Orthogonal martingales and Riesz transforms

Adam Osękowski

Institute of Mathematics, Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

6th International Conference on Stochastic Analysis and Its Applications
Będlewo, Poland, 12 September 2012

Motivation: inequalities for conjugate harmonic functions

Let u, v be real-valued conjugate harmonic functions on the unit disc $D \subset \mathbb{C}, v(0)=0$.

Question: How the size of u controls the size of v ?

Motivation: inequalities for conjugate harmonic functions

Let u, v be real-valued conjugate harmonic functions on the unit disc $D \subset \mathbb{C}, v(0)=0$.

Question: How the size of u controls the size of v ?
Theorem (Riesz)
For $1<p<\infty$ there is a finite absolute c_{p} such that

where $\|u\|_{p}=\left(\int_{\partial D}|u(z)|^{p} d z\right)^{1 / p}$.

Motivation: inequalities for conjugate harmonic functions

Let u, v be real-valued conjugate harmonic functions on the unit disc $D \subset \mathbb{C}, v(0)=0$.

Question: How the size of u controls the size of v ?
Theorem (Riesz)
For $1<p<\infty$ there is a finite absolute c_{p} such that

$$
\|v\|_{p} \leq c_{p}\|u\|_{p},
$$

where $\|u\|_{p}=\left(\int_{\partial D}|u(z)|^{p} d z\right)^{1 / p}$.

Probabilistic setting

Let $B=\left(B_{t}\right)_{t \geq 0}$ be the planar Brownian motion, stopped at ∂D.
Consider the martingales $X_{t}=u\left(B_{t}\right), Y_{t}=v\left(B_{t}\right)$ for $t \geq 0$.

Probabilistic setting

Let $B=\left(B_{t}\right)_{t \geq 0}$ be the planar Brownian motion, stopped at ∂D.
Consider the martingales $X_{t}=u\left(B_{t}\right), Y_{t}=v\left(B_{t}\right)$ for $t \geq 0$.
By Itô's formula, for $t \geq 0$ we have

Probabilistic setting

Let $B=\left(B_{t}\right)_{t \geq 0}$ be the planar Brownian motion, stopped at ∂D.
Consider the martingales $X_{t}=u\left(B_{t}\right), Y_{t}=v\left(B_{t}\right)$ for $t \geq 0$.
By Itô's formula, for $t \geq 0$ we have

$$
X_{t}=u(0)+\int_{0+}^{t} \nabla u\left(B_{s}\right) \cdot \mathrm{d} B_{s}, \quad Y_{t}=\int_{0+}^{t} \nabla v\left(B_{s}\right) \cdot \mathrm{d} B_{s}
$$

We have $|\nabla u|=|\nabla v|$ and ∇u.
$d[X, X]=\mathrm{d}[Y, Y]$ $\nabla v=0$, so

Riesz' theorem:

Probabilistic setting

Let $B=\left(B_{t}\right)_{t \geq 0}$ be the planar Brownian motion, stopped at ∂D.
Consider the martingales $X_{t}=u\left(B_{t}\right), Y_{t}=v\left(B_{t}\right)$ for $t \geq 0$.
By Itô's formula, for $t \geq 0$ we have

$$
X_{t}=u(0)+\int_{0+}^{t} \nabla u\left(B_{s}\right) \cdot \mathrm{d} B_{s}, \quad Y_{t}=\int_{0+}^{t} \nabla v\left(B_{s}\right) \cdot \mathrm{d} B_{s}
$$

We have $|\nabla u|=|\nabla v|$ and $\nabla u \cdot \nabla v=0$, so

$$
\mathrm{d}[X, X]=\mathrm{d}[Y, Y] \quad \text { and } \quad \mathrm{d}[X, Y]=0
$$

Riesz' theorem:

Probabilistic setting

Let $B=\left(B_{t}\right)_{t \geq 0}$ be the planar Brownian motion, stopped at ∂D.
Consider the martingales $X_{t}=u\left(B_{t}\right), Y_{t}=v\left(B_{t}\right)$ for $t \geq 0$.
By Itô's formula, for $t \geq 0$ we have

$$
X_{t}=u(0)+\int_{0+}^{t} \nabla u\left(B_{s}\right) \cdot \mathrm{d} B_{s}, \quad Y_{t}=\int_{0+}^{t} \nabla v\left(B_{s}\right) \cdot \mathrm{d} B_{s}
$$

We have $|\nabla u|=|\nabla v|$ and $\nabla u \cdot \nabla v=0$, so

$$
\mathrm{d}[X, X]=\mathrm{d}[Y, Y] \quad \text { and } \quad \mathrm{d}[X, Y]=0
$$

Riesz' theorem: $\|Y\|_{p} \leq c_{p}\|X\|_{p}$ for $1<p<\infty$.

