◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Robust consumption-investment problem over infinite horizon

Dariusz Zawisza

Jagiellonian University in Krakow

June 15, 2013

Introduction

• The aim of the investor is to maximize total expected discounted utility of consumption.

Literature:

Karatzas et al (1989), Fleming and Hernandez (2003), Fleming and Pang (2004), Hata and Sheu (2013)

• The investor believes that model is misspecified and he tries to protect against the worst scenario (the worst model) by looking for robust investment and consumption. Literature:

Schied (2008), Trojani and Vanini (2004), Hansen et al (2006), Gagliardini et al (2009), Faria and Coreia-da-Silva (2012)

Overview

Smooth solution to the resulting HJB

4 Final result

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Financial market-reference model

A bank account

$$dS_t^0 = r(Y_t)S_t^0 dt,$$

An asset

$$dS_t = b(Y_t) dt + \sigma(Y_t) dB_t^1,$$

Market price of risk: $\lambda(y) = \frac{b(y) - r(y)}{\sigma(y)}$

A non-tradable economic factor

$$dY_t = g(Y_t) dt + a(Y_t) \left(\rho \ dB_t^1 + \sqrt{1-\rho^2} \ dB_t^2\right).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Robust portfolio optimization (finite horizon)

- Model risk is described by a set of probability measures ${\cal Q}$
- The investor tries to maximize a functional

$$X o \inf_{Q \in \mathcal{Q}} \mathbb{E}^{Q} U(X),$$

where U is a utility function and X is a terminal wealth.

(日) (日) (日) (日) (日) (日) (日)

Model misspecification - finite horizon

To describe model uncertainty many authors use

$$\mathcal{Q} := \bigg\{ \mathbf{Q} \sim \mathbf{P} \mid \frac{d\mathbf{Q}}{d\mathbf{P}} = \mathcal{E} \bigg(\int \eta_{1,t} d\mathbf{B}_t^1 + \eta_{2,t} d\mathbf{B}_t^2 \bigg)_T \quad (\eta_1, \eta_2) \in \mathcal{M} \bigg\},$$

where $\mathcal{E}(\cdot)_T$ denotes the Doleans-Dade exponential \mathcal{M} denotes the set of all progressively measurable processes $\eta = (\eta_1, \eta_2)$ taking values in a fixed compact convex set $\Gamma \subset \mathbb{R}^2$.

(日) (日) (日) (日) (日) (日) (日)

Model misspecification – infinite horizon

Instead of modeling ${\mathcal Q}$ we consider a set of alternative market dynamics with uncertain drift:

$$\begin{cases} dS_t^0 &= r(Y_t)S_t^0 dt, \\ dS_t &= (b(Y_t) + \eta_{1,t}\sigma(Y_t))S_t dt + \sigma(Y_t)S_t dB_t^1, \\ dY_t &= (g(Y_t) + (\eta_{1,t}\rho + \eta_{2,t}\bar{\rho})a(Y_t)) dt + a(Y_t)(\rho dB_t^1 + \bar{\rho} dB_t^2). \end{cases}$$

Investor's wealth dynamics $(X_t^{\pi,c,\eta}, 0 \le t < +\infty)$ is given by:

 $dX_t = [r(Y_t)X_t + \pi_t(b(Y_t) - r(Y_t) + \eta_{1,t}\sigma(Y_t))]dt + \pi_t\sigma(Y_t)dB_t^1 - c_tdt,$

- π capital invested in risky asset,
- *c* consumption per unit of time.

