Orthogonal martingales and Riesz transforms

Adam Osękowski

Institute of Mathematics, Faculty of Mathematics, Informatics and Mechanics University of Warsaw

6th International Conference on Stochastic Analysis and Its Applications Będlewo, Poland, 12 September 2012

Motivation: inequalities for conjugate harmonic functions

Let *u*, *v* be real-valued conjugate harmonic functions on the unit disc $D \subset \mathbb{C}$, v(0) = 0.

Question: How the size of u controls the size of v?

Theorem (Riesz) For $1 there is a finite absolute <math>c_p$ such that

 $||v||_p \leq c_p ||u||_p,$

where $||u||_{p} = (\int_{\partial D} |u(z)|^{p} dz)^{1/p}$.

Motivation: inequalities for conjugate harmonic functions

Let *u*, *v* be real-valued conjugate harmonic functions on the unit disc $D \subset \mathbb{C}$, v(0) = 0.

Question: How the size of u controls the size of v?

Theorem (Riesz) For $1 there is a finite absolute <math>c_p$ such that

 $||v||_p \leq c_p ||u||_p,$

where $||u||_{p} = (\int_{\partial D} |u(z)|^{p} dz)^{1/p}$.

Motivation: inequalities for conjugate harmonic functions

Let u, v be real-valued conjugate harmonic functions on the unit disc $D \subset \mathbb{C}, v(0) = 0$.

Question: How the size of u controls the size of v?

Theorem (Riesz) For $1 there is a finite absolute <math>c_p$ such that

 $||v||_p \leq c_p ||u||_p,$

where $||u||_{p} = (\int_{\partial D} |u(z)|^{p} dz)^{1/p}$.

소리가 소문가 소문가 소문가

Probabilistic setting

Let $B = (B_t)_{t \ge 0}$ be the planar Brownian motion, stopped at ∂D . Consider the martingales $X_t = u(B_t)$, $Y_t = v(B_t)$ for $t \ge 0$. By Itô's formula, for $t \ge 0$ we have

$$X_t = u(0) + \int_{0+}^t \nabla u(B_s) \cdot \mathrm{d}B_s, \qquad Y_t = \int_{0+}^t \nabla v(B_s) \cdot \mathrm{d}B_s.$$

We have $|\nabla u| = |\nabla v|$ and $\nabla u \cdot \nabla v = 0$, so

 $d[X,X] = d[Y,Y] \quad \text{and} \quad d[X,Y] = 0.$

Riesz' theorem: $||Y||_p \leq c_p ||X||_p$ for 1 .

소리가 소문가 소문가 소문가

Probabilistic setting

Let $B = (B_t)_{t \ge 0}$ be the planar Brownian motion, stopped at ∂D . Consider the martingales $X_t = u(B_t)$, $Y_t = v(B_t)$ for $t \ge 0$. By Itô's formula, for $t \ge 0$ we have

$$X_t = u(0) + \int_{0+}^t \nabla u(B_s) \cdot \mathrm{d}B_s, \qquad Y_t = \int_{0+}^t \nabla v(B_s) \cdot \mathrm{d}B_s.$$

We have $|\nabla u| = |\nabla v|$ and $\nabla u \cdot \nabla v = 0$, so

 $d[X,X] = d[Y,Y] \quad \text{and} \quad d[X,Y] = 0.$

Riesz' theorem: $||Y||_p \leq c_p ||X||_p$ for 1 .

イロト イポト イヨト イヨト

Probabilistic setting

Let $B = (B_t)_{t \ge 0}$ be the planar Brownian motion, stopped at ∂D . Consider the martingales $X_t = u(B_t)$, $Y_t = v(B_t)$ for $t \ge 0$. By Itô's formula, for $t \ge 0$ we have

$$X_t = u(0) + \int_{0+}^t \nabla u(B_s) \cdot \mathrm{d}B_s, \qquad Y_t = \int_{0+}^t \nabla v(B_s) \cdot \mathrm{d}B_s.$$

We have $|\nabla u| = |\nabla v|$ and $\nabla u \cdot \nabla v = 0$, so

 $d[X,X] = d[Y,Y] \quad \text{and} \quad d[X,Y] = 0.$

Riesz' theorem: $||Y||_p \le c_p ||X||_p$ for 1 .

イロト イポト イヨト イヨト

Probabilistic setting

Let $B = (B_t)_{t \ge 0}$ be the planar Brownian motion, stopped at ∂D . Consider the martingales $X_t = u(B_t)$, $Y_t = v(B_t)$ for $t \ge 0$. By Itô's formula, for $t \ge 0$ we have

$$X_t = u(0) + \int_{0+}^t \nabla u(B_s) \cdot \mathrm{d}B_s, \qquad Y_t = \int_{0+}^t \nabla v(B_s) \cdot \mathrm{d}B_s.$$

We have $|\nabla u| = |\nabla v|$ and $\nabla u \cdot \nabla v = 0$, so

 $\mathsf{d}[X,X] = \mathsf{d}[Y,Y] \qquad \text{and} \qquad \mathsf{d}[X,Y] = 0.$

Riesz' theorem: $||Y||_p \le c_p ||X||_p$ for 1 .