Probabilistic setting

Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P}\right)$ - a filtered probability space, $X=\left(X_{t}\right)_{t \geq 0}, Y=\left(Y_{t}\right)_{t \geq 0}$ - adapted martingales, $Y_{0}=0$.

Probabilistic setting

Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P}\right)$ - a filtered probability space,
$X=\left(X_{t}\right)_{t \geq 0}, Y=\left(Y_{t}\right)_{t \geq 0}$ - adapted martingales, $Y_{0}=0$.
We say that

Probabilistic setting

Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P}\right)$ - a filtered probability space,
$X=\left(X_{t}\right)_{t \geq 0}, Y=\left(Y_{t}\right)_{t \geq 0}$ - adapted martingales, $Y_{0}=0$.
We say that
Y is differentially subordinate to X, if $d[Y, Y] \leq d[X, X]$,

Probabilistic setting

Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P}\right)$ - a filtered probability space,
$X=\left(X_{t}\right)_{t \geq 0}, Y=\left(Y_{t}\right)_{t \geq 0}$ - adapted martingales, $Y_{0}=0$.

We say that

$\star Y$ is differentially subordinate to X, if $\mathrm{d}[Y, Y] \leq \mathrm{d}[X, X]$,
\qquad
\square
and both martingales are orthogonal.

Probabilistic setting

Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P}\right)$ - a filtered probability space,
$X=\left(X_{t}\right)_{t \geq 0}, Y=\left(Y_{t}\right)_{t \geq 0}$ - adapted martingales, $Y_{0}=0$.
We say that
$\star Y$ is differentially subordinate to X, if $\mathrm{d}[Y, Y] \leq \mathrm{d}[X, X]$,
$\star X$ and Y are orthogonal, if $\mathrm{d}[X, Y]=0$.
Example
B - BM in $\mathbb{R}^{d},\left(K_{s}\right),\left(H_{s}\right)$ predictable, \mathbb{R}^{d}-valued, such that

Then $\left(\int_{0}^{t} K_{s} \cdot \mathrm{~d} B_{s}\right)_{t}$ is differentially subordinate to $\left(\int_{0}^{t} H_{s} \cdot \mathrm{~d} B_{s}\right)_{t}$
and both martingales are orthogonal.

Probabilistic setting

Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P}\right)$ - a filtered probability space,
$X=\left(X_{t}\right)_{t \geq 0}, Y=\left(Y_{t}\right)_{t \geq 0}$ - adapted martingales, $Y_{0}=0$.
We say that
$\star Y$ is differentially subordinate to X, if $\mathrm{d}[Y, Y] \leq \mathrm{d}[X, X]$,
$\star X$ and Y are orthogonal, if $\mathrm{d}[X, Y]=0$.

Example

B - BM in $\mathbb{R}^{d},\left(K_{s}\right),\left(H_{s}\right)$ predictable, \mathbb{R}^{d}-valued, such that

$$
\left|K_{s}\right| \leq\left|H_{s}\right|, \quad K_{s} \cdot H_{s}=0 \quad \text { for all } s .
$$

Then $\left(\int_{0}^{t} K_{s} \cdot \mathrm{~d} B_{s}\right)_{t}$ is differentially subordinate to $\left(\int_{0}^{t} H_{s} \cdot \mathrm{~d} B_{s}\right)_{t}$ and both martingales are orthogonal.

A general problem

Let $V: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a given Borel function.

Suppose we want to show that

for all $t \geq 0$ and any orthogonal martingales X, Y such that Y is differentially subordinate to X and $Y_{0}=0$.

Example: $V(x, y)=|y|^{P}-c_{p}^{P}|x|^{p}$ leads to Riesz' theorem.

A general problem

Let $V: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a given Borel function.

Suppose we want to show that

$$
\mathbb{E} V\left(X_{t}, Y_{t}\right) \leq 0
$$

for all $t \geq 0$ and any orthogonal martingales X, Y such that Y is differentially subordinate to X and $Y_{0}=0$.