Model misspecification – infinite horizon

Instead of modeling \mathcal{Q} we consider a set of alternative market dynamics with uncertain drift:

$$\begin{cases} dS_t^0 &= r(Y_t)S_t^0 dt, \\ dS_t &= (b(Y_t) + \eta_{1,t}\sigma(Y_t))S_t dt + \sigma(Y_t)S_t dB_t^1, \\ dY_t &= (g(Y_t) + (\eta_{1,t}\rho + \eta_{2,t}\bar{\rho})a(Y_t)) dt + a(Y_t)(\rho dB_t^1 + \bar{\rho} dB_t^2). \end{cases}$$

Investor's wealth dynamics $(X_t^{\pi,c,\eta}, 0 \le t < +\infty)$ is given by:

$$dX_t = [r(Y_t)X_t + \pi_t(b(Y_t) - r(Y_t) + \eta_{1,t}\sigma(Y_t))]dt + \pi_t\sigma(Y_t)dB_t^1 - c_tdt,$$

- π capital invested in risky asset,
- c consumption per unit of time.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Main problem

Objective function

$$\mathcal{J}^{\pi,c,\eta}(x,y) := \mathbb{E}_{x,y} \int_0^{\tau^{\pi,c,\eta}} e^{-wt} \frac{(c_t)^{\gamma}}{\gamma} dt. \quad 0 < \gamma < 1,$$

$$au^{\pi, \boldsymbol{c}, \eta} = \inf\{t \geq \boldsymbol{\mathsf{0}} : X^{\pi, \boldsymbol{c}, \eta}_t \leq \boldsymbol{\mathsf{0}}\}$$

Investor, who doubts his model, uses maxmin criterion:

$$\text{maximize } \inf_{\eta \in \mathcal{M}} \mathcal{J}^{\pi, \boldsymbol{c}, \eta}(\boldsymbol{x}, \boldsymbol{y}) \text{ over } (\pi, \boldsymbol{c}) \in \mathcal{A}_{\boldsymbol{x}, \boldsymbol{y}}.$$

 This can be considered as a zero sum stochastic differential game, where the investor is looking for a saddle point (π^{*}, c^{*}, η^{*}), that is

$$\mathcal{J}^{\pi, \boldsymbol{\mathcal{C}}, \eta^*} \leqslant \mathcal{J}^{\pi^*, \boldsymbol{\mathcal{C}}^*, \eta^*}(\boldsymbol{x}, \boldsymbol{y}) \leqslant \mathcal{J}^{\pi^*, \boldsymbol{\mathcal{C}}^*, \eta}(\boldsymbol{x}, \boldsymbol{y})$$

HJBI equation

Differential operator

$$\mathcal{L}^{\pi,c,\eta}V(x,y) = \frac{1}{2}a^{2}(y)V_{yy} + \frac{1}{2}\pi^{2}\sigma^{2}(y)V_{xx} + \rho\pi\sigma(y)a(y)V_{xy} + (\rho\eta_{1} + \bar{\rho}\eta_{2})a(y)V_{y} + g(y)V_{y} + \pi(b(y) - r(y) + \eta_{1}\sigma(y))V_{x} + r(y)xV_{x} - cV_{x}.$$

We have to solve

$$\max_{\pi \in \mathbb{R}} \max_{c>0} \min_{\eta \in \Gamma} (\mathcal{L}^{\pi,c,\eta} V - wV + \frac{c^{\gamma}}{\gamma}) \\ = \min_{\eta \in \Gamma} \max_{\pi \in \mathbb{R}} \max_{c>0} (\mathcal{L}^{\pi,c,\eta} - wV + \frac{c^{\gamma}}{\gamma}) = 0$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

HJBI equation

Differential operator

$$\mathcal{L}^{\pi,c,\eta}V(x,y) = \frac{1}{2}a^{2}(y)V_{yy} + \frac{1}{2}\pi^{2}\sigma^{2}(y)V_{xx} + \rho\pi\sigma(y)a(y)V_{xy} + (\rho\eta_{1} + \bar{\rho}\eta_{2})a(y)V_{y} + g(y)V_{y} + \pi(b(y) - r(y) + \eta_{1}\sigma(y))V_{x} + r(y)xV_{x} - cV_{x}.$$

We have to solve

$$\max_{\pi \in \mathbb{R}} \max_{c>0} \min_{\eta \in \Gamma} (\mathcal{L}^{\pi,c,\eta} V - wV + \frac{c^{\gamma}}{\gamma}) \\ = \min_{\eta \in \Gamma} \max_{\pi \in \mathbb{R}} \max_{c>0} (\mathcal{L}^{\pi,c,\eta} - wV + \frac{c^{\gamma}}{\gamma}) = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Verification theorem, part I

