Orthogonal martingales and Riesz transforms

Adam Osekowski

Institute of Mathematics,
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

6th International Conference on Stochastic Analysis
and Its Applications
Bedlewo, Poland, 12 September 2012

Adam Osekowski Orthogonal martingales and Riesz transforms



Definitions and notation

Motivation: inequalities for conjugate harmonic functions

Let u, v be real-valued conjugate harmonic functions on the unit
disc D C C, v(0) =0.
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Definitions and notation

Motivation: inequalities for conjugate harmonic functions

Let u, v be real-valued conjugate harmonic functions on the unit
disc D C C, v(0) =0.

Question: How the size of u controls the size of v?

Theorem (Riesz)
For 1 < p < oo there is a finite absolute c, such that

VIl < cpllullp,

1
where ||ullp = ([f,p |u(z)|Pdz) "
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Definitions and notation

Probabilistic setting

Let B = (Bt)¢>0 be the planar Brownian motion, stopped at 9D.
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Let B = (Bt)¢>0 be the planar Brownian motion, stopped at 9D.
Consider the martingales X; = u(B;), Yy = v(B:) for t > 0.
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Definitions and notation

Probabilistic setting

Let B = (Bt)¢>0 be the planar Brownian motion, stopped at 9D.
Consider the martingales X; = u(B;), Yy = v(B:) for t > 0.

By 1t6’s formula, for t > 0 we have

t t
Xt:u(O)—i—/ Vu(B,)- dB;, yt:/ Vv(B,) - dB..
0+ 0+
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Definitions and notation

Probabilistic setting

Let B = (Bt)¢>0 be the planar Brownian motion, stopped at 9D.
Consider the martingales X; = u(B;), Yy = v(B:) for t > 0.
By 1t6’s formula, for t > 0 we have

t t
Xt:u(O)—i—/ Vu(B,)- dB;, yt:/ Vv(B,) - dB..
0+ 0+

We have |Vu| = |Vv| and Vu-Vv =0, so

diX,X]=d[Y,Y] and  d[X,Y]=0.
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Definitions and notation

Probabilistic setting

Let B = (Bt)¢>0 be the planar Brownian motion, stopped at 9D.
Consider the martingales X; = u(B;), Yy = v(B:) for t > 0.

By 1t6’s formula, for t > 0 we have
t t
X, = u(0) +/ Vu(B)-dB,, Vi :/ Vv(B,) - dB..
0+ 0+

We have |Vu| = |Vv| and Vu-Vv =0, so
diX,X]=d[Y,Y] and d[X,Y]=0.

Riesz' theorem: || Y|, < ¢p||X][p for 1 < p < 0.

Adam Osekowski Orthogonal martingales and Riesz transforms



Definitions and notation

Probabilistic setting

Let (Q, F, F¢,P) - a filtered probability space,
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Definitions and notation

Probabilistic setting

Let (Q, F, F¢,P) - a filtered probability space,
X = (Xt)e=0, Y = (Yt)t>0 - adapted martingales, Yy = 0.
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Definitions and notation

Probabilistic setting

Let (Q, F, F¢,P) - a filtered probability space,
X = (Xt)e=0, Y = (Yt)t>0 - adapted martingales, Yy = 0.

We say that
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Definitions and notation

Probabilistic setting

Let (Q, F, F¢,P) - a filtered probability space,
X = (Xt)e=0, Y = (Yt)t>0 - adapted martingales, Yy = 0.

We say that
* Y is differentially subordinate to X, if d[Y, Y] < d[X, X],
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Definitions and notation

Probabilistic setting

Let (Q, F, F¢,P) - a filtered probability space,
X = (Xt)e=0, Y = (Yt)t>0 - adapted martingales, Yy = 0.

We say that
* Y is differentially subordinate to X, if d[Y, Y] < d[X, X],
* X and Y are orthogonal, if d[X, Y] = 0.

Example
B - BM in RY, (Ks), (Hs) predictable, R9valued, such that

|Ks| < |Hsl, Ks-Hs=0 for all s.

Then (fot Ks - dBs); is differentially subordinate to (fot Hs - dBs):
and both martingales are orthogonal.
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Inequalities for orthogonal martingales

A general problem

Let V:R xR — R be a given Borel function.
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Inequalities for orthogonal martingales

A general problem

Let V:R xR — R be a given Borel function.

Suppose we want to show that
EV(X:, Y:) <0

for all t > 0 and any orthogonal martingales X, Y such that
Y is differentially subordinate to X and Yy = 0.
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Inequalities for orthogonal martingales

A general problem

Let V:R xR — R be a given Borel function.

Suppose we want to show that
EV(X:, Y:) <0

for all t > 0 and any orthogonal martingales X, Y such that
Y is differentially subordinate to X and Yy = 0.

