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The problem

Introduction

@ The aim of the investor is to maximize total expected
discounted utility of consumption.
Literature:
Karatzas et al (1989), Fleming and Hernandez (2003),
Fleming and Pang (2004),
Hata and Sheu (2013)

@ The investor believes that model is misspecified and he
tries to protect against the worst scenario (the worst
model) by looking for robust investment and consumption.
Literature:

Schied (2008), Trojani and Vanini (2004), Hansen et al
(2006), Gagliardini et al (2009),
Faria and Coreia-da-Silva (2012)
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The problem

Financial market-reference model

@ A bank account
dS? = r(Y)S? dt,

@ An asset
dS; = b(Y;) dt + o(Y;) dB},

Market price of risk: A\(y) = %

@ A non-tradable economic factor

dY; = g(Y:) dt + a(Y:) (p dB} + /1 — p2 dB?).



The problem

Robust portfolio optimization (finite horizon)

@ Model risk is described by a set of probability measures Q
@ The investor tries to maximize a functional

X — inf EQU(X),
QeQ

where U is a utility function and X is a terminal wealth.



The problem

Model misspecification - finite horizon

To describe model uncertainty many authors use

0. {o P|—5(/m,td82+n2,fd8?> (m,nz)eM}

T

where £(-) T denotes the Doleans-Dade exponential M denotes
the set of all progressively measurable processes n = (71, 72)
taking values in a fixed compact convex set I C R?.



The problem

Model misspecification — infinite horizon

Instead of modeling Q we consider a set of alternative market
dynamics with uncertain drift:

40 = r(Y;)Sdt,
dSt (b( Yt) + m, tU( Yt))Stdt + O'( Y;)StdBt ,
dY; (9(Y) + (1,0 + m2,tp)a( V1)) dt + a(Yi)(pdB} + pdBg).



The problem

Model misspecification — infinite horizon

Instead of modeling Q we consider a set of alternative market
dynamics with uncertain drift:

ds? = r(Y;)S0at,

dSt = (b(Yy) + n1,40( Y1) St + o (V1) SidBY,
dYr = (g(Yt) + (mrp +n2ep)a(Yy)) ot + a(Yi)(pdB} + pdBy).

Investor's wealth dynamics (X["°"7,0 < t < +o0) is given by:
aX; = [r( Yt)Xt—i—ﬂ't (b( Yt)—l’( Yt)+771 710’( Yt))] dt—i—?TtO'( Yt)dB; —cidt,

7 - capital invested in risky asset,
¢ - consumption per unit of time.



The problem

Main problem

@ Objective function

T,C,m (Ct)'y

TN, y) = Ex,y/ e " dat. 0<y<1,
0

™en =inf{t > 0 : X"®" < 0}
@ Investor, who doubts his model, uses maxmin criterion:

maximize in):/l T (x,y) over (m,c) € Axy.
ne

@ This can be considered as a zero sum stochastic
differential game, where the investor is looking for a saddle
point (7*, ¢*, n*), that is

jﬂ—7cv77* < jﬂ'*»C*ﬂ?*(X’y) < j7r*70*777(x’y)



HJBI equation

HJBI equation

@ Differential operator

1 1
L7en V(ix,y)= 532(}/) Vyy + §7T202(}’) Vix + pra(y)a(y) ny
+(pm-+pmz)a(y) Vy+a(y) Vy+m (b(y)—r(y)+ma(y)) Vitr(y)xVe—cVy.



HJBI equation

HJBI equation

@ Differential operator

1 1
LTEMV(x,y) = 58 (V)Y + 5770% (V) V + pro(y)aly) Viy
+(pm+mz)aly) Vy+9(y) Vy+m (b(y)=r(y)+n10(y)) Vatr(y)xVi—cVx.