Suppose there exists a function $V \in C^{2,2}((0, +\infty) \times \mathbb{R}) \cap C([0, +\infty) \times \mathbb{R})$ an admissible Markov control $(\pi^*(x, y), c^*(x, y), \eta^*(x, y))$ and constants $D_1, D_2 > 0$ such that

$$egin{aligned} \mathcal{L}^{\pi^*(x,y),c^*(x,y),\eta} V(x,y) &- wV(x,y) + rac{(c^*(x,y))^\gamma}{\gamma} \geq 0, \ \mathcal{L}^{\pi,c,\eta^*(x,y)} V(x,y) &- wV(x,y) + rac{c^\gamma}{\gamma} \leq 0, \ \mathcal{L}^{\pi^*(x,y),c^*(x,y),\eta^*(x,y)} V(x,y) &- wV(x,y) + rac{(c^*(x,y))^\gamma}{\gamma} = 0, \ D_1 x^\gamma &\leq (c^*(x,y))^\gamma, \ V(x,y) \leq D_2 x^\gamma \end{aligned}$$

for all $\eta \in \Gamma$, $(\pi, c) \in \mathbb{R} imes (0, +\infty)$, $(x, y) \in (0, +\infty) imes \mathbb{R}$

・ロト・日本・モート ヨー うへの

Verification theorem, part II

and

$$\tau_{\mathbf{X},\mathbf{y}}^{\pi^*,\mathbf{c}^*,\eta} = +\infty,,$$
$$\mathbb{E}_{\mathbf{X},\mathbf{y}}\left(\sup_{0 \le s \le t \land \tau} e^{-ws} |V(\mathbf{X}_s^{\pi,c,\eta}, \mathbf{Y}_s)|\right) < +\infty$$

for all $(x, y) \in (0, +\infty) \times \mathbb{R}$, $t \in [0, +\infty)$, $(\pi, c) \in \mathcal{A}$, $\eta \in \mathcal{M}$.

Then

$$\mathcal{J}^{\pi, c, \eta^*}(x, y) \leq V(x, y) \leq \mathcal{J}^{\pi^*, c^*, \eta}(x, y)$$

for all $\pi \in \mathcal{A}, \eta \in \mathcal{M},$

and

$$V(x,y) = \mathcal{J}^{\pi^*, \mathcal{C}^*, \eta^*}(x, y).$$

Saddle point derivation

 Applying standard minimax results we can reduce the task to solving only one equation:

$$\min_{\eta\in\Gamma}\max_{\pi\in\mathbb{R}}\max_{c>0}(\mathcal{L}^{\pi,c,\eta}V-wV+\frac{c^{\gamma}}{\gamma})=0,$$

• The maximum with respect to π and c is achieved at

$$\pi^*(x, y, \eta) = -\frac{\rho a(y)}{\sigma(y)} \frac{V_{xy}}{V_{xx}} - \frac{(b(y) + \eta_1 \sigma(y))}{\sigma^2(y)} \frac{V_x}{V_{xx}},$$
$$c^*(x, y) = \left(\frac{V_x}{\gamma}\right)^{\frac{1}{\gamma-1}}.$$

The following ansatz is made:

$$V(x,y) = \frac{x^{\gamma}}{\gamma}F(y)$$

・ロト・西ト・西ト・日下 ひゃぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Transformation of HJBI equation

After substitution and dividing by $\frac{x^{\gamma}}{\gamma}$ we get

$$\frac{1}{2}a^{2}(y)F_{yy} + \left[\frac{\rho^{2}\gamma}{2(1-\gamma)}a^{2}(y)\frac{F_{y}^{2}}{F}\right] + \left(g(y) + \frac{\rho\gamma}{1-\gamma}a(y)\lambda(y)\right)F_{y} + \min_{(\eta_{1},\eta_{2})\in\Gamma}\left(\bar{\rho}\eta_{2}a(y)F_{y} + \frac{\rho}{(1-\gamma)}a(y)\eta_{1}F_{y} + \frac{\gamma}{2(1-\gamma)}\left(\lambda(y) + \eta_{1}\right)^{2}F\right) + \gamma r(y)F + \left[(1-\gamma)F^{\frac{-\gamma}{1-\gamma}}\right] - wF = 0,$$
(2.1)

