Robust consumption-investment problem over infinite horizon

Dariusz Zawisza
Jagiellonian University in Krakow

June 15, 2013

Introduction

- The aim of the investor is to maximize total expected discounted utility of consumption.
Literature:
Karatzas et al (1989), Fleming and Hernandez (2003), Fleming and Pang (2004), Hata and Sheu (2013)
- The investor believes that model is misspecified and he tries to protect against the worst scenario (the worst model) by looking for robust investment and consumption. Literature:
Schied (2008), Trojani and Vanini (2004), Hansen et al (2006), Gagliardini et al (2009),

Faria and Coreia-da-Silva (2012)

Overview

(1) The problem
(2) HJBI equation
(3) Smooth solution to the resulting HJB

4 Final result

Financial market-reference model

- A bank account

$$
d S_{t}^{0}=r\left(Y_{t}\right) S_{t}^{0} d t
$$

- An asset

$$
d S_{t}=b\left(Y_{t}\right) d t+\sigma\left(Y_{t}\right) d B_{t}^{1}
$$

Market price of risk: $\lambda(y)=\frac{b(y)-r(y)}{\sigma(y)}$

- A non-tradable economic factor

$$
d Y_{t}=g\left(Y_{t}\right) d t+a\left(Y_{t}\right)\left(\rho d B_{t}^{1}+\sqrt{1-\rho^{2}} d B_{t}^{2}\right)
$$

Robust portfolio optimization (finite horizon)

- Model risk is described by a set of probability measures \mathcal{Q}
- The investor tries to maximize a functional

$$
X \rightarrow \inf _{Q \in \mathcal{Q}} \mathbb{E}^{Q} U(X)
$$

where U is a utility function and X is a terminal wealth.

Model misspecification - finite horizon

To describe model uncertainty many authors use
$\mathcal{Q}:=\left\{Q \sim P \left\lvert\, \frac{d Q}{d P}=\mathcal{E}\left(\int \eta_{1, t} d B_{t}^{1}+\eta_{2, t} d B_{t}^{2}\right)_{T} \quad\left(\eta_{1}, \eta_{2}\right) \in \mathcal{M}\right.\right\}$,
where $\mathcal{E}(\cdot)_{T}$ denotes the Doleans-Dade exponential \mathcal{M} denotes the set of all progressively measurable processes $\eta=\left(\eta_{1}, \eta_{2}\right)$ taking values in a fixed compact convex set $\Gamma \subset \mathbb{R}^{2}$.

Model misspecification - infinite horizon

Instead of modeling \mathcal{Q} we consider a set of alternative market dynamics with uncertain drift:

$$
\left\{\begin{aligned}
d S_{t}^{0} & =r\left(Y_{t}\right) S_{t}^{0} d t \\
d S_{t} & =\left(b\left(Y_{t}\right)+\eta_{1, t} \sigma\left(Y_{t}\right)\right) S_{t} d t+\sigma\left(Y_{t}\right) S_{t} d B_{t}^{1} \\
d Y_{t} & =\left(g\left(Y_{t}\right)+\left(\eta_{1, t} \rho+\eta_{2, t} \bar{\rho}\right) a\left(Y_{t}\right)\right) d t+a\left(Y_{t}\right)\left(\rho d B_{t}^{1}+\bar{\rho} d B_{t}^{2}\right)
\end{aligned}\right.
$$

Investor's wealth dynamics $\left(X_{t}^{\pi, c, \eta}, 0 \leq t<+\infty\right)$ is given by:

π - capital invested in risky asset,
$c-$ consumption per unit of time.