Example: $V(x, y)=|y|^{p}-c_{p}^{p}|x|^{p}$ leads to Riesz' theorem.

A general problem

Let $V: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be a given Borel function.

Suppose we want to show that

$$
\mathbb{E} V\left(X_{t}, Y_{t}\right) \leq 0
$$

for all $t \geq 0$ and any orthogonal martingales X, Y such that Y is differentially subordinate to X and $Y_{0}=0$.

Example: $V(x, y)=|y|^{p}-c_{p}^{p}|x|^{p}$ leads to Riesz' theorem.

Burkholder's method

Suppose that $U: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following.

Burkholder's method

Suppose that $U: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following. $1^{\circ} U(x, 0) \leq 0$ for all $x \in \mathbb{R}$.
$2^{\circ} U(x, y) \geq V(x, y)$ for all $x, y \in \mathbb{R}$.

Burkholder's method

Suppose that $U: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following. $1^{\circ} U(x, 0) \leq 0$ for all $x \in \mathbb{R}$.
$2^{\circ} U(x, y) \geq V(x, y)$ for all $x, y \in \mathbb{R}$.
$3^{\circ} U(\cdot, y)$ is concave for all $y \in \mathbb{R}$
$4^{\circ} U$ is superharmonic.

Burkholder's method

Suppose that $U: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following. $1^{\circ} U(x, 0) \leq 0$ for all $x \in \mathbb{R}$.
$2^{\circ} U(x, y) \geq V(x, y)$ for all $x, y \in \mathbb{R}$.
$3^{\circ} U(\cdot, y)$ is concave for all $y \in \mathbb{R}$.
$4^{\circ} U$ is superharmonic.
The existence of such U yields the desired bound.

Burkholder's method

Suppose that $U: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following.
$1^{\circ} U(x, 0) \leq 0$ for all $x \in \mathbb{R}$.
$2^{\circ} U(x, y) \geq V(x, y)$ for all $x, y \in \mathbb{R}$.
$3^{\circ} U(\cdot, y)$ is concave for all $y \in \mathbb{R}$.
$4^{\circ} U$ is superharmonic.
The existence of such U yields the desired bound.

Burkholder's method

Suppose that $U: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following.
$1^{\circ} U(x, 0) \leq 0$ for all $x \in \mathbb{R}$.
$2^{\circ} U(x, y) \geq V(x, y)$ for all $x, y \in \mathbb{R}$.
$3^{\circ} U(\cdot, y)$ is concave for all $y \in \mathbb{R}$.
$4^{\circ} U$ is superharmonic.
The existence of such U yields the desired bound.

Burkholder's method

Proof (sketch): Using $3^{\circ}-4^{\circ}+$ Itô's formula gives that $\left(U\left(X_{t}, Y_{t}\right)\right)_{t \geq 0}$ is a supermartingale. Therefore, by 2° and then 1°,

and we are done.

Burkholder's method

Proof (sketch): Using $3^{\circ}-4^{\circ}+$ Itô's formula gives that $\left(U\left(X_{t}, Y_{t}\right)\right)_{t \geq 0}$ is a supermartingale.
Therefore, by 2° and then 1°,
$\mathbb{E} V\left(X_{t}, Y_{t}\right) \leq \mathbb{E} U\left(X_{t}, Y_{t}\right) \leq \mathbb{E} U\left(X_{0}, Y_{0}\right)=\mathbb{E} U\left(X_{0}, 0\right) \leq 0$ and we are done.

Best constants in Riesz' inequality

Theorem (Pichorides (1972), Bañuelos-Wang (1995))
For $1<p<\infty$ we have the sharp bound

$$
\|Y\|_{p} \leq \cot \left(\frac{\pi}{2 p^{*}}\right)\|X\|_{p},
$$

where $p^{*}=\max \{p, p /(p-1)\}$.
Proof: If $1<p \leq 2$, put $V(x, y)=|y|^{p}-\cot ^{p}\left(\frac{\pi}{2 p^{*}}\right)|x|^{p}$ and

For $p>2$, a very similar function works.