Transformation of HJBI equation

If there exist *F* solution to (2.1) and $m_1, m_2, R > 0$ such that

$$\left|rac{F_y}{F}
ight|\leq R \quad ext{and} \quad m_1\leq F^{rac{1}{\gamma-1}}\leq m_2,$$

then

$$\max_{q \in [-R,R]} \left(-Fq^2 + 2F_yq\right) = \frac{F_y^2}{F},$$
$$\max_{m_1 \le c \le m_2} \left(-\gamma cF + c^\gamma\right) = (1-\gamma)F^{\frac{-\gamma}{1-\gamma}}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Transformation of HJBI equation

Therefore it is worth to consider

$$\frac{1}{2}a^{2}(y)F_{yy} + \max_{q \in [-R,R]} (-Fq^{2} + 2F_{y}q) + \min_{\eta \in \Gamma} \left(i(y,\eta)F_{y} + h(y,\eta)F\right) \\ + \max_{m_{1} \leq c \leq m_{2}} \left(-\gamma cF + c^{\gamma}\right) - wF = 0,$$

HJB equation

This equation can be generalized to

$$\frac{1}{2}a^{2}(y)u_{yy}+\max_{\eta\in D}\left(i(y,\eta)u_{y}+h(y,\eta)u\right)+\max_{c>0}\left(-\gamma cu+c^{\gamma}\right)-wu=0,$$

where $D \subset \mathbb{R}^n$ is a compact set.

Assumption 1

a, *h*, *i* are continuous functions, $a(y) > \varepsilon > 0$ and there exist constants $L_1 > 0$, $L_2 \ge 0$ such that

$$\begin{split} |h(y,\eta) - h(\bar{y},\eta)| + |i(y,\eta) - i(\bar{y},\eta)| &\leq L_1 |y - \bar{y}|, \\ |h(y,\eta)| + |a(y)|^2 &\leq L_1, \quad |i(y,\eta)| \leq L_1 (1 + |y|), \\ (y - \bar{y})(i(y,\eta) - i(\bar{y},\eta)) + |a(y) - a(\bar{y})|^2 &\leq L_2 |y - \bar{y}|^2. \end{split}$$

HJB equation

This equation can be generalized to

$$\frac{1}{2}a^{2}(y)u_{yy}+\max_{\eta\in D}\left(i(y,\eta)u_{y}+h(y,\eta)u\right)+\max_{c>0}\left(-\gamma cu+c^{\gamma}\right)-wu=0,$$

where $D \subset \mathbb{R}^n$ is a compact set.

Assumption 1

a, *h*, *i* are continuous functions, $a(y) > \varepsilon > 0$ and there exist constants $L_1 > 0$, $L_2 \ge 0$ such that

$$\begin{split} |h(y,\eta) - h(\bar{y},\eta)| + |i(y,\eta) - i(\bar{y},\eta)| &\leq L_1 |y - \bar{y}|, \\ |h(y,\eta)| + |a(y)|^2 &\leq L_1, \quad |i(y,\eta)| \leq L_1 (1 + |y|), \\ (y - \bar{y})(i(y,\eta) - i(\bar{y},\eta)) + |a(y) - a(\bar{y})|^2 &\leq L_2 |y - \bar{y}|^2. \end{split}$$

Existence and uniqueness

Theorem

Suppose that **Assumption 1** is satisfied with $L_1 > 0$, $L_2 \ge 0$ and $w > \sup_{\eta,y} h(y,\eta) + L_2$. Then there exists a unique bounded solution to

$$\frac{1}{2}a^{2}(y)u_{yy} + \max_{\eta \in D}(i(y,\eta)u_{y} + h(y,\eta)u) + \max_{m_{1} \leq c \leq m_{2}}(-\gamma cu + c^{\gamma}) - wu = 0,$$

which, in addition, has bounded y-derivative and is bounded away from zero.

