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Portfolio optimization problem

dates back to Markowitz (1987) in the mean-variance setting

later revisited by many authors by replacing variance with
quantiles or suitable risk measures

basic idea:
given n assets with returns (or Pro�t & Losses) given by
X1,X2, ...,Xn (and the corresponding vector X ), choose the
optimal portfolio's weights w = (w1, ...,wn) solving

min
(w1,...,wn)∈W

�risk associated� to X · w

where X · w = w1X1 + ...+ wnXn and W is a subset of Rn.

e.g.

W = {w ∈ Rn : w ≥ 0;
∑

n

i=1
wi = 1}

W1 = {w ∈W : E [w · X ] = µ}, with µ target return
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State of the art

Markowitz: risk = variance

risk measured by a coherent risk measure:

VaR and CVaR: Gaivoronski and P�ug (2005)
CVaR: Rockafellar and Uryasev (2000,2002)
Bertsimas et al. (2004)

risk measured by a convex risk measure: Mataramvura and
Øksendal (2008), Ruszczynski and Shapiro (2006), ...

optimized certainty equivalent: Ben-Tal and Teboulle (2007)

...

GOAL:

extension of the portfolio optimization problem to quasiconvex risk
measures and study of the related e�cient frontier
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Review on risk measures

It is well known that a risk measure ρ is a functional

ρ : X → R,

quantifying the riskiness of �nancial positions whose returns (or
P&L's) are represented by random variables in the space X .

coherent risk measures: Artzner et al. (1999), Delbaen (2000)

convex risk measures: Föllmer and Schied (2002), Frittelli and
RG (2002)

Recently, Cerreia-Vioglio et al. (2011) (see also Drapeau and
Kupper (2010), Frittelli and Maggis (2011)) pointed out that the
right formulation of diversi�cation of risk is quasiconvexity:

if ρ(X ), ρ(Y ) ≤ ρ(Z ) ⇒ ρ(αX + (1− α)Y ) ≤ ρ(Z ),∀α ∈ (0, 1)
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Risk measures

For a monotone risk measure:

quasi-convexity ⇒ convexity

equivalence is true under cash-additivity of ρ

Any monotone quasiconvex cash-subadditive risk measures ρ on L∞

can be represented as

ρ(X ) = max
Q∈M1,f

K (EQ [−X ],Q),

whereM1,f denotes the set of (�nitely additive) probabilities and
K is a suitable functional

see Cerreia-Vioglio et al. (2011), Drapeau and Kupper (2010),
Frittelli and Maggis (2011) (and Penot and Volle (1990))
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with quasiconvex risk measures, the optimization problem becomes
a min-max problem:

min
w∈W

max
Q∈M

K (EQ [−X · w ],Q).

HENCE

min-max Theorems and notions of subdi�erentiability for
quasiconvex functions are needed!

... the problem above reduces to

min
w∈W

max
Q∈M

{EQ [−X · w ]− G (Q)}

for convex risk measures (with extra assumptions)!
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Useful notions of Quasiconvex analysis

Let X be a topological vector space and X ∗ its dual space.

A function f : X → R is quasiconvex if

{X ∈ X : f (X ) ≤ c} is a convex set (for any c ∈ R)

or, equivalently, if

f (αX + (1− α)Y ) ≤ max{f (X ); f (Y )}, ∀α ∈ (0, 1),X ,Y ∈ X .



in order to solve the minimization problem minX∈C f (X ), necessary
and su�cient conditions are available in the literature, based on
di�erent notions of subdi�erentiability and normal cones

Greenberg-Pierskalla subdi�erential of f at X̄ :

∂GP f (X̄ ) ,
{
X ∗ ∈ X ∗ : 〈X ∗,X − X̄ 〉 < 0,∀X s.t. f (X ) < f (X̄ )

}
star subdi�erential of f at X̄ :

∂(∗)f (X̄ ) ,
{
X ∗ ∈ X ∗ : 〈X ∗,X − X̄ 〉 ≤ 0, ∀X s.t. f (X ) < f (X̄ )

}
normal cone at X̄ ∈ C to a convex subset C of X :

N(C , X̄ ) ,
{
X ∗ ∈ X ∗ : 〈X ∗,X − X̄ 〉 ≤ 0 for any X ∈ C

}
see Penot and Zalinescu (2003) and Penot (2003)
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Setting and assumptions

X space of risky positions on a given (Ω,F ,P)

X = Lp(Ω,F ,P), with p ∈ [1,+∞]

p ∈ [1,+∞): norm topology
p = +∞: weak topology σ(L∞, L1)

X ∗ its dual space

P set of all probability measures Q � P such that dQ
dP
∈ X ∗
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Optimization problem

min
Z∈C

ρ(F (Z )), (1)

where:

C is a convex, closed and compact subset of a Banach normed
vector space Z
ρ is a risk measure (to be speci�ed)

F : Z → X is a concave functional

e.g.
Z = Rn, F (Z ) = Z · X with Z = (Z1, ...,Zn) (portfolio weights)
and X = (X1, ...,Xn) (assets' vector)
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For a convex risk measure...