Best constants in Riesz' inequality

Theorem (Pichorides (1972), Bañuelos-Wang (1995))
For $1<p<\infty$ we have the sharp bound

$$
\|Y\|_{p} \leq \cot \left(\frac{\pi}{2 p^{*}}\right)\|X\|_{p},
$$

where $p^{*}=\max \{p, p /(p-1)\}$.
Proof: If $1<p \leq 2$, put $V(x, y)=|y|^{p}-\cot ^{p}\left(\frac{\pi}{2 p^{*}}\right)|x|^{p}$ and

$$
U(x, y)=-\sin \frac{\pi}{2 p} \cos ^{p-1} \frac{\pi}{2 p} \cdot R^{p} \cos (p \theta)
$$

For $p>2$, a very similar function works.

An exponential inequality

Let $\Phi(t)=e^{t}-1-t$ for $t \geq 0$, and for $K>2 / \pi$, define

$$
L(K)=\frac{K}{\pi} \int_{\mathbb{R}} \frac{\Phi\left(\left|\frac{2}{\pi K} \log \right| t| |\right)}{t^{2}+1} \mathrm{~d} t
$$

Theorem (A.O.)
Suppose that X, Y are orthogonal martingales such that $\|X\|_{\infty} \leq 1, Y$ is differentially subordinate to X and $Y_{0} \equiv 0$. Then for any $K>2 / \pi$ we have

The inequality is sharp.

An exponential inequality

Let $\Phi(t)=e^{t}-1-t$ for $t \geq 0$, and for $K>2 / \pi$, define

$$
L(K)=\frac{K}{\pi} \int_{\mathbb{R}} \frac{\Phi\left(\left|\frac{2}{\pi K} \log \right| t| |\right)}{t^{2}+1} \mathrm{~d} t
$$

Theorem (A.O.)

Suppose that X, Y are orthogonal martingales such that $\|X\|_{\infty} \leq 1, Y$ is differentially subordinate to X and $Y_{0} \equiv 0$. Then for any $K>2 / \pi$ we have

$$
\sup _{t \geq 0} \mathbb{E} \Phi\left(\left|Y_{t}\right| / K\right) \leq \frac{L(K)\|X\|_{1}}{K}
$$

The inequality is sharp.

Proof

We define $V:[-1,1] \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
V(x, y)=\Phi(|y| / K)-L(K) K^{-1}|x|
$$

and let $U:[-1,1] \times \mathbb{R} \rightarrow \mathbb{R}$ be the harmonic lift of V :

Proof

We define $V:[-1,1] \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
V(x, y)=\Phi(|y| / K)-L(K) K^{-1}|x|
$$

and let $U:[-1,1] \times \mathbb{R} \rightarrow \mathbb{R}$ be the harmonic lift of V :
$U(x, y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\cos \left(\frac{\pi}{2} x\right) \Phi\left(\left|\frac{2}{\pi K} \log \right| s\left|+\frac{y}{K}\right|\right)}{s^{2}-2 s \sin \left(\frac{\pi}{2} x\right)+1} \mathrm{~d} s-L(K) K^{-1}$.

Some definitions

Let $d \geq 1$ be a fixed integer.
Riesz transforms in \mathbb{R}^{d} : a collection $R_{1}, R_{2}, \ldots, R_{d}$ of singular integral operators given by

acting on $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
Alternative definition: R_{j} is a Fourier multiplier,

Some definitions

Let $d \geq 1$ be a fixed integer.
Riesz transforms in \mathbb{R}^{d} : a collection $R_{1}, R_{2}, \ldots, R_{d}$ of singular integral operators given by

$$
R_{j} f(x)=\frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{(d+1) / 2}} \text { p.v. } \int_{\mathbb{R}^{d}} \frac{x_{j}-y_{j}}{|x-y|^{d+1}} f(y) \mathrm{d} y
$$

acting on $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
Alternative definition: R_{j} is a Fourier multiplier,

Some definitions

Let $d \geq 1$ be a fixed integer.
Riesz transforms in \mathbb{R}^{d} : a collection $R_{1}, R_{2}, \ldots, R_{d}$ of singular integral operators given by

$$
R_{j} f(x)=\frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{(d+1) / 2}} \text { p.v. } \int_{\mathbb{R}^{d}} \frac{x_{j}-y_{j}}{|x-y|^{d+1}} f(y) \mathrm{d} y
$$

acting on $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
Alternative definition: R_{j} is a Fourier multiplier,

$$
\widehat{R_{j} f}(\xi)=-i \frac{\xi_{j}}{|\xi|} \hat{f}(\xi), \quad \text { for } \xi \in \mathbb{R}^{d} \backslash\{0\} .
$$

Relation to orthogonal martingales

Question: How to prove (sharp) inequalities for R_{j} ? For example, what are the L^{p}-norms of R_{j} ?