@ We have to solve

. c”
max max min(£™"V — wV + —)
weR ¢>0 nel 0%

. c
= minmaxmax(£™%" —wV + —) =0.
nel reR ¢>0 ¥



HJBI equation

Verification theorem, part |

Suppose there exists a function

V € C?2((0, +o0) x R) N C([0, +00) x R) an admissible Markov
control (7*(x, y), c*(x,y),n*(x,y)) and constants Dy, D> > 0
such that

* * * v
Lr (x:¥),e*(x.y)m V(X, y) _ WV(X,y) + (C (X’y)) > 0,
Y

* c?
Lo (x.) V(Xv y) - WV(Xa y) +—< Oa
Y

L7 ()¢ (xy)n*(x.y) V(x,y) — wV(x,y)+ w =0,
Y
D1X’Y < (C*(Xa y))'Y’

V(x,y) < Dox”

forallnerl, (mc) e Rx(0,+00), (X,¥) € (0,+) x R



HJBI equation

Verification theorem, part

and
T;y,c M= +OOM
By sUp_ e IVOG, Vo)l ) < 4oc
0<s<tAT

forall (x,y) € (0,+00) xR, t € [0,4+0), (7,C) € A, n € M.
Then
T™M (x,y) < V(x,y) <T™°(x,y)
forallm € A, n e M,

and
V(x,y)=J" " (x,y).



HJBI equation

Saddle point derivation

@ Applying standard minimax results we can reduce the task
to solving only one equation:

. c’
min max max(£™%"V — wV + —) =0,
nel meR ¢>0 y

@ The maximum with respect to = and ¢ is achieved at

_paly) Vay  (b(y) +ma(y)) Vi
o(y) Vi a?(y) Vix’

@ The following ansatz is made:

vmm:fﬂn

W*(X,yaﬁ) =



HJBI equation

Transformation of HJBI equation

After substitution and dividing by % we get

1
§3Z(Y)Fyy +

2

2(1-1)

L+ (90)+ 72 )

+ min (ﬁnza(Y)Fy + ﬁﬂﬂm Fy + ﬁ(/\(}’) + 771)2’:)

(m1,m2)€r

+r(y)F +

(1-F=

—wF =0,

2.1)



HJBI equation

Transformation of HJBI equation

If there exist F solution to (2.1) and my, m», R > 0 such that

Fy

1
5 <R and my < F>1 < mo,

then



HJBI equation

Transformation of HJBI equation

Therefore it is worth to consider

1 5 e
= - Fy+h(y,n)F
5@ W)Fy+ max_ (—Fg +2Fyq)+rpelp(f(y,n) y+h(y.m) )

+ max <—70F+ c”) —wF =0,

my<c<my



HJBI equation

HJB equation

This equation can be generalized to

15 . Y _
5wyt max ity ey +y, ) ) +max(—ouse” ) =0,

where D C R" is a compact set.



HJBI equation

HJB equation

This equation can be generalized to

1, . , B
54 (y)uyyﬂpeag (I(y, muy+h(y, n)U) +max <’YCU+C )wu =0,

where D C R" is a compact set.

a, h, i are continuous functions, a(y) > ¢ > 0 and there exist
constants Ly > 0, Lo > 0 such that

|h(y,n) = h(y, )l +1i(y,n) = i(y,m)| < Lsly =,
Ih(y, )| + la)? < Ly, lily,m)| < Li(1 + y)),
v = V)ily,n) = i(y,n)) + |a(y) — a(F)? < Laly — .




Smooth solution to the resulting HJB

Existence and uniqueness

Theorem

Suppose that Assumption 1 is satisfied with Ly > 0, L, > 0
and w > sup, , h(y,n) + Lo. Then there exists a unique
bounded solution to

%az(y)uyy + max(i(y, m)uy + h(y,n)u)
ne

+ max (—ycu+c’) —wu =0,
my<c<mp

which, in addition, has bounded y-derivative and is bounded
away from zero.




Smooth solution to the resulting HJB

Sketch of the proof

@ Solution to infinite time HJB is approximated by solution to
finite time horizon HJB of the form
1 .
Ut + 5@ (¥)yy + max(i(y. n)uy + hly, n)u)

+ max (—ycu+c’) —wu=0,
m<c<mp

with terminal condition u(y, T) = 0.



Smooth solution to the resulting HJB

Sketch of the proof

@ Solution to infinite time HJB is approximated by solution to
finite time horizon HJB of the form

1 .
u; —+ éaz(y)Uyy + max(’()’vn)uy + h(y’n)u)
neD

+ max (—ycu+c’) —wu=0,
m<c<mp

with terminal condition u(y, T) = 0.