Example: V(x,y) = |y|P — c5|x|P leads to Riesz' theorem.
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Inequalities for orthogonal martingales

Burkholder's method

Suppose that U : R x R — R satisfies the following.
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Inequalities for orthogonal martingales

Burkholder's method

Suppose that U : R x R — R satisfies the following.
1° U(x,0) <0 for all x € R.
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Inequalities for orthogonal martingales

Burkholder's method

Suppose that U : R x R — R satisfies the following.
1° U(x,0) <0 for all x € R.
2° U(x,y) > V(x,y) forall x, y € R.
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Inequalities for orthogonal martingales

Burkholder's method

Suppose that U : R x R — R satisfies the following.
1° U(x,0) <0 for all x € R.

2° U(x,y) > V(x,y) forall x, y € R.

3° U(-, y) is concave for all y € R.
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Burkholder's method

Suppose that U : R x R — R satisfies the following.
1° U(x,0) <0 for all x € R.

2° U(x,y) > V(x,y) forall x, y € R.

3° U(-, y) is concave for all y € R.

4° U is superharmonic.

Adam Osekowski Orthogonal martingales and Riesz transforms



Inequalities for orthogonal martingales

Burkholder's method

Suppose that U : R x R — R satisfies the following.
1° U(x,0) <0 for all x € R.

2° U(x,y) > V(x,y) forall x, y € R.

3° U(-, y) is concave for all y € R.

4° U is superharmonic.

The existence of such U yields the desired bound.
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Inequalities for orthogonal martingales

Burkholder's method

Proof (sketch): Using 3° - 4° 4 1t8’s formula gives that
(U(Xt, Yt))e>o is a supermartingale.

Adam Osekowski Orthogonal martingales and Riesz transforms



Inequalities for orthogonal martingales

Burkholder's method

Proof (sketch): Using 3° - 4° 4 1t8’s formula gives that
(U(Xt, Yt))e>o is a supermartingale.
Therefore, by 2° and then 1°,

EV(X:, Yi) < EU(X,, Y;) < EU(Xo, Yo) = EU(Xp,0) < 0

and we are done.
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Inequalities for orthogonal martingales

Best constants in Riesz' inequality

Theorem (Pichorides (1972), Bafiuelos-Wang (1995))
For 1 < p < co we have the sharp bound

Y
Y|, < cot Xllp,
1¥1ly < cor (5 ) X1

where p* = max{p, p/(p — 1)}.
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Inequalities for orthogonal martingales

Best constants in Riesz' inequality

Theorem (Pichorides (1972), Bafiuelos-Wang (1995))
For 1 < p < co we have the sharp bound

Y
Y|, < cot Xllp,
1¥1ly < cor (5 ) X1

where p* = max{p, p/(p — 1)}.
Proof: If 1 < p <2, put V(x,y) = |y|P — cot?(55)|x|P and

U(x,y) = —sin 21p cosP™1 % - RP cos(p#).

For p > 2, a very similar function works.
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Inequalities for orthogonal martingales

An exponential inequality

Let ®(t) = e' —1—t for t >0, and for K > 2/7, define

K [ (|2 log|t
L(K):W/wa.
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Inequalities for orthogonal martingales

An exponential inequality

Let ®(t) = e' —1—t for t >0, and for K > 2/7, define

K [ (|2 log|t
L(K):W/wa.

Theorem (A.O.)

Suppose that X, Y are orthogonal martingales such that

[|X||eo <1, Y is differentially subordinate to X and Yo = 0. Then
for any K > 2/m we have

LOIIX I

supE® (| Y;|/K) < W
>0

The inequality is sharp.
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Inequalities for orthogonal martingales

We define V : [-1,1] x R — R by

V(x,y) = &(lyl/K) — L(K)K™}|x]
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Inequalities for orthogonal martingales

We define V : [-1,1] x R — R by
V(x,y) = &(lyl/K) = L(K)K™*|x|

and let U :[-1,1] x R — R be the harmonic lift of V:

U(X y) — 1/00 cos (%X) ® (}ﬁ IOg‘S’ + %DdS—L(K)K_l
’ . s2 — 2ssin (5x) + 1 '
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Applications to Riesz transforms

Some definitions

Let d > 1 be a fixed integer.
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Applications to Riesz transforms

Some definitions

Let d > 1 be a fixed integer.

Riesz transforms in RY: a collection Ry, R», ..., Ry of
singular integral operators given by

r (%) X~
Rif(x) = 2(d+1)/2 p.v. /]Rd mf()/)dy,

acting on f : RY —» R.
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Applications to Riesz transforms

Some definitions

Let d > 1 be a fixed integer.