Let ρ be a monotone convex risk measure represented by

ρ(X ) = sup
Q∈P0

{EQ [−X ]− G (Q)}, (2)

for some convex lsc penalty functional G and for some convex,
closed and compact set P0.

Let Z̄ ∈ Z, Q̄ ∈ P0 and F be concave and continuous at Z̄ .
Suppose that Z̄ is not a minimizer for EQ̄ [−F (·)] and that ρ is
continuous at X̄ = F (Z̄ ).
(Z̄ , Q̄) is a saddle point of EQ̄ [−F (Z̄ )]− G (Q) i�

∂EQ̄ [−F (Z̄ )] ∩ (−N(C , Z̄ )) 6= {0} and Q̄ ∈ ∂ρ(X̄ ).

If the condition above is satis�ed, then (Z̄ , Q̄) is an optimal
solution of the optimization problem.

see Proposition 6.4 of Ruszczynski and Shapiro (2006)
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Remark

the assumption that Z̄ is not a minimizer for EQ̄ [−F (·)] is quite
reasonable.

Consider, indeed, Z = Rn and F (Z ) = Z · X for a �xed
X = (X1, ...,Xn) and assume that one asset is riskless (i.e. X1 > 0
P-a.s.).

Hence, Z̄ could not be a local minimizer for EQ̄ [−F (·)].
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Extension to the quasiconvex case

Problem

What about the optimization problem with quasiconvex risk
measures?

Assumption (A)

ρ(X ) = sup
Q∈P0

K (EQ [−X ],Q) , (3)

where:

P0 is a closed, convex subset of P;

K : R× P → R is increasing, lower semi-continuous and
quasiconvex in the �rst variable;

L(X ,Q) , K (EQ [X ],Q) is quasi-convex and lsc in X and
quasi-concave and upper semi-continuous in Q.
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Link with qco risk measures?

if K (t,Q) is increasing, lsc and quasiconvex in t, then the
corresponding risk measure

ρ (X ) = sup
Q∈P

K (EQ [−X ] ,Q) (4)

is lsc, quasiconvex and monotone on Lp (for p ∈ [1,+∞])

vice versa: if ρ : Lp → R ∪ {−∞} ∪ {+∞} is a quasiconvex
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Remarks on Assumption (A)

Assumption (A) generalizes the one true in the convex case.
For convex risk measures satisfying monotonicity,
cash-additivity and lsc:

L(X ,Q) = EQ [X ]− G (Q),

with G convex and lower semi-continuous.
So, L is a�ne and lsc in X , concave and usc in Q.

an example of L (not reducing to the one of convex case) and
satisfying hypothesis in (A):

L(X ,Q) = EQ [X ] ∧ γ − G (Q)

for a given γ ∈ R and for a convex and lsc G
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Optimization problem in the general (quasiconvex) case...

Proposition

Let ρ satisfy Assumption (A).

If C is a convex, closed and compact subset of Z and F : Z → X
is a concave and continuous from above functional, then

min
Z∈C

sup
Q∈P0

K (EQ [−F (Z )],Q) = sup
Q∈P0

inf
Z∈C

K (EQ [−F (Z )],Q) . (5)

Moreover, if P0 is (weakly-) compact, then

min
Z∈C

sup
Q∈P0

K (EQ [−F (Z )],Q) = max
Q∈P0

inf
Z∈C

K (EQ [−F (Z )],Q) . (6)

Proof: application of Minimax Theorem of Sion (1958) (revisited
by Tuy (2004)).

Consequence: existence of a saddle point of K (EQ [−F (Z )],Q) if
P0 is (weakly-)compact.
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Main result

Let ρ satisfy assumption (A) with P0 (weakly-) compact and F be
concave and continuous.

Let Z̄ ∈ Z, Q̄ ∈ P0, X̄ = F (Z̄ ) and suppose that Z̄ is not a local
minimizer for KQ̄(EQ̄ [−F (·)]).

(Z̄ , Q̄) is a saddle point of KQ(EQ [−F (Z )]) i�

∂(∗)EQ̄ [−F (Z̄ )] ∩ (−N(C , Z̄ )) 6= {0} and Q̄ ∈ ∂GPρ(X̄ ).

(7)

If the condition above is satis�ed, then (Z̄ , Q̄) is an optimal
solution of the optimization problem.



Main result

Let ρ satisfy assumption (A) with P0 (weakly-) compact and F be
concave and continuous.

Let Z̄ ∈ Z, Q̄ ∈ P0, X̄ = F (Z̄ ) and suppose that Z̄ is not a local
minimizer for KQ̄(EQ̄ [−F (·)]).

(Z̄ , Q̄) is a saddle point of KQ(EQ [−F (Z )]) i�

∂(∗)EQ̄ [−F (Z̄ )] ∩ (−N(C , Z̄ )) 6= {0} and Q̄ ∈ ∂GPρ(X̄ ).