@ Rubio (2012) result ensures that under Assumtion 1 a
unique bounded solution exists ( u’)

Related results: Friedman (1973), Pham (2002)



Smooth solution to the resulting HJB

Sketch of the proof

@ Solution to infinite time HJB is approximated by finite time
horizon HJB of the form

1 .
us + Eaz(Y)Uyy +max(i(y,n)uy + h(y,n)u)
nebD

+ max (—ycu+c’) —wu=0,
my<c<mp

with terminal condition u(y, T) = 0.
@ Stochastic control representation:

uT(y, )= max ]Ey,t(/ el (Vi) Vck"”)dkcgds)
t

176./\/1, CECm1 ,Mo

dY; = I( Yt»"?t) at + a( Yt)dBt,



Smooth solution to the resulting HJB

Sketch of the proof

@ Our equation can be rewritten as

1
Ut + éaZ(Y)Uyy + H(y7 u, u}/) = Oa

where

H(y,u,p)=maX<l(y,n)p+h(y,n)U>+ max < VCU+C”>
ﬂer m2



Smooth solution to the resulting HJB

Sketch of the proof

@ Our equation can be rewritten as

1
Ut + éaZ(Y)Uyy + H(y7 u, u}/) = Oa

where

H(y,u,p)=ma><<(y,n)p+h(y,n)U>+ max < VCU+C”>
ﬂer m2

.
uT(y,t):IEyJ/t e "SDH(Yg, u' (Ye), u 7 (Ys)) ds

;
— Ey,t< / e VSTOH(Ys, uT(Ys), uyT (Ys)) ds),
t

where dY; = a(Y;)dB;.



Smooth solution to the resulting HJB

Sketch of the proof

o v(y,t):=u"(y, T—1t)
@ v satisfies

1
Vi — 532(}’)Vyy —H(y,u,uy) +wv =0

@ passing t — oo and using stochastic representation to
estimate uniform bounds for v, v;, v,,, we may define the
solution as

V(y) = 1rli)rgo v(y,t) (Arzel-Ascoli Lemma)



Final result

Non-linearity recovering

Let F™-m2:f be the unique solution to

’
Eaz(y)Fyy + qerp_a’%m(—eaz(y)qu + 2082 (y)Fyq)

+ meaf))((i(y, nFy + h(y,n)F)+ max (—ycF+¢c") —wF =0,
n

m<c<mp



Final result

Non-linearity recovering

Let F™-m2:f be the unique solution to

15 _ 2 2
54 (Y)Fyy +q€r[n_aR>SH]( 08 (y)Fq® + 2082 (y)F,q)

+ meaf))((i(y, nFy + h(y,n)F)+ max (—ycF+¢c") —wF =0,
n

m<c<mp

We can use infinite horizon stochastic control representation

400
qumz,R(y) — max E,o efos(h(Yk,n;)*GQf*"/Ck*W) dk (C*)Fde
c€Cmy,my,q€Qn Y 0 s



Final result

Non-linearity recovering

@ Using stochastic representation we can find mj, m;, R* > 0

that
(F*)Z
max_ (-F*q° +2F;q) = —2~
el TP+ 2R a) = =5,
it
— * 7| — _ *)T—v
m;gggmz( vcF +C> (1=(F)™,

where F* = F™im;.R*



Final result

Non-linearity recovering

@ Using stochastic representation we can find mj, m;, R* > 0

that
(F*)Z
max_ (-F*q° +2F;q) = —2~
el TP+ 2R a) = =5,
—~neF* L) = (1 — *) Ty
m;gggmz( yeF +C> (1=(F)™,

where F* = F™im;.R*
@ This implies that F* is a solution to

1 2 F7
éaZ(Y)Fyy + ﬁaz(}’)fy

+m€aE>)<(i(y,n) +hyn)F)+(1—7F1w—WF 0. (4.1)
7



Final result

final result

Theorem

Suppose that a, g, r, A are Lipschitz continuous functions, a, A,
r are bounded and a(y) > ¢ > 0, g is of linear growth,
w > sup, , h(y,n) + L. Then there exists a saddle point

(m*(x,y), c*(x,¥),n*(x,y)) such that

e v AN By QO AmODX . (F\TT
PN = G B ey e =(5) X

~

where F is a bounded together with y-derivative and bounded
away from zero solution to (4.1). n* is a Borel measurable
function which realizes maximum in (4.1).




Final result
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attention.



	The problem
	HJBI equation
	Smooth solution to the resulting HJB
	Final result