イロト イポト イヨト イヨト 二日

Probabilistic setting

Let $B = (B_t)_{t \ge 0}$ be the planar Brownian motion, stopped at ∂D . Consider the martingales $X_t = u(B_t)$, $Y_t = v(B_t)$ for $t \ge 0$. By Itô's formula, for $t \ge 0$ we have

$$X_t = u(0) + \int_{0+}^t \nabla u(B_s) \cdot \mathrm{d}B_s, \qquad Y_t = \int_{0+}^t \nabla v(B_s) \cdot \mathrm{d}B_s.$$

We have $|\nabla u| = |\nabla v|$ and $\nabla u \cdot \nabla v = 0$, so

$$\mathsf{d}[X,X] = \mathsf{d}[Y,Y] \qquad \text{and} \qquad \mathsf{d}[X,Y] = 0.$$

 $\text{Riesz' theorem: } ||Y||_p \leq c_p ||X||_p \text{ for } 1$

イロト イポト イヨト イヨト

Probabilistic setting

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ - a filtered probability space,

 $X = (X_t)_{t \ge 0}$, $Y = (Y_t)_{t \ge 0}$ - adapted martingales, $Y_0 = 0$.

We say that

* Y is differentially subordinate to X, if $d[Y, Y] \leq d[X, X]$,

 \star X and Y are *orthogonal*, if d[X, Y] = 0

Example

B - BM in \mathbb{R}^d , (K_s) , (H_s) predictable, \mathbb{R}^d -valued, such that

 $|K_s| \le |H_s|, \qquad K_s \cdot H_s = 0 \qquad \text{for all } s.$

Probabilistic setting

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ - a filtered probability space, $X = (X_t)_{t \ge 0}, \ Y = (Y_t)_{t \ge 0}$ - adapted martingales, $Y_0 = 0$.

We say that

* Y is differentially subordinate to X, if $d[Y, Y] \le d[X, X]$,

 $\star X$ and Y are orthogonal, if d[X, Y] = 0

Example

B - BM in \mathbb{R}^d , (K_s) , (H_s) predictable, \mathbb{R}^d -valued, such that

 $|K_s| \le |H_s|, \qquad K_s \cdot H_s = 0 \qquad \text{for all } s.$

Probabilistic setting

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ - a filtered probability space, $X = (X_t)_{t \ge 0}, \ Y = (Y_t)_{t \ge 0}$ - adapted martingales, $Y_0 = 0$.

We say that

 $\star \ Y$ is differentially subordinate to X, if $d[Y, Y] \leq d[X, X],$

 \star X and Y are *orthogonal*, if d[X,Y]=0.

Example

B - BM in \mathbb{R}^d , (K_s) , (H_s) predictable, \mathbb{R}^d -valued, such that

 $|K_s| \le |H_s|, \qquad K_s \cdot H_s = 0 \qquad \text{for all } s.$

Probabilistic setting

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ - a filtered probability space, $X = (X_t)_{t \ge 0}, \ Y = (Y_t)_{t \ge 0}$ - adapted martingales, $Y_0 = 0$.

We say that

* Y is differentially subordinate to X, if $d[Y, Y] \leq d[X, X]$,

 $\star X$ and Y are *orthogonal*, if d[X, Y] = 0.

Example

B - BM in \mathbb{R}^d , (K_s) , (H_s) predictable, \mathbb{R}^d -valued, such that

 $|K_s| \le |H_s|, \qquad K_s \cdot H_s = 0 \qquad \text{for all } s.$

Probabilistic setting

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ - a filtered probability space, $X = (X_t)_{t \ge 0}, \ Y = (Y_t)_{t \ge 0}$ - adapted martingales, $Y_0 = 0$.

We say that

- * Y is differentially subordinate to X, if $d[Y, Y] \le d[X, X]$,
- * X and Y are orthogonal, if d[X, Y] = 0.

Example

B - BM in \mathbb{R}^d , (K_s) , (H_s) predictable, \mathbb{R}^d -valued, such that

 $|K_s| \le |H_s|, \qquad K_s \cdot H_s = 0 \qquad \text{for all } s.$

Probabilistic setting

Let $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ - a filtered probability space, $X = (X_t)_{t \ge 0}, \ Y = (Y_t)_{t \ge 0}$ - adapted martingales, $Y_0 = 0$.

We say that

- * Y is differentially subordinate to X, if $d[Y, Y] \le d[X, X]$,
- * X and Y are orthogonal, if d[X, Y] = 0.

Example

B - BM in \mathbb{R}^d , (K_s) , (H_s) predictable, \mathbb{R}^d -valued, such that

$$|K_s| \le |H_s|, \qquad K_s \cdot H_s = 0 \qquad \text{for all } s.$$

A general problem

Let $V : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a given Borel function.

Suppose we want to show that

 $\mathbb{E}V(X_t, Y_t) \leq 0$

for all $t \ge 0$ and any orthogonal martingales X, Y such that Y is differentially subordinate to X and $Y_0 = 0$.

Example: $V(x,y) = |y|^p - c_p^p |x|^p$ leads to Riesz' theorem.

소리가 소문가 소문가 소문가

A general problem

Let $V : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a given Borel function.