(7)

If the condition above is satis�ed, then (Z̄ , Q̄) is an optimal
solution of the optimization problem.



Main result

Let ρ satisfy assumption (A) with P0 (weakly-) compact and F be
concave and continuous.

Let Z̄ ∈ Z, Q̄ ∈ P0, X̄ = F (Z̄ ) and suppose that Z̄ is not a local
minimizer for KQ̄(EQ̄ [−F (·)]).

(Z̄ , Q̄) is a saddle point of KQ(EQ [−F (Z )]) i�

∂(∗)EQ̄ [−F (Z̄ )] ∩ (−N(C , Z̄ )) 6= {0} and Q̄ ∈ ∂GPρ(X̄ ).

(7)

If the condition above is satis�ed, then (Z̄ , Q̄) is an optimal
solution of the optimization problem.



the previous result extends the one by Ruszczynski and Shapiro
(2006).

INDEED

For a convex risk measure, the Fenchel-Moreau subdi�erential at X̄
is

∂f (X̄ ) =
{
Q ∈ P : f (X ) ≥ f (X̄ ) + EQ [X − X̄ ] for any X ∈ X

}
Moreover, it is easy to prove that:

Proposition

If EQ̄ [−F (·)] is continuous at Z̄ and Z̄ is not a minimizer of
EQ̄ [−F (·)], and ρ is continuous at X̄ = F (Z̄ ),
the following conditions are equivalent:

∂(−EQ̄(∂Fω(Z̄ ))) ∩ (−N(C , Z̄ )) 6= ∅ and Q̄ ∈ ∂ρ(X̄ )

∂(∗)(−EQ̄(F (Z̄ ))) ∩ (−N(C , Z̄ )) 6= {0} and Q̄ ∈ ∂GPρ(X̄ ),

where EQ̄(∂Fω(Z̄ )) = {EQ̄ [Z ∗] : Z ∗ ∈ Z∗ and Z ∗(ω) ∈ ∂Fω(Z̄ )}.
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E�cient frontier

given:

X = (X1, . . . ,Xn) a given random vector of assets' returns

rp a (reasonable) target expected return

W , {w = (w1, ...,wn) ∈ Rn : w ≥ 0;w · 1 = 1} the set of
all admissible portfolio's weights, where wi stands for the
percentage invested in asset i

and the mean-risk optimization problem

min ρ(X · w)

subject to w ∈W ;E [X · w ] ≥ rp  constraint set C

or

subject to w ∈W ;E [X · w ] = rp  constraint set C̃
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Problems:

minimum attained? Yes!

shape and properties of the e�cient frontier (graph of
ρ(X · w̄(r)), with w̄(r) optimal solution with target r)?

Known results:

e�cient frontier (with constraint set C̃ ) is convex for shortfall risk
measures (Bertsimas et al. (2004)) and for Haezendonck-Goovaerts
risk measures (Bellini and RG (2008))

Our result (under assumption (A)):

the e�cient frontier is the graph of a quasiconvex function:

r 7→ ρ(X · w̄(r)) quasiconvex

both for C and C̃

in general, not convex  Example
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Example

Take ρ(X ) = f (E [−X ]), with

f (x) =

{
−1; x < −1

2
1− 4−x ; x ≥ −1

2

and X = (X1,X2) such that E [X1] < 1
4 <

1
2 < E [X2].

The e�cient frontier (wrt C̃ ) is not convex.
Consider, for instance, rp1 = 1

2 , rp2 = 1
4 and α = 1

2 .



Thank you for your attention!!!



Basic references, I

D. Bertsimas, G.J. Lauprete and A. Samarov, Shortfall as a risk
measure: properties, optimization and applications, Journal of
Economic Dynamics & Control 28 (2004), 1353-1381.

S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci and L.
Montrucchio, Risk measures: rationality and diversi�cation,
Mathematical Finance 21/4 (2011), 743-774.

S. Drapeau and M. Kupper, Risk Preferences and their Robust
Representation, Forthcoming on Mathematics of Operations

Research (2010).

M. Frittelli and M. Maggis, Dual Representation of
Quasiconvex Conditional Maps, SIAM Journal of Financial

Mathematics 2 (2011), 357�382.

A.A. Gaivoronski and G. P�ug, Value-at-Risk in Portfolio
Optimization: Properties and Computational Approach,
Journal of Risk 7/2 (2005), 1-31.



Basic references, II

J.-P. Penot, Characterization of solution sets of quasiconvex
programs. J. Optim. Theory Appl. 117/3 (2003), 627�636.

J.-P. Penot and M. Volle, On quasiconvex duality, Math.

Oper. Res. 15 (1990), 597�625.

J.-P. Penot and C. Zalinescu, Elements of Quasiconvex
Subdi�erential Calculus, Journal of Convex Analysis 7/2
(2000), 243�269.

A. Ruszczynski and A. Shapiro, Optimization of Convex Risk
Functions, Mathematics of Operations Research 31/3 (2006),
433�452.