Riesz transforms in RY: a collection Ry, R», ..., Ry of
singular integral operators given by

r (%) X~
Rif(x) = 2(d+1)/2 p.v. /]Rd mf()/)dy,

acting on f : RY —» R.

Alternative definition: R; is a Fourier multiplier,

RF(€) = —i%?(&» for € € B9\ {0}.
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Applications to Riesz transforms

Relation to orthogonal martingales

Question: How to prove (sharp) inequalities for R;? For
example, what are the LP-norms of R;?
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Applications to Riesz transforms

Probabilistic representation of Riesz transforms

Let (X, Y) € R x R be a Brownian motion.
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Applications to Riesz transforms

Probabilistic representation of Riesz transforms

Let (X, Y) € R x R be a Brownian motion.

Fory >0, let 7(y) =inf{t > 0: Y; € {—y}}.
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Applications to Riesz transforms

Probabilistic representation of Riesz transforms

Let (X, Y) € R x R be a Brownian motion.
Fory >0, let 7(y) =inf{t > 0: Y; € {—y}}.

For f : RY —» R, let Ur : RY x [0,00) — R be the Poisson
extension.
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Applications to Riesz transforms

Probabilistic representation of Riesz transforms

Let (X, Y) € R x R be a Brownian motion.
Fory >0, let 7(y) =inf{t > 0: Y; € {—y}}.

For f : RY —» R, let Ur : RY x [0,00) — R be the Poisson
extension.

Forje{1,2,...,d}, let AV = [aém] be a (d +1) x (d + 1) matrix,

' 1 if{=d+1, m=j,
ajgm: -1 fl=j, m=d+1,
0 otherwise.
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Applications to Riesz transforms

Probabilistic representation of Riesz transforms

Let (X, Y) € R x R be a Brownian motion.
Fory >0, let 7(y) =inf{t > 0: Y; € {—y}}.

For f : RY —» R, let Ur : RY x [0,00) — R be the Poisson
extension.

Forje{1,2,...,d}, let AV = [aém] be a (d +1) x (d + 1) matrix,

' 1 if{=d+1, m=j, 8 8 8 01
afg = -1 fl=j, m=d+1, -
" 0 otherwise 000 0
' 010 O
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Applications to Riesz transforms

Probabilistic representation of Riesz transforms

Let (X, Y) € R x R be a Brownian motion.
Fory >0, let 7(y) =inf{t > 0: Y; € {—y}}.

For f : RY —» R, let Ur : RY x [0,00) — R be the Poisson
extension.

Forje{1,2,...,d}, let AV = [aém] be a (d +1) x (d + 1) matrix,

' 1 if{=d+1, m=j, 8 8 8 01
afg = -1 fl=j, m=d+1, -
" 0 otherwise 000 0
' 010 O

Note that Ax - x = 0 for all x € R9+1,
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Applications to Riesz transforms

Probabilistic representation of Riesz transforms

Fix x € RY, y > 0 and consider the martingales

& = f?’y = Uf(x —+ XT(y)/\tay + YT(}’)/\t)
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Applications to Riesz transforms

Probabilistic representation of Riesz transforms

Fix x € RY, y > 0 and consider the martingales

T(y)At
ft:é.i‘(’y: Uf(X7}/)+/ VUf(X+X57Y+ YS)'d(X57 YS)J
0+

T(y)At )
o= = / AV Ur(x + Xo, y + Ys) - d(Xs, Vo).
0+
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Applications to Riesz transforms

Probabilistic representation of Riesz transforms

Fix x € RY, y > 0 and consider the martingales

T(y)At
ft:é.i‘(’y: Uf(X7}/)+/ VUf(X+X57Y+ YS)'d(X57 YS)J
0+

T(y)At
= Y = / AV Us(x + Xor y + Yo) - d(Xs, Vo).
0+

They are orthogonal and ( is differentially subordinate to &.
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Applications to Riesz transforms

Probabilistic representation of Riesz transforms

Fix x € RY, y > 0 and consider the martingales

T(y)At
ft:é.i‘(’y: Uf(X7}/)+/ VUf(X+X57Y+ YS)'d(X57 YS)J
0+

T(y)At
= Y = / AV Us(x + Xor y + Yo) - d(Xs, Vo).
0+

They are orthogonal and ( is differentially subordinate to &.

Define y
Taf(2) =E [ |x+ Xy = 2],

where P = P ® dx.
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Applications to Riesz transforms

Probabilistic representation of Riesz transforms

Fix x € RY, y > 0 and consider the martingales

T(y)At
ft:é.i‘(’y: Uf(X7}/)+/ VUf(X+X57Y+ YS)'d(X57 YS)J
0+

T(y)At
= Y = / AV Us(x + Xor y + Yo) - d(Xs, Vo).
0+

They are orthogonal and ( is differentially subordinate to &.