Suppose we want to show that

 $\mathbb{E}V(X_t, Y_t) \leq 0$

for all $t \ge 0$ and any orthogonal martingales X, Y such that Y is differentially subordinate to X and $Y_0 = 0$.

Example: $V(x, y) = |y|^p - c_p^p |x|^p$ leads to Riesz' theorem.

イロト イポト イヨト イヨト 二日

A general problem

Let $V : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a given Borel function.

Suppose we want to show that

$$\mathbb{E}V(X_t, Y_t) \leq 0$$

for all $t \ge 0$ and any orthogonal martingales X, Y such that Y is differentially subordinate to X and $Y_0 = 0$.

Example: $V(x, y) = |y|^{p} - c_{p}^{p}|x|^{p}$ leads to Riesz' theorem.

イロト イポト イヨト イヨト 二日

Burkholder's method

Suppose that $U : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ satisfies the following.

1° $U(x,0) \leq 0$ for all $x \in \mathbb{R}$.

- $2^{\circ} U(x,y) \geq V(x,y)$ for all $x, y \in \mathbb{R}$.
- $3^{\circ} U(\cdot, y)$ is concave for all $y \in \mathbb{R}$.
- 4° *U* is superharmonic.
- The existence of such U yields the desired bound.

Burkholder's method

Suppose that $U : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ satisfies the following. 1° $U(x, 0) \leq 0$ for all $x \in \mathbb{R}$. 2° $U(x, y) \geq V(x, y)$ for all $x, y \in \mathbb{R}$. 3° $U(\cdot, y)$ is concave for all $y \in \mathbb{R}$. 4° U is superharmonic.

Burkholder's method

Suppose that $U : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ satisfies the following. 1° $U(x, 0) \leq 0$ for all $x \in \mathbb{R}$. 2° $U(x, y) \geq V(x, y)$ for all $x, y \in \mathbb{R}$. 3° $U(\cdot, y)$ is concave for all $y \in \mathbb{R}$. 4° U is superharmonic. The existence of such U yields the desired bound

Burkholder's method

Suppose that $U : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ satisfies the following. 1° $U(x, 0) \leq 0$ for all $x \in \mathbb{R}$. 2° $U(x, y) \geq V(x, y)$ for all $x, y \in \mathbb{R}$. 3° $U(\cdot, y)$ is concave for all $y \in \mathbb{R}$. 4° U is superharmonic

The existence of such U yields the desired bound.

Burkholder's method

Suppose that $U : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ satisfies the following.

- 1° $U(x,0) \leq 0$ for all $x \in \mathbb{R}$.
- $2^{\circ} U(x,y) \geq V(x,y)$ for all $x, y \in \mathbb{R}$.
- $3^{\circ} U(\cdot, y)$ is concave for all $y \in \mathbb{R}$.
- 4° U is superharmonic.

The existence of such U yields the desired bound.

Burkholder's method

Suppose that $U : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ satisfies the following.

- 1° $U(x,0) \leq 0$ for all $x \in \mathbb{R}$.
- $2^{\circ} U(x,y) \geq V(x,y)$ for all $x, y \in \mathbb{R}$.
- $3^{\circ} U(\cdot, y)$ is concave for all $y \in \mathbb{R}$.
- 4° U is superharmonic.
- The existence of such U yields the desired bound.

소리가 소문가 소문가 소문가

Burkholder's method

Proof (sketch): Using $3^{\circ} - 4^{\circ} + \text{Itô's}$ formula gives that $(U(X_t, Y_t))_{t \ge 0}$ is a supermartingale.

Therefore, by 2° and then 1° ,

 $\mathbb{E}V(X_t, Y_t) \leq \mathbb{E}U(X_t, Y_t) \leq \mathbb{E}U(X_0, Y_0) = \mathbb{E}U(X_0, 0) \leq 0$

and we are done.

イロト イポト イヨト イヨト

Burkholder's method

Proof (sketch): Using $3^{\circ} - 4^{\circ} + \text{Itô's}$ formula gives that $(U(X_t, Y_t))_{t \ge 0}$ is a supermartingale. Therefore, by 2° and then 1° ,

$$\mathbb{E}V(X_t, Y_t) \leq \mathbb{E}U(X_t, Y_t) \leq \mathbb{E}U(X_0, Y_0) = \mathbb{E}U(X_0, 0) \leq 0$$

and we are done.

ヘロア 人間 アイボア 人間 ア

Best constants in Riesz' inequality

Theorem (Pichorides (1972), Bañuelos-Wang (1995)) For 1 we have the sharp bound

$$||Y||_p \leq \cot\left(rac{\pi}{2p^*}
ight)||X||_p,$$

where $p^* = \max\{p, p/(p-1)\}$.

Proof: If $1 , put <math>V(x,y) = |y|^p - \cot^p(rac{\pi}{2p^*})|x|^p$ and

$$U(x,y) = -\sin\frac{\pi}{2p}\cos^{p-1}\frac{\pi}{2p} \cdot R^p \cos(p\theta).$$

For p > 2, a very similar function works.

