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Motivation: inequalities for conjugate harmonic functions

Let u, v be real-valued conjugate harmonic functions on the unit
disc D ⊂ C, v(0) = 0.

Question: How the size of u controls the size of v?

Theorem (Riesz)

For 1 < p <∞ there is a finite absolute cp such that

||v ||p ≤ cp||u||p,

where ||u||p =
(∫
∂D |u(z)|pdz

)1/p
.
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Probabilistic setting

Let B = (Bt)t≥0 be the planar Brownian motion, stopped at ∂D.

Consider the martingales Xt = u(Bt), Yt = v(Bt) for t ≥ 0.

By Itô’s formula, for t ≥ 0 we have

Xt = u(0) +

∫ t

0+
∇u(Bs) · dBs , Yt =

∫ t

0+
∇v(Bs) · dBs .

We have |∇u| = |∇v | and ∇u · ∇v = 0, so

d[X ,X ] = d[Y ,Y ] and d[X ,Y ] = 0.

Riesz’ theorem: ||Y ||p ≤ cp||X ||p for 1 < p <∞.

Adam Osȩkowski Orthogonal martingales and Riesz transforms



Definitions and notation
Inequalities for orthogonal martingales

Applications to Riesz transforms
Open problems

Probabilistic setting

Let B = (Bt)t≥0 be the planar Brownian motion, stopped at ∂D.

Consider the martingales Xt = u(Bt), Yt = v(Bt) for t ≥ 0.
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Probabilistic setting

Let (Ω,F ,Ft ,P) - a filtered probability space,

X = (Xt)t≥0, Y = (Yt)t≥0 - adapted martingales, Y0 = 0.

We say that

? Y is differentially subordinate to X , if d[Y ,Y ] ≤ d[X ,X ],

? X and Y are orthogonal, if d[X ,Y ] = 0.

Example

B - BM in Rd , (Ks), (Hs) predictable, Rd -valued, such that

|Ks | ≤ |Hs |, Ks · Hs = 0 for all s.

Then (
∫ t
0 Ks · dBs)t is differentially subordinate to (

∫ t
0 Hs · dBs)t

and both martingales are orthogonal.
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A general problem

Let V : R× R→ R be a given Borel function.

Suppose we want to show that

EV (Xt ,Yt) ≤ 0

for all t ≥ 0 and any orthogonal martingales X , Y such that
Y is differentially subordinate to X and Y0 = 0.

Example: V (x , y) = |y |p − cp
p |x |p leads to Riesz’ theorem.
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Burkholder’s method

Suppose that U : R× R→ R satisfies the following.

1◦ U(x , 0) ≤ 0 for all x ∈ R.

2◦ U(x , y) ≥ V (x , y) for all x , y ∈ R.

3◦ U(·, y) is concave for all y ∈ R.

4◦ U is superharmonic.

The existence of such U yields the desired bound.
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Burkholder’s method

Proof (sketch): Using 3◦ - 4◦ + Itô’s formula gives that
(U(Xt ,Yt))t≥0 is a supermartingale.

Therefore, by 2◦ and then 1◦,

EV (Xt ,Yt) ≤ EU(Xt ,Yt) ≤ EU(X0,Y0) = EU(X0, 0) ≤ 0

and we are done.
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Best constants in Riesz’ inequality

Theorem (Pichorides (1972), Bañuelos-Wang (1995))

For 1 < p <∞ we have the sharp bound

||Y ||p ≤ cot

(
π

2p∗

)
||X ||p,

where p∗ = max{p, p/(p − 1)}.
Proof: If 1 < p ≤ 2, put V (x , y) = |y |p − cotp( π

2p∗ )|x |p and

U(x , y) = − sin
π

2p
cosp−1

π

2p
· Rp cos(pθ).

For p > 2, a very similar function works.
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For 1 < p <∞ we have the sharp bound

||Y ||p ≤ cot

(
π

2p∗

)
||X ||p,

where p∗ = max{p, p/(p − 1)}.
Proof: If 1 < p ≤ 2, put V (x , y) = |y |p − cotp( π

2p∗ )|x |p and

U(x , y) = − sin
π

2p
cosp−1

π

2p
· Rp cos(pθ).

For p > 2, a very similar function works.
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An exponential inequality

Let Φ(t) = et − 1− t for t ≥ 0, and for K > 2/π, define

L(K ) =
K

π

∫
R

Φ
(∣∣ 2
πK log |t|

∣∣)
t2 + 1

dt.

Theorem (A.O.)

Suppose that X , Y are orthogonal martingales such that
||X ||∞ ≤ 1, Y is differentially subordinate to X and Y0 ≡ 0. Then
for any K > 2/π we have

sup
t≥0

EΦ (|Yt |/K ) ≤ L(K )||X ||1
K

.

The inequality is sharp.
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Proof

We define V : [−1, 1]× R→ R by

V (x , y) = Φ(|y |/K )− L(K )K−1|x |

and let U : [−1, 1]× R→ R be the harmonic lift of V :

U(x , y) =
1

π

∫ ∞
−∞

cos
(
π
2 x
)

Φ
(∣∣ 2
πK log |s|+ y

K

∣∣)
s2 − 2s sin

(
π
2 x
)

+ 1
ds−L(K )K−1.
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Some definitions

Let d ≥ 1 be a fixed integer.