(日) (日) (日) (日) (日) (日) (日)

Sketch of the proof

• Solution to infinite time HJB is approximated by solution to finite time horizon HJB of the form

$$u_t + \frac{1}{2}a^2(y)u_{yy} + \max_{\eta \in D}(i(y,\eta)u_y + h(y,\eta)u) + \max_{m_1 \le c \le m_2}(-\gamma cu + c^{\gamma}) - wu = 0,$$

with terminal condition u(y, T) = 0.

Rubio (2012) result ensures that under Assumtion 1 a unique bounded solution exists (u^T)
 Related results: Friedman (1973), Pham (2002)

(日) (日) (日) (日) (日) (日) (日)

Sketch of the proof

 Solution to infinite time HJB is approximated by solution to finite time horizon HJB of the form

$$u_t + \frac{1}{2}a^2(y)u_{yy} + \max_{\eta \in D}(i(y,\eta)u_y + h(y,\eta)u) + \max_{m_1 \le c \le m_2}(-\gamma cu + c^{\gamma}) - wu = 0,$$

with terminal condition u(y, T) = 0.

Rubio (2012) result ensures that under Assumtion 1 a unique bounded solution exists (u^T)
 Related results: Friedman (1973), Pham (2002)

Sketch of the proof

 Solution to infinite time HJB is approximated by finite time horizon HJB of the form

$$u_t + \frac{1}{2}a^2(y)u_{yy} + \max_{\eta \in D}(i(y,\eta)u_y + h(y,\eta)u) + \max_{m_1 \le c \le m_2}(-\gamma cu + c^{\gamma}) - wu = 0,$$

with terminal condition u(y, T) = 0.

• Stochastic control representation:

$$u^{T}(y,t) = \max_{\eta \in \mathcal{M}, \ c \in \mathcal{C}_{m_{1},m_{2}}} \mathbb{E}_{y,t} \left(\int_{t}^{T} e^{\int_{t}^{s} (h(Y_{k},\eta_{k}) - \gamma c_{k} - w) \, dk} c_{s}^{\gamma} ds \right),$$

 $dY_t = i(Y_t, \eta_t) dt + a(Y_t) dB_t,$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Sketch of the proof

Our equation can be rewritten as

$$u_t + \frac{1}{2}a^2(y)u_{yy} + H(y, u, u_y) = 0,$$

where

$$H(y, u, p) = \max_{\eta \in \Gamma} \left(i(y, \eta) p + h(y, \eta) u \right) + \max_{m_1 \le c \le m_2} \left(-\gamma c u + c^{\gamma} \right)$$

$$u^{T}(y,t) = \mathbb{E}_{y,t} \int_{t}^{T} e^{-w(s-t)} H(Y_{s}, u^{T}(Y_{s}), u_{y}^{T}(Y_{s})) ds$$
$$= \mathbb{E}_{y,t} \left(\int_{t}^{T} e^{-w(s-t)} H(Y_{s}, u^{T}(Y_{s}), u_{y}^{T}(Y_{s})) ds \right),$$

where $dY_t = a(Y_t)dB_t$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Sketch of the proof

Our equation can be rewritten as

$$u_t + \frac{1}{2}a^2(y)u_{yy} + H(y, u, u_y) = 0,$$

where

۲

$$H(y, u, p) = \max_{\eta \in \Gamma} \left(i(y, \eta) p + h(y, \eta) u \right) + \max_{m_1 \le c \le m_2} \left(-\gamma c u + c^{\gamma} \right)$$

$$u^{T}(y,t) = \mathbb{E}_{y,t} \int_{t}^{T} e^{-w(s-t)} H(Y_{s}, u^{T}(Y_{s}), u_{y}^{T}(Y_{s})) ds$$
$$= \mathbb{E}_{y,t} \left(\int_{t}^{T} e^{-w(s-t)} H(Y_{s}, u^{T}(Y_{s}), u_{y}^{T}(Y_{s})) ds \right),$$

where $dY_t = a(Y_t)dB_t$.