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ be a Brownian motion.
For $y>0$, let $\tau(y)=\inf \left\{t \geq 0: Y_{t} \in\{-y\}\right\}$
extension

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ be a Brownian motion.
For $y>0$, let $\tau(y)=\inf \left\{t \geq 0: Y_{t} \in\{-y\}\right\}$.
For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, let $U_{f}: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$ be the Poisson

extension.

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ be a Brownian motion.
For $y>0$, let $\tau(y)=\inf \left\{t \geq 0: Y_{t} \in\{-y\}\right\}$.
For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, let $U_{f}: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$ be the Poisson extension.

For $j \in\{1,2, \ldots, d\}$, let $A^{j}=\left[a_{\ell m}^{j}\right]$ be a $(d+1) \times(d+1)$ matrix,

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ be a Brownian motion.
For $y>0$, let $\tau(y)=\inf \left\{t \geq 0: Y_{t} \in\{-y\}\right\}$.
For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, let $U_{f}: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$ be the Poisson extension.

For $j \in\{1,2, \ldots, d\}$, let $A^{j}=\left[a_{\ell m}^{j}\right]$ be a $(d+1) \times(d+1)$ matrix,

$$
a_{\ell m}^{j}= \begin{cases}1 & \text { if } \ell=d+1, m=j, \\ -1 & \text { if } \ell=j, m=d+1, \\ 0 & \text { otherwise. }\end{cases}
$$

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ be a Brownian motion.
For $y>0$, let $\tau(y)=\inf \left\{t \geq 0: Y_{t} \in\{-y\}\right\}$.
For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, let $U_{f}: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$ be the Poisson extension.

For $j \in\{1,2, \ldots, d\}$, let $A^{j}=\left[a_{\ell m}^{j}\right]$ be a $(d+1) \times(d+1)$ matrix,

$$
a_{\ell m}^{j}=\left\{\begin{array}{ll}
1 & \text { if } \ell=d+1, m=j, \\
-1 & \text { if } \ell=j, m=d+1 \\
0 & \text { otherwise. }
\end{array} \quad\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\right.
$$

Note that $A x \cdot x=0$ for all $x \in \mathbb{R}^{d+1}$.

Probabilistic representation of Riesz transforms

Let $(X, Y) \in \mathbb{R}^{d} \times \mathbb{R}$ be a Brownian motion.
For $y>0$, let $\tau(y)=\inf \left\{t \geq 0: Y_{t} \in\{-y\}\right\}$.
For $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, let $U_{f}: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}$ be the Poisson extension.

For $j \in\{1,2, \ldots, d\}$, let $A^{j}=\left[a_{\ell m}^{j}\right]$ be a $(d+1) \times(d+1)$ matrix,

$$
a_{\ell m}^{j}=\left\{\begin{array}{ll}
1 & \text { if } \ell=d+1, m=j, \\
-1 & \text { if } \ell=j, m=d+1, \\
0 & \text { otherwise. }
\end{array} \quad\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] .\right.
$$

Note that $A x \cdot x=0$ for all $x \in \mathbb{R}^{d+1}$.

Probabilistic representation of Riesz transforms

Fix $x \in \mathbb{R}^{d}, y>0$ and consider the martingales

$$
\xi_{t}=\xi_{t}^{x, y}=U_{f}\left(x+X_{\tau(y) \wedge t}, y+Y_{\tau(y) \wedge t}\right)
$$

Probabilistic representation of Riesz transforms

Fix $x \in \mathbb{R}^{d}, y>0$ and consider the martingales

$$
\begin{aligned}
& \xi_{t}=\xi_{t}^{x, y}=U_{f}(x, y)+\int_{0+}^{\tau(y) \wedge t} \nabla U_{f}\left(x+X_{s}, y+Y_{s}\right) \cdot \mathrm{d}\left(X_{s}, Y_{s}\right) \\
& \zeta_{t}=\zeta_{t}^{x, y}=\int_{0+}^{\tau(y) \wedge t} A^{j} \nabla U_{f}\left(x+X_{s}, y+Y_{s}\right) \cdot \mathrm{d}\left(X_{s}, Y_{s}\right)
\end{aligned}
$$