Riesz transforms in Rd : a collection R1, R2, . . ., Rd of
singular integral operators given by

Rj f (x) =
Γ
(
d+1
2

)
π(d+1)/2

p.v.

∫
Rd

xj − yj
|x − y |d+1

f (y)dy ,

acting on f : Rd → R.

Alternative definition: Rj is a Fourier multiplier,

R̂j f (ξ) = −i
ξj
|ξ|

f̂ (ξ), for ξ ∈ Rd \ {0}.
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Relation to orthogonal martingales

Question: How to prove (sharp) inequalities for Rj? For
example, what are the Lp-norms of Rj?
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Probabilistic representation of Riesz transforms

Let (X ,Y ) ∈ Rd × R be a Brownian motion.

For y > 0, let τ(y) = inf{t ≥ 0 : Yt ∈ {−y}}.

For f : Rd → R, let Uf : Rd × [0,∞)→ R be the Poisson
extension.

For j ∈ {1, 2, . . . , d}, let Aj = [aj`m] be a (d + 1)× (d + 1) matrix,

aj`m =


1 if ` = d + 1, m = j ,
−1 if ` = j , m = d + 1,
0 otherwise.


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 .
Note that Ax · x = 0 for all x ∈ Rd+1.
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Probabilistic representation of Riesz transforms

Fix x ∈ Rd , y > 0 and consider the martingales

ξt = ξx ,yt = Uf (x + Xτ(y)∧t , y + Yτ(y)∧t)
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Probabilistic representation of Riesz transforms

Fix x ∈ Rd , y > 0 and consider the martingales

ξt = ξx ,yt = Uf (x , y) +

∫ τ(y)∧t

0+
∇Uf (x + Xs , y + Ys) · d(Xs ,Ys),

ζt = ζx ,yt =

∫ τ(y)∧t

0+
Aj∇Uf (x + Xs , y + Ys) · d(Xs ,Ys).

They are orthogonal and ζ is differentially subordinate to ξ.

Define
T y
Aj f (z) = Ẽ

[
ζx ,y∞ |x + Xτ(y) = z

]
,

where P̃ = P⊗ dx . We have T y
Aj f → Rj f as y →∞.
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How to get an estimate for Rj?

Let Φ : [0,∞)→ R - a convex increasing function. How to get the
bound for

∫
Rd Φ(|Rj f (x)|)dx?

Write ∫
Rd

Φ(|T y
Aj f (z)|)dz =

∫
Rd

Φ(|Ẽ
[
ζx ,y∞ |x + Xτ(y) = z

]
|)dz

≤
∫
Rd

EΦ(|ζx ,y∞ |)dx .

Now, estimate EΦ(|ζx ,y∞ |) for each x , using martingale inequalities,
and let y →∞.
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Lp estimates

Theorem (Iwaniec-Martin (1996), Bañuelos-Wang (1995))

For 1 < p <∞ we have the sharp bound

||Rj f ||p ≤ cot

(
π

2p∗

)
||f ||p.

Proof. Take Φ(x) = xp. We get∫
Rd

|T y
Aj f (x)|pdx ≤

∫
Rd

E|ζx ,y∞ |pdx ≤ cotp
(
π

2p∗

)∫
Rd

E|ξx ,y∞ |pdx

≤ cotp
(
π

2p∗

)∫
Rd

E|f (x+Xτ(y))|pdx = cotp
(
π

2p∗

)∫
Rd

|f (x)|pdx .
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Exponential inequality for Riesz transforms

Now take Φ(t) = et − 1− t and recall that

L(K ) =
K

π

∫
R

Φ
(∣∣ 2
πK log |t|

∣∣)
t2 + 1

dt.

Theorem (A.O.)

For any f with ||f ||L∞(Rd ) ≤ 1,∫
Rd

Φ (|Rj f (x)|/K ) dx ≤
L(K )||f ||L1(Rd )

K

and the constant is the best possible.
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Exponential inequality for Riesz transforms

Proof. We have∫
Rd

Φ(|T y
Aj f (x)|/K )dx ≤

∫
Rd

EΦ(|ζx ,y∞ |/K )dx

≤
∫
Rd

L(K )

K
E|ξx ,y∞ |dx =

L(K )||f ||L1(Rd )

K
.
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LlogL estimate

Let Ψ(t) = (t + 1) log(t + 1)− t - a conjugate to Φ.

Theorem (A.O., JFA (2012))

For any integer d, K > 2/π and A ⊂ Rd ,∫
A
|Rj f (x)|dx ≤ K

∫
Rd

Ψ(|f (x)|)dx + |A| · L(K ).

For each K and d the constant L(K ) is the best possible.

Proof: Use duality and the previous bound.
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Some questions

1. Let 1 ≤ p <∞. What is the best constant cp in the estimate

|{x : |Rj f (x)| ≥ 1}| ≤ cp

∫
Rd

|f (x)|pdx ?

2. Does the inequality

|{x : |Rj f (x)| ≥ 1}| ≤ c1

∫
Rd

|f (x)|dx

holds with some constant c1 not depending on the dimension?

3. What about sharp bounds for vector Riesz transform

Rf = (R1f ,R2f , . . . ,Rd f ) ?
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