소리가 소문가 소문가 소문가

Best constants in Riesz' inequality

Theorem (Pichorides (1972), Bañuelos-Wang (1995)) For 1 we have the sharp bound

$$||Y||_p \leq \cot\left(rac{\pi}{2p^*}
ight)||X||_p,$$

where $p^* = \max\{p, p/(p-1)\}$. Proof: If $1 , put <math>V(x, y) = |y|^p - \cot^p(\frac{\pi}{2p^*})|x|^p$ and

$$U(x,y) = -\sin\frac{\pi}{2p}\cos^{p-1}\frac{\pi}{2p} \cdot R^p \cos(p\theta).$$

For p > 2, a very similar function works.

소리가 소문가 소문가 소문가

An exponential inequality

Let $\Phi(t) = e^t - 1 - t$ for $t \ge 0$, and for $K > 2/\pi$, define

$$L(K) = \frac{K}{\pi} \int_{\mathbb{R}} \frac{\Phi\left(\left|\frac{2}{\pi K} \log |t|\right|\right)}{t^2 + 1} \mathrm{d}t.$$

Theorem (A.O.)

Suppose that X, Y are orthogonal martingales such that $||X||_{\infty} \leq 1$, Y is differentially subordinate to X and $Y_0 \equiv 0$. Then for any $K > 2/\pi$ we have

$$\sup_{t\geq 0} \mathbb{E}\Phi\left(|Y_t|/K\right) \leq \frac{L(K)||X||_1}{K}.$$

The inequality is sharp.

・ロン ・聞と ・ほと ・ほと

An exponential inequality

Let $\Phi(t) = e^t - 1 - t$ for $t \ge 0$, and for $K > 2/\pi$, define

$$L(K) = \frac{K}{\pi} \int_{\mathbb{R}} \frac{\Phi\left(\left|\frac{2}{\pi K} \log |t|\right|\right)}{t^2 + 1} \mathrm{d}t.$$

Theorem (A.O.)

Suppose that X, Y are orthogonal martingales such that $||X||_{\infty} \leq 1$, Y is differentially subordinate to X and $Y_0 \equiv 0$. Then for any $K > 2/\pi$ we have

$$\sup_{t\geq 0} \mathbb{E}\Phi\left(|Y_t|/K\right) \leq \frac{L(K)||X||_1}{K}$$

The inequality is sharp.

Proof

We define $V : [-1, 1] \times \mathbb{R} \to \mathbb{R}$ by $V(x, y) = \Phi(|y|/K) - L(K)K^{-1}|x|$ and let $U : [-1, 1] \times \mathbb{R} \to \mathbb{R}$ be the harmonic lift of V: $U(x, y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\cos(\frac{\pi}{2}x) \Phi(|\frac{2}{\pi K} \log|s| + \frac{y}{K}|)}{s^2 - 2s \sin(\frac{\pi}{2}x) + 1} ds - L(K)K^{-1}.$

ヘロン スピン スロン スロン

Proof

We define
$$V : [-1,1] \times \mathbb{R} \to \mathbb{R}$$
 by
 $V(x,y) = \Phi(|y|/K) - L(K)K^{-1}|x|$
and let $U : [-1,1] \times \mathbb{R} \to \mathbb{R}$ be the harmonic lift of V :
 $U(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\cos(\frac{\pi}{2}x) \Phi(|\frac{2}{\pi K} \log|s| + \frac{y}{K}|)}{s^2 - 2s \sin(\frac{\pi}{2}x) + 1} ds - L(K)K^{-1}$

▲□> ▲圖> ▲注> ▲注>

•

æ

Some definitions

Let $d \ge 1$ be a fixed integer.

Riesz transforms in \mathbb{R}^d : a collection R_1, R_2, \ldots, R_d of singular integral operators given by

$$R_j f(x) = \frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{(d+1)/2}} \text{ p.v. } \int_{\mathbb{R}^d} \frac{x_j - y_j}{|x - y|^{d+1}} f(y) \mathrm{d}y,$$

acting on $f : \mathbb{R}^d \to \mathbb{R}$.

Alternative definition: *R_j* is a Fourier multiplier,

$$\widehat{R_jf}(\xi) = -irac{\xi_j}{|\xi|}\widehat{f}(\xi), \qquad ext{for } \xi \in \mathbb{R}^d \setminus \{0\}.$$

Some definitions

Let $d \ge 1$ be a fixed integer.

Riesz transforms in \mathbb{R}^d : a collection R_1, R_2, \ldots, R_d of singular integral operators given by

$$R_j f(x) = \frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{(d+1)/2}} \operatorname{p.v.} \int_{\mathbb{R}^d} \frac{x_j - y_j}{|x - y|^{d+1}} f(y) \mathrm{d}y,$$

acting on $f : \mathbb{R}^d \to \mathbb{R}$.

Alternative definition: *R_j* is a Fourier multiplier,

$$\widehat{R_jf}(\xi) = -i \frac{\xi_j}{|\xi|} \widehat{f}(\xi), \quad \text{ for } \xi \in \mathbb{R}^d \setminus \{0\}$$

・ロン ・回と ・ヨン・

Some definitions

Let $d \ge 1$ be a fixed integer.