They are orthogonal and ζ is differentially subordinate to ξ.
Define

Probabilistic representation of Riesz transforms

Fix $x \in \mathbb{R}^{d}, y>0$ and consider the martingales

$$
\begin{aligned}
& \xi_{t}=\xi_{t}^{x, y}=U_{f}(x, y)+\int_{0+}^{\tau(y) \wedge t} \nabla U_{f}\left(x+X_{s}, y+Y_{s}\right) \cdot \mathrm{d}\left(X_{s}, Y_{s}\right) \\
& \zeta_{t}=\zeta_{t}^{x, y}=\int_{0+}^{\tau(y) \wedge t} A^{j} \nabla U_{f}\left(x+X_{s}, y+Y_{s}\right) \cdot \mathrm{d}\left(X_{s}, Y_{s}\right)
\end{aligned}
$$

They are orthogonal and ζ is differentially subordinate to ξ.
Define

$$
\mathcal{T}_{A j}^{y} f(z)=\tilde{\mathbb{E}}\left[\zeta_{\infty}^{x, y} \mid x+X_{\tau(y)}=z\right]
$$

where $\tilde{\mathbb{P}}=\mathbb{P} \otimes \mathrm{d} x$. We have $T_{A j}^{y} f \rightarrow R_{j} f$ as $y \rightarrow \infty$

Probabilistic representation of Riesz transforms

Fix $x \in \mathbb{R}^{d}, y>0$ and consider the martingales

$$
\begin{aligned}
& \xi_{t}=\xi_{t}^{x, y}=U_{f}(x, y)+\int_{0+}^{\tau(y) \wedge t} \nabla U_{f}\left(x+X_{s}, y+Y_{s}\right) \cdot \mathrm{d}\left(X_{s}, Y_{s}\right) \\
& \zeta_{t}=\zeta_{t}^{x, y}=\int_{0+}^{\tau(y) \wedge t} A^{j} \nabla U_{f}\left(x+X_{s}, y+Y_{s}\right) \cdot \mathrm{d}\left(X_{s}, Y_{s}\right)
\end{aligned}
$$

They are orthogonal and ζ is differentially subordinate to ξ.
Define

$$
\mathcal{T}_{A^{j}}^{y} f(z)=\tilde{\mathbb{E}}\left[\zeta_{\infty}^{x, y} \mid x+X_{\tau(y)}=z\right]
$$

where $\tilde{\mathbb{P}}=\mathbb{P} \otimes \mathrm{d} x$.

Probabilistic representation of Riesz transforms

Fix $x \in \mathbb{R}^{d}, y>0$ and consider the martingales

$$
\begin{aligned}
& \xi_{t}=\xi_{t}^{x, y}=U_{f}(x, y)+\int_{0+}^{\tau(y) \wedge t} \nabla U_{f}\left(x+X_{s}, y+Y_{s}\right) \cdot \mathrm{d}\left(X_{s}, Y_{s}\right) \\
& \zeta_{t}=\zeta_{t}^{x, y}=\int_{0+}^{\tau(y) \wedge t} A^{j} \nabla U_{f}\left(x+X_{s}, y+Y_{s}\right) \cdot \mathrm{d}\left(X_{s}, Y_{s}\right)
\end{aligned}
$$

They are orthogonal and ζ is differentially subordinate to ξ.
Define

$$
\mathcal{T}_{A^{j}}^{y} f(z)=\tilde{\mathbb{E}}\left[\zeta_{\infty}^{x, y} \mid x+X_{\tau(y)}=z\right]
$$

where $\tilde{\mathbb{P}}=\mathbb{P} \otimes \mathrm{d} x$. We have $T_{A^{i}}^{y} f \rightarrow R_{j} f$ as $y \rightarrow \infty$.

How to get an estimate for R_{j} ?

Let $\Phi:[0, \infty) \rightarrow \mathbb{R}$ - a convex increasing function. How to get the bound for $\int_{\mathbb{R}^{d}} \Phi\left(\left|R_{j} f(x)\right|\right) \mathrm{d} x$?

Write

How to get an estimate for R_{j} ?