Model misspecification - infinite horizon

Instead of modeling \mathcal{Q} we consider a set of alternative market dynamics with uncertain drift:

$$
\left\{\begin{aligned}
d S_{t}^{0} & =r\left(Y_{t}\right) S_{t}^{0} d t \\
d S_{t} & =\left(b\left(Y_{t}\right)+\eta_{1, t} \sigma\left(Y_{t}\right)\right) S_{t} d t+\sigma\left(Y_{t}\right) S_{t} d B_{t}^{1} \\
d Y_{t} & =\left(g\left(Y_{t}\right)+\left(\eta_{1, t} \rho+\eta_{2, t} \bar{\rho}\right) a\left(Y_{t}\right)\right) d t+a\left(Y_{t}\right)\left(\rho d B_{t}^{1}+\bar{\rho} d B_{t}^{2}\right)
\end{aligned}\right.
$$

Investor's wealth dynamics $\left(X_{t}^{\pi, c, \eta}, 0 \leq t<+\infty\right)$ is given by:

$$
d X_{t}=\left[r\left(Y_{t}\right) X_{t}+\pi_{t}\left(b\left(Y_{t}\right)-r\left(Y_{t}\right)+\eta_{1, t} \sigma\left(Y_{t}\right)\right)\right] d t+\pi_{t} \sigma\left(Y_{t}\right) d B_{t}^{1}-c_{t} d t
$$

π - capital invested in risky asset,
c - consumption per unit of time.

Main problem

- Objective function

$$
\begin{aligned}
& \mathcal{J}^{\pi, c, \eta}(x, y):=\mathbb{E}_{x, y} \int_{0}^{\tau^{\pi, c, \eta}} e^{-w t} \frac{\left(c_{t}\right)^{\gamma}}{\gamma} d t . \quad 0<\gamma<1, \\
& \tau^{\pi, c, \eta}=\inf \left\{t \geq 0: X_{t}^{\pi, c, \eta} \leq 0\right\}
\end{aligned}
$$

- Investor, who doubts his model, uses maxmin criterion:

$$
\text { maximize } \inf _{\eta \in \mathcal{M}} \mathcal{J}^{\pi, c, \eta}(x, y) \text { over }(\pi, c) \in \mathcal{A}_{x, y} .
$$

- This can be considered as a zero sum stochastic differential game, where the investor is looking for a saddle point (π^{*}, c^{*}, η^{*}), that is

$$
\mathcal{J}^{\pi, c, \eta^{*}} \leqslant \mathcal{J}^{\pi^{*}, c^{*}, \eta^{*}}(x, y) \leqslant \mathcal{J}^{\pi^{*}, c^{*}, \eta}(x, y)
$$

HJBI equation

- Differential operator

$$
\begin{aligned}
& \quad \mathcal{L}^{\pi, c, \eta} V(x, y)=\frac{1}{2} a^{2}(y) V_{y y}+\frac{1}{2} \pi^{2} \sigma^{2}(y) V_{x x}+\rho \pi \sigma(y) a(y) V_{x y} \\
& +\left(\rho \eta_{1}+\bar{\rho} \eta_{2}\right) a(y) V_{y}+g(y) V_{y}+\pi\left(b(y)-r(y)+\eta_{1} \sigma(y)\right) V_{x}+r(y) x V_{x}-c V_{x} .
\end{aligned}
$$

- We have to solve

HJBI equation

- Differential operator

$$
\begin{gathered}
\mathcal{L}^{\pi, c, \eta} V(x, y)=\frac{1}{2} a^{2}(y) V_{y y}+\frac{1}{2} \pi^{2} \sigma^{2}(y) V_{x x}+\rho \pi \sigma(y) a(y) V_{x y} \\
+\left(\rho \eta_{1}+\bar{\rho} \eta_{2}\right) a(y) V_{y}+g(y) V_{y}+\pi\left(b(y)-r(y)+\eta_{1} \sigma(y)\right) V_{x}+r(y) x V_{x}-c V_{x} .
\end{gathered}
$$