Riesz transforms in \mathbb{R}^d : a collection R_1, R_2, \ldots, R_d of singular integral operators given by

$$R_j f(x) = \frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{(d+1)/2}} \operatorname{p.v.} \int_{\mathbb{R}^d} \frac{x_j - y_j}{|x - y|^{d+1}} f(y) \mathrm{d}y,$$

acting on $f : \mathbb{R}^d \to \mathbb{R}$.

Alternative definition: R_j is a Fourier multiplier,

$$\widehat{R_jf}(\xi) = -irac{\xi_j}{|\xi|}\widehat{f}(\xi), \qquad ext{for } \xi \in \mathbb{R}^d \setminus \{0\}.$$

・ロト ・回ト ・ヨト ・ヨト

Relation to orthogonal martingales

Question: How to prove (sharp) inequalities for R_j ? For example, what are the L^p -norms of R_j ?

・ロト ・回ト ・ヨト ・ヨト

э

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ be a Brownian motion.

For y > 0, let $\tau(y) = \inf\{t \ge 0 : Y_t \in \{-y\}\}.$

For $f : \mathbb{R}^d \to \mathbb{R}$, let $U_f : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$ be the Poisson extension.

For $j \in \{1,2,\ldots,d\}$, let $\mathcal{A}^j = [a^j_{\ell m}]$ be a (d+1) imes (d+1) matrix,

Note that $Ax \cdot x = 0$ for all $x \in \mathbb{R}^{d+1}$

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ be a Brownian motion.

For y > 0, let $\tau(y) = \inf\{t \ge 0 : Y_t \in \{-y\}\}.$

For $f : \mathbb{R}^d \to \mathbb{R}$, let $U_f : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$ be the Poisson extension.

For $j \in \{1,2,\ldots,d\}$, let $\mathcal{A}^j = [a'_{\ell m}]$ be a (d+1) imes (d+1) matrix,

Note that $Ax \cdot x = 0$ for all $x \in \mathbb{R}^{d+1}$

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ be a Brownian motion.

For y > 0, let $\tau(y) = \inf\{t \ge 0 : Y_t \in \{-y\}\}.$

For $f : \mathbb{R}^d \to \mathbb{R}$, let $U_f : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$ be the Poisson extension.

For $j \in \{1, 2, \dots, d\}$, let $\mathcal{A}^j = [a^j_{\ell m}]$ be a (d+1) imes (d+1) matrix,

		1	if $\ell = d + 1, m = j$,
$a_{\ell m}^{j} =$	ł	-1	if $\ell = j, m = d + 1$,
			otherwise.

イロト イポト イヨト イヨト

Note that $Ax \cdot x = 0$ for all $x \in \mathbb{R}^{d+1}$

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ be a Brownian motion.

For y > 0, let $\tau(y) = \inf\{t \ge 0 : Y_t \in \{-y\}\}.$

For $f : \mathbb{R}^d \to \mathbb{R}$, let $U_f : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$ be the Poisson extension.

For $j \in \{1,2,\ldots,d\}$, let $\mathcal{A}^j = [a^j_{\ell m}]$ be a (d+1) imes (d+1) matrix,

(1	if $\ell = d + 1$, $m = j$,
$a_{\ell m}^{j} = \langle$	-1	$\text{if } \ell = j, \ m = d + 1,$
	0	otherwise.

	-1
1	0

Note that $Ax \cdot x = 0$ for all $x \in \mathbb{R}^{d+1}$.

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ be a Brownian motion.

For y > 0, let $\tau(y) = \inf\{t \ge 0 : Y_t \in \{-y\}\}.$

For $f : \mathbb{R}^d \to \mathbb{R}$, let $U_f : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$ be the Poisson extension.

For $j \in \{1, 2, \dots, d\}$, let $A^j = [a^j_{\ell m}]$ be a $(d+1) \times (d+1)$ matrix, $a^j_{\ell m} = \begin{cases} 1 & \text{if } \ell = d+1, \ m = j, \\ -1 & \text{if } \ell = j, \ m = d+1, \\ 0 & \text{otherwise.} \end{cases} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$

Note that $Ax \cdot x = 0$ for all $x \in \mathbb{R}^{d+1}$.

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^d \times \mathbb{R}$ be a Brownian motion.

For y > 0, let $\tau(y) = \inf\{t \ge 0 : Y_t \in \{-y\}\}.$

For $f : \mathbb{R}^d \to \mathbb{R}$, let $U_f : \mathbb{R}^d \times [0, \infty) \to \mathbb{R}$ be the Poisson extension.

 $\begin{aligned} & \text{For } j \in \{1, 2, \dots, d\}, \text{ let } \mathcal{A}^{j} = [a^{j}_{\ell m}] \text{ be a } (d+1) \times (d+1) \text{ matrix,} \\ & a^{j}_{\ell m} = \left\{ \begin{array}{ll} 1 & \text{if } \ell = d+1, \ m = j, \\ -1 & \text{if } \ell = j, \ m = d+1, \\ 0 & \text{otherwise.} \end{array} \right. \left(\begin{array}{ll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]. \end{aligned}$

Note that $Ax \cdot x = 0$ for all $x \in \mathbb{R}^{d+1}$.