・< 部 ・ < 目 ・ < 目 ・ < 目 ・ のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sketch of the proof

•
$$v(y, t) := u^T(y, T - t)$$

v satisfies

$$v_t - \frac{1}{2}a^2(y)v_{yy} - H(y, u, u_y) + wv = 0$$

 passing t → ∞ and using stochastic representation to estimate uniform bounds for v, v_t, v_y, we may define the solution as

$$\hat{v}(y) = \lim_{t \to \infty} v(y, t)$$
 (Arzel-Ascoli Lemma)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Non-linearity recovering

Let $F^{m_1,m_2,R}$ be the unique solution to

$$\begin{split} &\frac{1}{2}a^2(y)F_{yy} + \max_{q\in [-R,R]} \left(-\theta a^2(y)Fq^2 + 2\theta a^2(y)F_yq\right) \\ &+ \max_{\eta\in D} \left(i(y,\eta)F_y + h(y,\eta)F\right) + \max_{m_1\leq c\leq m_2} \left(-\gamma cF + c^\gamma\right) - wF = 0, \end{split}$$

We can use infinite horizon stochastic control representation

$$F^{m_1,m_2,R}(y) = \max_{c \in \mathcal{C}_{m_1,m_2}, q \in \mathcal{Q}_R} \mathbb{E}_{y,0} \left(\int_0^{+\infty} e^{\int_0^s (h(Y_k,\eta_k^*) - \theta q_k^2 - \gamma c_k - w) \, dk} (c_s^*)^{\gamma} \, ds \right)$$

Non-linearity recovering

Let $F^{m_1,m_2,R}$ be the unique solution to

$$\begin{split} &\frac{1}{2}a^2(y)F_{yy} + \max_{q\in [-R,R]} \left(-\theta a^2(y)Fq^2 + 2\theta a^2(y)F_yq\right) \\ &+ \max_{\eta\in D} \left(i(y,\eta)F_y + h(y,\eta)F\right) + \max_{m_1\leq c\leq m_2} \left(-\gamma cF + c^\gamma\right) - wF = 0, \end{split}$$

We can use infinite horizon stochastic control representation

$$F^{m_{1},m_{2},R}(y) = \max_{c \in C_{m_{1},m_{2}}, q \in Q_{R}} \mathbb{E}_{y,0}\left(\int_{0}^{+\infty} e^{\int_{0}^{s} (h(Y_{k},\eta_{k}^{*}) - \theta q_{k}^{2} - \gamma c_{k} - w) \, dk} (c_{s}^{*})^{\gamma} ds\right)$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

(ロ) (同) (三) (三) (三) (○) (○)

Non-linearity recovering

 Using stochastic representation we can find m₁^{*}, m₂^{*}, R^{*} > 0 that

$$\begin{split} \max_{q\in [-R^*,R^*]}(-F^*q^2+2F_y^*q) &= \frac{(F_y^*)^2}{F^*},\\ \max_{m_1\leq c\leq m_2} \left(-\gamma cF^*+c^{\gamma}\right) &= (1-\gamma)(F^*)^{\frac{-\gamma}{1-\gamma}}, \end{split}$$

where $F^* = F^{m_1^*, m_2^*, R^*}$

• This implies that *F** is a solution to

$$\frac{1}{2}a^{2}(y)F_{yy} + \frac{\rho^{2}\gamma}{2(1-\gamma)}a^{2}(y)\frac{F_{y}^{2}}{F} + \max_{\eta\in D}(i(y,\eta)F_{y} + h(y,\eta)F) + (1-\gamma)F^{\frac{-\gamma}{1-\gamma}} - wF = 0.$$
(4.1)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Non-linearity recovering