- We have to solve

$$
\begin{aligned}
& \max _{\pi \in \mathbb{R}} \max _{c>0} \min _{\eta \in \Gamma}\left(\mathcal{L}^{\pi, c, \eta} V-w V+\frac{c^{\gamma}}{\gamma}\right) \\
&=\min _{\eta \in \Gamma} \max _{\pi \in \mathbb{R}} \max _{c>0}\left(\mathcal{L}^{\pi, c, \eta}-w V+\frac{c^{\gamma}}{\gamma}\right)=0 .
\end{aligned}
$$

Verification theorem, part I

Suppose there exists a function
$V \in \mathcal{C}^{2,2}((0,+\infty) \times \mathbb{R}) \cap \mathcal{C}([0,+\infty) \times \mathbb{R})$ an admissible Markov control $\left(\pi^{*}(x, y), c^{*}(x, y), \eta^{*}(x, y)\right)$ and constants $D_{1}, D_{2}>0$ such that

$$
\begin{gathered}
\mathcal{L}^{\pi^{*}(x, y), c^{*}(x, y), \eta} V(x, y)-w V(x, y)+\frac{\left(c^{*}(x, y)\right)^{\gamma}}{\gamma} \geq 0 \\
\mathcal{L}^{\pi, c, \eta^{*}(x, y)} V(x, y)-w V(x, y)+\frac{c^{\gamma}}{\gamma} \leq 0 \\
\mathcal{L}^{\pi^{*}(x, y), c^{*}(x, y), \eta^{*}(x, y)} V(x, y)-w V(x, y)+\frac{\left(c^{*}(x, y)\right)^{\gamma}}{\gamma}=0, \\
D_{1} x^{\gamma} \leq\left(c^{*}(x, y)\right)^{\gamma} \\
V(x, y) \leq D_{2} x^{\gamma}
\end{gathered}
$$

for all $\eta \in \Gamma,(\pi, c) \in \mathbb{R} \times(0,+\infty),(x, y) \in(0,+\infty) \times \mathbb{R}$

Verification theorem, part II

and

$$
\begin{gathered}
\tau_{x, y}^{\pi^{*}, c^{*}, \eta}=+\infty, \\
\mathbb{E}_{x, y}\left(\sup _{0 \leq s \leq t \wedge \tau} e^{-w s}\left|V\left(X_{s}^{\pi, c, \eta}, Y_{s}\right)\right|\right)<+\infty \\
\text { for all }(x, y) \in(0,+\infty) \times \mathbb{R}, t \in[0,+\infty),(\pi, c) \in \mathcal{A}, \eta \in \mathcal{M}
\end{gathered}
$$

Then

$$
\mathcal{J}^{\pi, c, \eta^{*}}(x, y) \leq V(x, y) \leq \mathcal{J}^{\pi^{*}, c^{*}, \eta}(x, y)
$$

for all $\pi \in \mathcal{A}, \eta \in \mathcal{M}$,
and

$$
V(x, y)=\mathcal{J}^{\pi^{*}, c^{*}, \eta^{*}}(x, y) .
$$

Saddle point derivation

- Applying standard minimax results we can reduce the task to solving only one equation:

$$
\min _{\eta \in \Gamma} \max _{\pi \in \mathbb{R}} \max _{c>0}\left(\mathcal{L}^{\pi, c, \eta} V-w V+\frac{c^{\gamma}}{\gamma}\right)=0
$$

- The maximum with respect to π and c is achieved at

$$
\begin{aligned}
\pi^{*}(x, y, \eta) & =-\frac{\rho a(y)}{\sigma(y)} \frac{V_{x y}}{V_{x x}}-\frac{\left(b(y)+\eta_{1} \sigma(y)\right)}{\sigma^{2}(y)} \frac{V_{x}}{V_{x x}} \\
c^{*}(x, y) & =\left(\frac{V_{x}}{\gamma}\right)^{\frac{1}{\gamma-1}}
\end{aligned}
$$