Define y
Taf(2) =E [ |x+ Xy = 2],

where P = P ® dx. We have Tyf — Rif asy — oc.
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Applications to Riesz transforms

How to get an estimate for R;?

Let & : [0,00) — R - a convex increasing function. How to get the
bound for [q ®(|R;f(x)|)dx?
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Applications to Riesz transforms

How to get an estimate for R;?

Let & : [0,00) — R - a convex increasing function. How to get the
bound for [q ®(|R;f(x)|)dx?

Write

/Rd O(| T f(2)])dz = /Rd (B [ |x + Xo(y) = 2] |)dz

Ed(|¢XY])d
< [ Bo(¢ hex
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Applications to Riesz transforms

How to get an estimate for R;?

Let & : [0,00) — R - a convex increasing function. How to get the
bound for [q ®(|R;f(x)|)dx?

Write

/Rd O(| T f(2)])dz = /Rd (B [ |x + Xo(y) = 2] |)dz

Ed(|¢XY])d
< [ Bo(¢ hex

Now, estimate E®(|¢5”|) for each x, using martingale inequalities,
and let y — oo.
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Applications to Riesz transforms

LP estimates

Theorem (lwaniec-Martin (1996), Bafuelos-Wang (1995))
For 1 < p < co we have the sharp bound

T
Rif||, < cot fllp-
IRl < cot (5 ) 115
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Applications to Riesz transforms

LP estimates

Theorem (lwaniec-Martin (1996), Bafuelos-Wang (1995))
For 1 < p < co we have the sharp bound

T
Rif||, < cot fllp-
IRl < cot (5 ) 115

Proof. Take ®(x) = xP. We get

/ yr{vf(x)|de</ E| (%Y |Pdx < cotP (;)/ Elgs|Pdx
Rd Rd P Rd
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Applications to Riesz transforms

LP estimates

Theorem (lwaniec-Martin (1996), Bafuelos-Wang (1995))
For 1 < p < co we have the sharp bound

)l
Proof. Take ®(x) = xP. We get

/ yT{Uf(x)|de</ E|(XY [Pdx < cot? (;)/ Elgo”|Pdx
Rd Rd P Rd

7r 7r
< cotP <2p*> /RdE|f(x—|—XT(y))|pdx = cot? (2p*> /Rd |f(x)|Pdx.
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Applications to Riesz transforms

Exponential inequality for Riesz transforms

Now take ®(t) = e’ — 1 — t and recall that

K [ (|2 log|t
L(K):W/RWdt.

Theorem (A.O.)
For any f with ||f]| gy < 1,

/ & (|R;f(x)|/K) dx < L(K)H;HUW
R4

and the constant is the best possible.
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Applications to Riesz transforms

Exponential inequality for Riesz transforms

Proof. We have
/ (| T F(x)]/K)dx < / E(¢3|/K)dx
Rd R4

L(K) LK 12.(re)
< _— X,y = -
—/Rd K6 |dx K
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Applications to Riesz transforms

LlogL estimate

Let W(t) = (t+ 1)log(t + 1) — t - a conjugate to ®.
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Applications to Riesz transforms

LlogL estimate

Let W(t) = (t+ 1)log(t + 1) — t - a conjugate to ®.

Theorem (A.O., JFA (2012))
For any integer d, K > 2/m and A C RY,

/\ij(x)|dx< K/ W(IF () ) + 1A - L(K).
A R

For each K and d the constant L(K) is the best possible.
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Applications to Riesz transforms

LlogL estimate

Let W(t) = (t+ 1)log(t + 1) — t - a conjugate to ®.

Theorem (A.O., JFA (2012))
For any integer d, K > 2/m and A C RY,

/\ij(x)|dx< K/ W(IF () ) + 1A - L(K).
A R

For each K and d the constant L(K) is the best possible.
Proof: Use duality and the previous bound.
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Open problems

Some questions

1. Let 1 < p < oo. What is the best constant ¢, in the estimate

s R = 1 < 6 [ 1FGOIPax 7
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Open problems

Some questions

1. Let 1 < p < oo. What is the best constant ¢, in the estimate

s R = 1 < 6 [ 1FGOIPax 7

2. Does the inequality

b IRFI = 1 < o [ 1FC0)lex

holds with some constant ¢; not depending on the dimension?
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Open problems

Some questions

1. Let 1 < p < oo. What is the best constant ¢, in the estimate
s R = 1 < 6 [ 1FGOIPax 7
2. Does the inequality
b IRFI = 1 < o [ 1FC0)lex

holds with some constant ¢; not depending on the dimension?

3. What about sharp bounds for vector Riesz transform

Rf = (Rif, Rof ..., Ryf) ?
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