Probabilistic representation of Riesz transforms

Fix $x \in \mathbb{R}^d$, y > 0 and consider the martingales

$$\xi_t = \xi_t^{x,y} = U_f(x + X_{\tau(y)\wedge t}, y + Y_{\tau(y)\wedge t})$$

Probabilistic representation of Riesz transforms

Fix $x \in \mathbb{R}^d$, y > 0 and consider the martingales $\xi_t = \xi_t^{x,y} = U_f(x,y) + \int_{0+}^{\tau(y)\wedge t} \nabla U_f(x + X_s, y + Y_s) \cdot d(X_s, Y_s),$ $\zeta_t = \zeta_t^{x,y} = \int_{0+}^{\tau(y)\wedge t} A^j \nabla U_f(x + X_s, y + Y_s) \cdot d(X_s, Y_s).$

They are orthogonal and ζ is differentially subordinate to ξ . Define

$$\mathcal{T}_{Aj}^{y}f(z) = \tilde{\mathbb{E}}\left[\zeta_{\infty}^{x,y}|x + X_{\tau(y)} = z\right],$$

where $\tilde{\mathbb{P}} = \mathbb{P} \otimes \mathsf{d} x$. We have $T^y_{A^j} f \to R_j f$ as $y \to \infty$.

Probabilistic representation of Riesz transforms

Fix $x \in \mathbb{R}^d$, y > 0 and consider the martingales $\xi_t = \xi_t^{x,y} = U_f(x,y) + \int_{0+}^{\tau(y)\wedge t} \nabla U_f(x+X_s,y+Y_s) \cdot d(X_s,Y_s),$ $\zeta_t = \zeta_t^{x,y} = \int_{0+}^{\tau(y)\wedge t} A^j \nabla U_f(x+X_s,y+Y_s) \cdot d(X_s,Y_s).$

They are orthogonal and ζ is differentially subordinate to ξ . Define

$$\mathcal{T}_{Aj}^{y}f(z) = \tilde{\mathbb{E}}\left[\zeta_{\infty}^{x,y}|x + X_{\tau(y)} = z\right],$$

where $\tilde{\mathbb{P}} = \mathbb{P} \otimes \mathsf{d}x$. We have $T^y_{A^j} f \to R_j f$ as $y \to \infty$.

・ロット (日本) (日本) (日本)

Probabilistic representation of Riesz transforms

Fix $x \in \mathbb{R}^d$, y > 0 and consider the martingales $\xi_t = \xi_t^{x,y} = U_f(x,y) + \int_{0+}^{\tau(y)\wedge t} \nabla U_f(x+X_s, y+Y_s) \cdot d(X_s, Y_s),$ $\zeta_t = \zeta_t^{x,y} = \int_{0+}^{\tau(y)\wedge t} A^j \nabla U_f(x+X_s, y+Y_s) \cdot d(X_s, Y_s).$

They are orthogonal and ζ is differentially subordinate to ξ . Define

$$\mathcal{T}_{A^{j}}^{y}f(z) = \tilde{\mathbb{E}}\left[\zeta_{\infty}^{x,y}|x + X_{\tau(y)} = z\right],$$

where $\tilde{\mathbb{P}} = \mathbb{P} \otimes dx$. We have $T_{Aj}^{y} f \to R_{j} f$ as $y \to \infty$.

소리가 소문가 소문가 소문가

Probabilistic representation of Riesz transforms

Fix $x \in \mathbb{R}^d$, y > 0 and consider the martingales $\xi_t = \xi_t^{x,y} = U_f(x,y) + \int_{0+}^{\tau(y)\wedge t} \nabla U_f(x + X_s, y + Y_s) \cdot d(X_s, Y_s),$ $\zeta_t = \zeta_t^{x,y} = \int_{0+}^{\tau(y)\wedge t} A^j \nabla U_f(x + X_s, y + Y_s) \cdot d(X_s, Y_s).$

They are orthogonal and ζ is differentially subordinate to ξ . Define

$$\mathcal{T}_{A^{j}}^{y}f(z) = \tilde{\mathbb{E}}\left[\zeta_{\infty}^{x,y}|x+X_{\tau(y)}=z\right],$$

where $\tilde{\mathbb{P}} = \mathbb{P} \otimes \mathsf{d} x$. We have $T^y_{A^j} f \to R_j f$ as $y \to \infty$.

How to get an estimate for R_j ?

Let $\Phi : [0, \infty) \to \mathbb{R}$ - a convex increasing function. How to get the bound for $\int_{\mathbb{R}^d} \Phi(|R_j f(x)|) dx$?

Write

$$\begin{split} \int_{\mathbb{R}^d} \Phi(|T^{y}_{A^{j}}f(z)|) \mathrm{d}z &= \int_{\mathbb{R}^d} \Phi(|\tilde{\mathbb{E}}\left[\zeta^{x,y}_{\infty}|x + X_{\tau(y)} = z\right]|) \mathrm{d}z \\ &\leq \int_{\mathbb{R}^d} \mathbb{E}\Phi(|\zeta^{x,y}_{\infty}|) \mathrm{d}x. \end{split}$$

Now, estimate $\mathbb{E}\Phi(|\zeta_{\infty}^{x,y}|)$ for each x, using martingale inequalities, and let $y \to \infty$.