- The following ansatz is made:

$$
V(x, y)=\frac{x^{\gamma}}{\gamma} F(y)
$$

Transformation of HJBI equation

After substitution and dividing by $\frac{x^{\gamma}}{\gamma}$ we get

$$
\begin{align*}
& \frac{1}{2} a^{2}(y) F_{y y}+\frac{\rho^{2} \gamma}{2(1-\gamma)} a^{2}(y) \frac{F_{y}^{2}}{F}+\left(g(y)+\frac{\rho \gamma}{1-\gamma} a(y) \lambda(y)\right) F_{y} \\
& \quad+\min _{\left(\eta_{1}, \eta_{2}\right) \in \Gamma}\left(\bar{\rho} \eta_{2} a(y) F_{y}+\frac{\rho}{(1-\gamma)} a(y) \eta_{1} F_{y}+\frac{\gamma}{2(1-\gamma)}\left(\lambda(y)+\eta_{1}\right)^{2} F\right) \\
& \quad+\gamma r(y) F+(1-\gamma) F^{\frac{-\gamma}{1-\gamma}}-w F=0, \tag{2.1}
\end{align*}
$$

Transformation of HJBI equation

If there exist F solution to (2.1) and $m_{1}, m_{2}, R>0$ such that

$$
\left|\frac{F_{y}}{F}\right| \leq R \quad \text { and } \quad m_{1} \leq F^{\frac{1}{\gamma-1}} \leq m_{2},
$$

then

$$
\begin{gathered}
\max _{q \in[-R, R]}\left(-F q^{2}+2 F_{y} q\right)=\frac{F_{y}^{2}}{F}, \\
\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c F+c^{\gamma}\right)=(1-\gamma) F^{\frac{-\gamma}{1-\gamma}} .
\end{gathered}
$$

Transformation of HJBI equation

Therefore it is worth to consider

$$
\begin{array}{r}
\frac{1}{2} a^{2}(y) F_{y y}+\max _{q \in[-R, R]}\left(-F q^{2}+2 F_{y} q\right)+\min _{\eta \in \Gamma}\left(i(y, \eta) F_{y}+h(y, \eta) F\right) \\
+\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c F+c^{\gamma}\right)-w F=0,
\end{array}
$$

HJB equation

This equation can be generalized to
$\frac{1}{2} a^{2}(y) u_{y y}+\max _{\eta \in D}\left(i(y, \eta) u_{y}+h(y, \eta) u\right)+\max _{c>0}\left(-\gamma c u+c^{\gamma}\right)-w u=0$, where $D \subset \mathbb{R}^{n}$ is a compact set.

Assumption 1

a, h, i are continuous functions, $a(y)>\varepsilon>0$ and there exist constants $L_{1}>0, L_{2} \geq 0$ such that

HJB equation

This equation can be generalized to
$\frac{1}{2} a^{2}(y) u_{y y}+\max _{\eta \in D}\left(i(y, \eta) u_{y}+h(y, \eta) u\right)+\max _{c>0}\left(-\gamma c u+c^{\gamma}\right)-w u=0$,
where $D \subset \mathbb{R}^{n}$ is a compact set.

Assumption 1

a, h, i are continuous functions, $a(y)>\varepsilon>0$ and there exist constants $L_{1}>0, L_{2} \geq 0$ such that

$$
\begin{aligned}
& |h(y, \eta)-h(\bar{y}, \eta)|+|i(y, \eta)-i(\bar{y}, \eta)| \leq L_{1}|y-\bar{y}| \\
& \quad|h(y, \eta)|+|a(y)|^{2} \leq L_{1}, \quad|i(y, \eta)| \leq L_{1}(1+|y|) \\
& (y-\bar{y})(i(y, \eta)-i(\bar{y}, \eta))+|a(y)-a(\bar{y})|^{2} \leq L_{2}|y-\bar{y}|^{2} .
\end{aligned}
$$

Existence and uniqueness

Theorem

Suppose that Assumption 1 is satisfied with $L_{1}>0, L_{2} \geq 0$ and $w>\sup _{\eta, y} h(y, \eta)+L_{2}$. Then there exists a unique bounded solution to

$$
\begin{aligned}
\frac{1}{2} a^{2}(y) u_{y y}+\max _{\eta \in D}\left(i(y, \eta) u_{y}\right. & +h(y, \eta) u) \\
& +\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c u+c^{\gamma}\right)-w u=0,
\end{aligned}
$$

which, in addition, has bounded y-derivative and is bounded away from zero.