 Using stochastic representation we can find m₁^{*}, m₂^{*}, R^{*} > 0 that

$$\max_{\substack{q\in [-R^*,R^*]}} (-F^*q^2 + 2F_y^*q) = \frac{(F_y^*)^2}{F^*},$$
$$\max_{m_1 \le c \le m_2} \left(-\gamma cF^* + c^{\gamma}\right) = (1-\gamma)(F^*)^{\frac{-\gamma}{1-\gamma}},$$

where $F^* = F^{m_1^*, m_2^*, R^*}$

This implies that F* is a solution to

$$\frac{1}{2}a^{2}(y)F_{yy} + \frac{\rho^{2}\gamma}{2(1-\gamma)}a^{2}(y)\frac{F_{y}^{2}}{F} + \max_{\eta\in D}(i(y,\eta)F_{y} + h(y,\eta)F) + (1-\gamma)F^{\frac{-\gamma}{1-\gamma}} - wF = 0.$$
(4.1)

final result

Theorem

Suppose that a, g, r, λ are Lipschitz continuous functions, a, λ , r are bounded and $a(y) > \varepsilon > 0$, g is of linear growth, w > sup_{η,y} $h(y,\eta) + L_2$. Then there exists a saddle point $(\pi^*(x,y), c^*(x,y), \eta^*(x,y))$ such that

$$\pi^*(x,y) = \frac{\rho a(y)x}{(1-\gamma)\sigma(y)} \frac{F_y}{F} + \frac{(\lambda(y) + \eta_1^*(y))x}{(1-\gamma)\sigma(y)}, \quad c^*(x,y) := \left(\frac{F}{\gamma}\right)^{\frac{1}{\gamma-1}} x$$

where *F* is a bounded together with *y*-derivative and bounded away from zero solution to (4.1). η^* is a Borel measurable function which realizes maximum in (4.1).

References I

- G. Faria, J. Correia-da-Silva, *The price of risk and ambiguity in an intertemporal general equilibrium model of asset prices* Annals of Finance 8.4 (2012): 507 - 531.
- W.H. Fleming, D. Hernandez-Hernandez An optimal consumption model with stochastic volatility, Finance Stoch., 7 (2003), 245 - 262.
- W.H. Fleming and T. Pang *An application of stochastic control theory to financial economics* SIAM J. Control Optim., 43 (2004) 502 531.
- A. Friedman, The Cauchy Problem for First Order Partial Differential Equations . Indiana Univ. Math. J. 23 (1973), 27 - 40.
- P. Gagliardini, P. Porchia, and F. Trojani, Ambiguity aversion and the term structure of interest rates. Review of Financial Studies 22 (2009), 4147 - 4188 141 - 153.

References II

- L. P. Hansen, T. J. Sargent, G. Turmuhambetova, G. Noah, *Robust control and model misspecification.* J. Econom. Theory 128 (2006), 45 - 90.
- H. Hata, S. Sheu, On the Hamilton-Jacobi-Bellman equation for an optimal consumption problem: II. Verification theorem. SIAM J. Control Optim. 50 (2012), no. 4, 2401–2430.
- I. Karatzas , J.P. Lehoczky, S.P. Sethi, S.E. Shreve : *Explicit solution of a general consumption investment problem*. Math. Oper. Res. 11 (1986), 261 294
- G. Rubio, Existence and uniqueness to the Cauchy problem for linear and semilinear parabolic equations with local conditions. X Symposium on Probability and Stochastic Processes and the First Joint Meeting France-Mexico of Probability, 73 - 100, ESAIM Proc., 31, EDP Sci., Les Ulis, 2011.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

References III

- H. Pham, *Smooth solutions to optimal investment models with stochastic volatilities and portfolio constraints*. Appl. Math. Optim. 46 (2002), no. 1, 55 78.
- A. Schied *Robust optimal control for a consumption-investment problem*, Math. Methods. Oper. Res. 67 (2008), no. 1, 1 20.
- F. Trojani, P. Vanini, Robustness and ambiguity aversion in general equilibrium Review of Finance 8.2 (2004): 279-324.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Thank you for your attention.