ヘロア 人間 アイボア 人間 ア

How to get an estimate for R_j ?

Let $\Phi : [0, \infty) \to \mathbb{R}$ - a convex increasing function. How to get the bound for $\int_{\mathbb{R}^d} \Phi(|R_j f(x)|) dx$? Write

$$\begin{split} \int_{\mathbb{R}^d} \Phi(|T^{y}_{A^{j}}f(z)|) \mathrm{d}z &= \int_{\mathbb{R}^d} \Phi(|\tilde{\mathbb{E}}\left[\zeta^{x,y}_{\infty}|x + X_{\tau(y)} = z\right]|) \mathrm{d}z \\ &\leq \int_{\mathbb{R}^d} \mathbb{E}\Phi(|\zeta^{x,y}_{\infty}|) \mathrm{d}x. \end{split}$$

Now, estimate $\mathbb{E}\Phi(|\zeta_{\infty}^{x,y}|)$ for each x, using martingale inequalities, and let $y \to \infty$.

ヘロア 人間 アイボア 人間 ア

How to get an estimate for R_j ?

Let $\Phi : [0, \infty) \to \mathbb{R}$ - a convex increasing function. How to get the bound for $\int_{\mathbb{R}^d} \Phi(|R_j f(x)|) dx$? Write

$$\begin{split} \int_{\mathbb{R}^d} \Phi(|T_{A^j}^y f(z)|) \mathrm{d}z &= \int_{\mathbb{R}^d} \Phi(|\tilde{\mathbb{E}}\left[\zeta_{\infty}^{x,y}|x + X_{\tau(y)} = z\right]|) \mathrm{d}z \\ &\leq \int_{\mathbb{R}^d} \mathbb{E}\Phi(|\zeta_{\infty}^{x,y}|) \mathrm{d}x. \end{split}$$

Now, estimate $\mathbb{E}\Phi(|\zeta_{\infty}^{x,y}|)$ for each x, using martingale inequalities, and let $y \to \infty$.

L^p estimates

Theorem (Iwaniec-Martin (1996), Bañuelos-Wang (1995)) For 1 we have the sharp bound

$$||R_j f||_p \leq \cot\left(\frac{\pi}{2p^*}\right)||f||_p.$$

Proof. Take $\Phi(x) = x^p$. We get

 $\int_{\mathbb{R}^d} |T_{A^j}^y f(x)|^p dx \le \int_{\mathbb{R}^d} \mathbb{E} |\zeta_{\infty}^{x,y}|^p dx \le \cot^p \left(\frac{\pi}{2p^*}\right) \int_{\mathbb{R}^d} \mathbb{E} |\xi_{\infty}^{x,y}|^p dx$

$$\leq \cot^p\left(\frac{\pi}{2p^*}\right)\int_{\mathbb{R}^d}\mathbb{E}|f(x{+}X_{\tau(y)})|^p\mathsf{d} x=\cot^p\left(\frac{\pi}{2p^*}\right)\int_{\mathbb{R}^d}|f(x)|^p\mathsf{d} x.$$

소리가 소문가 소문가 소문가

L^p estimates

Theorem (Iwaniec-Martin (1996), Bañuelos-Wang (1995)) For 1 we have the sharp bound

$$||R_j f||_p \leq \cot\left(\frac{\pi}{2p^*}\right)||f||_p.$$

Proof. Take $\Phi(x) = x^p$. We get

$$\int_{\mathbb{R}^d} |T^{y}_{\mathcal{A}^{j}}f(x)|^p \mathrm{d} x \leq \int_{\mathbb{R}^d} \mathbb{E}|\zeta^{x,y}_{\infty}|^p \mathrm{d} x \leq \cot^p\left(\frac{\pi}{2p^*}\right) \int_{\mathbb{R}^d} \mathbb{E}|\xi^{x,y}_{\infty}|^p \mathrm{d} x$$

$$\leq \cot^p\left(\frac{\pi}{2p^*}\right)\int_{\mathbb{R}^d}\mathbb{E}|f(x+X_{\tau(y)})|^p\mathsf{d} x=\cot^p\left(\frac{\pi}{2p^*}\right)\int_{\mathbb{R}^d}|f(x)|^p\mathsf{d} x.$$

・ロン ・聞と ・ほと ・ほと

L^p estimates

Theorem (Iwaniec-Martin (1996), Bañuelos-Wang (1995)) For 1 we have the sharp bound

$$||R_j f||_p \leq \cot\left(\frac{\pi}{2p^*}\right)||f||_p.$$

Proof. Take $\Phi(x) = x^p$. We get

$$\int_{\mathbb{R}^d} |T^y_{\mathcal{A}^j} f(x)|^p \mathrm{d} x \leq \int_{\mathbb{R}^d} \mathbb{E} |\zeta^{x,y}_{\infty}|^p \mathrm{d} x \leq \cot^p \left(\frac{\pi}{2p^*}\right) \int_{\mathbb{R}^d} \mathbb{E} |\xi^{x,y}_{\infty}|^p \mathrm{d} x$$

$$\leq \cot^p\left(\frac{\pi}{2p^*}\right)\int_{\mathbb{R}^d}\mathbb{E}|f(x+X_{\tau(y)})|^p\mathsf{d} x=\cot^p\left(\frac{\pi}{2p^*}\right)\int_{\mathbb{R}^d}|f(x)|^p\mathsf{d} x.$$