Sketch of the proof

- Solution to infinite time HJB is approximated by solution to finite time horizon HJB of the form

$$
\begin{aligned}
u_{t}+\frac{1}{2} a^{2}(y) u_{y y}+\max _{\eta \in D} & \left(i(y, \eta) u_{y}+h(y, \eta) u\right) \\
& +\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c u+c^{\gamma}\right)-w u=0
\end{aligned}
$$

with terminal condition $u(y, T)=0$.

- Rubio (2012) result ensures that under Assumtion 1 a
unique bounded solution exists (u^{T})
Related results: Friedman (1973), Pham (2002)

Sketch of the proof

- Solution to infinite time HJB is approximated by solution to finite time horizon HJB of the form

$$
\begin{aligned}
u_{t}+\frac{1}{2} a^{2}(y) u_{y y}+\max _{\eta \in D} & \left(i(y, \eta) u_{y}+h(y, \eta) u\right) \\
& +\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c u+c^{\gamma}\right)-w u=0
\end{aligned}
$$

with terminal condition $u(y, T)=0$.

- Rubio (2012) result ensures that under Assumtion 1 a unique bounded solution exists (u^{T})
Related results: Friedman (1973), Pham (2002)

Sketch of the proof

- Solution to infinite time HJB is approximated by finite time horizon HJB of the form

$$
\begin{aligned}
u_{t}+\frac{1}{2} a^{2}(y) u_{y y}+\max _{\eta \in D} & \left(i(y, \eta) u_{y}+h(y, \eta) u\right) \\
& +\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c u+c^{\gamma}\right)-w u=0
\end{aligned}
$$

with terminal condition $u(y, T)=0$.

- Stochastic control representation:

$$
\begin{aligned}
& u^{T}(y, t)=\max _{\eta \in \mathcal{M}, c \in \mathcal{C}_{m_{1}, m_{2}}} \mathbb{E}_{y, t}\left(\int_{t}^{T} e^{\int_{t}^{s}\left(h\left(Y_{k}, \eta_{k}\right)-\gamma c_{k}-w\right) d k} c_{s}^{\gamma} d s\right) \\
& d Y_{t}=i\left(Y_{t}, \eta_{t}\right) d t+a\left(Y_{t}\right) d B_{t}
\end{aligned}
$$

Sketch of the proof

- Our equation can be rewritten as

$$
u_{t}+\frac{1}{2} a^{2}(y) u_{y y}+H\left(y, u, u_{y}\right)=0
$$

where

$$
H(y, u, p)=\max _{\eta \in \Gamma}(i(y, \eta) p+h(y, \eta) u)+\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c u+c^{\gamma}\right)
$$

Sketch of the proof

- Our equation can be rewritten as

$$
u_{t}+\frac{1}{2} a^{2}(y) u_{y y}+H\left(y, u, u_{y}\right)=0
$$

where

$$
H(y, u, p)=\max _{\eta \in \Gamma}(i(y, \eta) p+h(y, \eta) u)+\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c u+c^{\gamma}\right)
$$

$$
\begin{aligned}
u^{T}(y, t) & =\mathbb{E}_{y, t} \int_{t}^{T} e^{-w(s-t))} H\left(Y_{s}, u^{T}\left(Y_{s}\right), u_{y}^{T}\left(Y_{s}\right)\right) d s \\
& =\mathbb{E}_{y, t}\left(\int_{t}^{T} e^{-w(s-t)} H\left(Y_{s}, u^{T}\left(Y_{s}\right), u_{y}^{T}\left(Y_{s}\right)\right) d s\right),
\end{aligned}
$$

where $d Y_{t}=a\left(Y_{t}\right) d B_{t}$.

