!

Basic references, I

- D. Bertsimas, G.J. Lauprete and A. Samarov, Shortfall as a risk measure: properties, optimization and applications, Journal of Economic Dynamics \& Control 28 (2004), 1353-1381.
- S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci and L. Montrucchio, Risk measures: rationality and diversification, Mathematical Finance 21/4 (2011), 743-774.
- S. Drapeau and M. Kupper, Risk Preferences and their Robust Representation, Forthcoming on Mathematics of Operations Research (2010).
- M. Frittelli and M. Maggis, Dual Representation of Quasiconvex Conditional Maps, SIAM Journal of Financial Mathematics 2 (2011), 357-382.
- A.A. Gaivoronski and G. Pflug, Value-at-Risk in Portfolio Optimization: Properties and Computational Approach, Journal of Risk 7/2 (2005), 1-31.

Basic references, II

- J.-P. Penot, Characterization of solution sets of quasiconvex programs. J. Optim. Theory Appl. 117/3 (2003), 627-636.
- J.-P. Penot and M. Volle, On quasiconvex duality, Math. Oper. Res. 15 (1990), 597-625.
- J.-P. Penot and C. Zalinescu, Elements of Quasiconvex Subdifferential Calculus, Journal of Convex Analysis 7/2 (2000), 243-269.
- A. Ruszczynski and A. Shapiro, Optimization of Convex Risk Functions, Mathematics of Operations Research 31/3 (2006), 433-452.