・ロン ・聞と ・ほと ・ほと

Exponential inequality for Riesz transforms

Now take $\Phi(t) = e^t - 1 - t$ and recall that

$$L(K) = rac{K}{\pi} \int_{\mathbb{R}} \Phi\left(\left|rac{2}{\pi K} \log |t|\right|
ight) \mathrm{d}t.$$

Theorem (A.O.) For any f with $||f||_{L^{\infty}(\mathbb{R}^d)} \leq 1$,

$$\int_{\mathbb{R}^d} \Phi\left(|R_j f(x)|/K\right) \, dx \leq \frac{L(K)||f||_{L^1(\mathbb{R}^d)}}{K}$$

and the constant is the best possible.

Exponential inequality for Riesz transforms

Proof. We have

$$\begin{split} \int_{\mathbb{R}^d} \Phi(|T_{A^j}^y f(x)|/K) \mathsf{d} x &\leq \int_{\mathbb{R}^d} \mathbb{E} \Phi(|\zeta_{\infty}^{x,y}|/K) \mathsf{d} x \\ &\leq \int_{\mathbb{R}^d} \frac{L(K)}{K} \mathbb{E} |\xi_{\infty}^{x,y}| \mathsf{d} x = \frac{L(K)||f||_{L^1(\mathbb{R}^d)}}{K}. \end{split}$$

イロン イヨン イヨン イヨン

Э

LlogL estimate

Let
$$\Psi(t) = (t+1)\log(t+1) - t$$
 - a conjugate to Φ .

Theorem (A.O., JFA (2012)) For any integer d, $K > 2/\pi$ and $A \subset \mathbb{R}^{6}$

$$\int_{A} |R_{j}f(x)| dx \leq K \int_{\mathbb{R}^{d}} \Psi(|f(x)|) dx + |A| \cdot L(K).$$

For each K and d the constant L(K) is the best possible. Proof: Use duality and the previous bound.

LlogL estimate

Let $\Psi(t) = (t+1)\log(t+1) - t$ - a conjugate to Φ .

Theorem (A.O., JFA (2012)) For any integer d, $K > 2/\pi$ and $A \subset \mathbb{R}^d$,

$$\int_{A} |R_j f(x)| dx \leq K \int_{\mathbb{R}^d} \Psi(|f(x)|) dx + |A| \cdot L(K).$$

For each K and d the constant L(K) is the best possible. Proof: Use duality and the previous bound.

・ロン ・回 と ・ ヨ と ・ ヨ と

LlogL estimate

Let $\Psi(t) = (t+1)\log(t+1) - t$ - a conjugate to Φ .

Theorem (A.O., JFA (2012)) For any integer d, $K > 2/\pi$ and $A \subset \mathbb{R}^d$,

$$\int_{A} |R_{j}f(x)| dx \leq K \int_{\mathbb{R}^{d}} \Psi(|f(x)|) dx + |A| \cdot L(K).$$

For each K and d the constant L(K) is the best possible. Proof: Use duality and the previous bound.

Some questions

1. Let $1 \le p < \infty$. What is the best constant c_p in the estimate

$$|\{x: |R_j f(x)| \ge 1\}| \le c_p \int_{\mathbb{R}^d} |f(x)|^p dx ?$$

2. Does the inequality

$$|\{x:|R_jf(x)|\geq 1\}|\leq c_1\int_{\mathbb{R}^d}|f(x)|\mathsf{d} x$$

holds with some constant *c*₁ not depending on the dimension? 3. What about sharp bounds for vector Riesz transform

$$Rf = (R_1f, R_2f, \ldots, R_df) ?$$

Some questions

1. Let $1 \le p < \infty$. What is the best constant c_p in the estimate

$$|\{x: |R_j f(x)| \ge 1\}| \le c_p \int_{\mathbb{R}^d} |f(x)|^p dx ?$$

2. Does the inequality

$$|\{x:|R_jf(x)|\geq 1\}|\leq c_1\int_{\mathbb{R}^d}|f(x)|\mathsf{d} x$$

holds with some constant c_1 not depending on the dimension?

3. What about sharp bounds for vector Riesz transform

$$Rf = (R_1f, R_2f, \ldots, R_df) ?$$

Some questions

1. Let $1 \le p < \infty$. What is the best constant c_p in the estimate

$$|\{x: |R_j f(x)| \ge 1\}| \le c_p \int_{\mathbb{R}^d} |f(x)|^p dx ?$$

2. Does the inequality

$$|\{x:|R_jf(x)|\geq 1\}|\leq c_1\int_{\mathbb{R}^d}|f(x)|\mathsf{d} x$$

holds with some constant c_1 not depending on the dimension?

3. What about sharp bounds for vector Riesz transform

$$Rf = (R_1f, R_2f, \ldots, R_df) ?$$