Sketch of the proof

- $v(y, t):=u^{T}(y, T-t)$
- v satisfies

$$
v_{t}-\frac{1}{2} a^{2}(y) v_{y y}-H\left(y, u, u_{y}\right)+w v=0
$$

- passing $t \rightarrow \infty$ and using stochastic representation to estimate uniform bounds for v, v_{t}, v_{y}, we may define the solution as

$$
\left.\hat{v}(y)=\lim _{t \rightarrow \infty} v(y, t) \quad \text { (Arzel-Ascoli Lemma }\right)
$$

Non-linearity recovering

Let $F^{m_{1}, m_{2}, R}$ be the unique solution to

$$
\begin{aligned}
& \frac{1}{2} a^{2}(y) F_{y y}+\max _{q \in[-R, R]}\left(-\theta a^{2}(y) F q^{2}+2 \theta a^{2}(y) F_{y} q\right) \\
& \quad+\max _{\eta \in D}\left(i(y, \eta) F_{y}+h(y, \eta) F\right)+\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c F+c^{\gamma}\right)-w F=0,
\end{aligned}
$$

We can use infinite horizon stochastic control representation

Non-linearity recovering

Let $F^{m_{1}, m_{2}, R}$ be the unique solution to

$$
\begin{aligned}
& \frac{1}{2} a^{2}(y) F_{y y}+\max _{q \in[-R, R]}\left(-\theta a^{2}(y) F q^{2}+2 \theta a^{2}(y) F_{y} q\right) \\
& \quad+\max _{\eta \in D}\left(i(y, \eta) F_{y}+h(y, \eta) F\right)+\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c F+c^{\gamma}\right)-w F=0
\end{aligned}
$$

We can use infinite horizon stochastic control representation

$$
F^{m_{1}, m_{2}, R}(y)=\max _{c \in C_{m_{1}, m_{2}, q \in Q_{R}}} \mathbb{E}_{y, 0}\left(\int_{0}^{+\infty} e^{\int_{0}^{s}\left(h\left(Y_{k}, \eta_{k}^{*}\right)-\theta q_{k}^{2}-\gamma c_{k}-w\right) d k}\left(c_{s}^{*}\right)^{\gamma} d s\right)
$$

Non-linearity recovering

- Using stochastic representation we can find $m_{1}^{*}, m_{2}^{*}, R^{*}>0$ that

$$
\begin{gathered}
\max _{q \in\left[-R^{*}, R^{*}\right]}\left(-F^{*} q^{2}+2 F_{y}^{*} q\right)=\frac{\left(F_{y}^{*}\right)^{2}}{F^{*}}, \\
\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c F^{*}+c^{\gamma}\right)=(1-\gamma)\left(F^{*}\right)^{\frac{-\gamma}{1-\gamma}},
\end{gathered}
$$

where $F^{*}=F^{m_{1}^{*}, m_{2}^{*}, R^{*}}$
This implies that F^{*} is a solution to

Non-linearity recovering

- Using stochastic representation we can find $m_{1}^{*}, m_{2}^{*}, R^{*}>0$ that

$$
\begin{gathered}
\max _{q \in\left[-R^{*}, R^{*}\right]}\left(-F^{*} q^{2}+2 F_{y}^{*} q\right)=\frac{\left(F_{y}^{*}\right)^{2}}{F^{*}}, \\
\max _{m_{1} \leq c \leq m_{2}}\left(-\gamma c F^{*}+c^{\gamma}\right)=(1-\gamma)\left(F^{*}\right)^{\frac{-\gamma}{1-\gamma}},
\end{gathered}
$$

where $F^{*}=F^{m_{1}^{*}, m_{2}^{*}, R^{*}}$

- This implies that F^{*} is a solution to

$$
\begin{align*}
& \frac{1}{2} a^{2}(y) F_{y y}+\frac{\rho^{2} \gamma}{2(1-\gamma)} a^{2}(y) \frac{F_{y}^{2}}{F} \\
& \quad+\max _{\eta \in D}\left(i(y, \eta) F_{y}+h(y, \eta) F\right)+(1-\gamma) F^{\frac{-\gamma}{1-\gamma}}-w F=0 . \tag{4.1}
\end{align*}
$$

final result

Theorem

Suppose that a, g, r, λ are Lipschitz continuous functions, a, λ, r are bounded and $a(y)>\varepsilon>0, g$ is of linear growth, $w>\sup _{\eta, y} h(y, \eta)+L_{2}$. Then there exists a saddle point $\left(\pi^{*}(x, y), c^{*}(x, y), \eta^{*}(x, y)\right)$ such that

$$
\pi^{*}(x, y)=\frac{\rho a(y) x}{(1-\gamma) \sigma(y)} \frac{F_{y}}{F}+\frac{\left(\lambda(y)+\eta_{1}^{*}(y)\right) x}{(1-\gamma) \sigma(y)}, \quad c^{*}(x, y):=\left(\frac{F}{\gamma}\right)^{\frac{1}{\gamma-1}} x
$$

where F is a bounded together with y-derivative and bounded away from zero solution to (4.1). η^{*} is a Borel measurable function which realizes maximum in (4.1).

References I

易
G．Faria，J．Correia－da－Silva，The price of risk and ambiguity in an intertemporal general equilibrium model of asset prices Annals of Finance 8.4 （2012）：507－531．
\square W．H．Fleming，D．Hernandez－Hernandez An optimal consumption model with stochastic volatility，Finance Stoch．， 7 （2003），245－262．

W．H．Fleming and T．Pang An application of stochastic control theory to financial economics SIAM J．Control Optim．， 43 （2004） 502－531．

囯 A．Friedman，The Cauchy Problem for First Order Partial Differential Equations ．Indiana Univ．Math．J． 23 （1973），27－40．

囦 P．Gagliardini，P．Porchia，and F．Trojani，Ambiguity aversion and the term structure of interest rates．Review of Financial Studies 22 （2009），4147－4188 141－153．

References II

围 L．P．Hansen，T．J．Sargent，G．Turmuhambetova，G．Noah， Robust control and model misspecification．J．Econom．Theory 128 （2006），45－90．

R H．Hata，S．Sheu，On the Hamilton－Jacobi－Bellman equation for an optimal consumption problem：II．Verification theorem．SIAM J．Control Optim． 50 （2012），no．4，2401－2430．
國 I．Karatzas ，J．P．Lehoczky，S．P．Sethi，S．E．Shreve ：Explicit solution of a general consumption investment problem．Math． Oper．Res． 11 （1986），261－294

囯 G．Rubio，Existence and uniqueness to the Cauchy problem for linear and semilinear parabolic equations with local conditions．X Symposium on Probability and Stochastic Processes and the First Joint Meeting France－Mexico of Probability，73－100，ESAIM Proc．，31，EDP Sci．，Les Ulis， 2011.

References III

R. H. Pham, Smooth solutions to optimal investment models with stochastic volatilities and portfolio constraints. Appl. Math. Optim. 46 (2002), no. 1, 55-78.
A. Schied Robust optimal control for a consumption-investment problem, Math. Methods. Oper. Res. 67 (2008), no. 1, 1-20.
F. Trojani, P. Vanini, Robustness and ambiguity aversion in general equilibrium Review of Finance 8.2 (2004): 279-324.

Thank you for your attention.