Let $\Phi:[0, \infty) \rightarrow \mathbb{R}$ - a convex increasing function. How to get the bound for $\int_{\mathbb{R}^{d}} \Phi\left(\left|R_{j} f(x)\right|\right) \mathrm{d} x$?
Write

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \Phi\left(\left|T_{A^{j}}^{y} f(z)\right|\right) \mathrm{d} z & =\int_{\mathbb{R}^{d}} \Phi\left(\left|\tilde{\mathbb{E}}\left[\zeta_{\infty}^{x, y} \mid x+X_{\tau(y)}=z\right]\right|\right) \mathrm{d} z \\
& \leq \int_{\mathbb{R}^{d}} \mathbb{E} \Phi\left(\left|\zeta_{\infty}^{x, y}\right|\right) \mathrm{d} x .
\end{aligned}
$$

Now, estimate $\mathbb{E} \Phi\left(\left|\zeta_{\infty}^{x, y}\right|\right)$ for each x, using martingale inequalities,
and let $y \rightarrow \infty$.

How to get an estimate for R_{j} ?

Let $\Phi:[0, \infty) \rightarrow \mathbb{R}$ - a convex increasing function. How to get the bound for $\int_{\mathbb{R}^{d}} \Phi\left(\left|R_{j} f(x)\right|\right) \mathrm{d} x$?
Write

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \Phi\left(\left|T_{A^{j}}^{y} f(z)\right|\right) \mathrm{d} z & =\int_{\mathbb{R}^{d}} \Phi\left(\left|\tilde{\mathbb{E}}\left[\zeta_{\infty}^{x, y} \mid x+X_{\tau(y)}=z\right]\right|\right) \mathrm{d} z \\
& \leq \int_{\mathbb{R}^{d}} \mathbb{E} \Phi\left(\left|\zeta_{\infty}^{x, y}\right|\right) \mathrm{d} x .
\end{aligned}
$$

Now, estimate $\mathbb{E} \Phi\left(\left|\zeta_{\infty}^{x, y}\right|\right)$ for each x, using martingale inequalities, and let $y \rightarrow \infty$.

L^{p} estimates

Theorem (Iwaniec-Martin (1996), Bañuelos-Wang (1995))

For $1<p<\infty$ we have the sharp bound

$$
\left\|R_{j} f\right\|_{p} \leq \cot \left(\frac{\pi}{2 p^{*}}\right)\|f\|_{p}
$$

Proof. Take $\Phi(x)=x^{p}$. We get

L^{p} estimates

Theorem (Iwaniec-Martin (1996), Bañuelos-Wang (1995))
For $1<p<\infty$ we have the sharp bound

$$
\left\|R_{j} f\right\|_{p} \leq \cot \left(\frac{\pi}{2 p^{*}}\right)\|f\|_{p} .
$$

Proof. Take $\Phi(x)=x^{p}$. We get
$\int_{\mathbb{R}^{d}}\left|T_{A^{j}}^{y} f(x)\right|^{p} \mathrm{~d} x \leq \int_{\mathbb{R}^{d}} \mathbb{E}\left|\zeta_{\infty}^{x, y}\right|^{p} \mathrm{~d} x \leq \cot ^{p}\left(\frac{\pi}{2 p^{*}}\right) \int_{\mathbb{R}^{d}} \mathbb{E}\left|\xi_{\infty}^{x, y}\right|^{p} \mathrm{~d} x$

L^{p} estimates

Theorem (Iwaniec-Martin (1996), Bañuelos-Wang (1995))
For $1<p<\infty$ we have the sharp bound

$$
\left\|R_{j} f\right\|_{p} \leq \cot \left(\frac{\pi}{2 p^{*}}\right)\|f\|_{p} .
$$

Proof. Take $\Phi(x)=x^{p}$. We get
$\int_{\mathbb{R}^{d}}\left|T_{A^{\prime}}^{y} f(x)\right|^{p} \mathrm{~d} x \leq \int_{\mathbb{R}^{d}} \mathbb{E}\left|\zeta_{\infty}^{x, y}\right|^{p} \mathrm{~d} x \leq \cot ^{p}\left(\frac{\pi}{2 p^{*}}\right) \int_{\mathbb{R}^{d}} \mathbb{E}\left|\xi_{\infty}^{x, y}\right|^{p} \mathrm{~d} x$
$\leq \cot ^{p}\left(\frac{\pi}{2 p^{*}}\right) \int_{\mathbb{R}^{d}} \mathbb{E}\left|f\left(x+X_{\tau(y)}\right)\right|^{p} \mathrm{~d} x=\cot ^{p}\left(\frac{\pi}{2 p^{*}}\right) \int_{\mathbb{R}^{d}}|f(x)|^{p} \mathrm{~d} x$.

Exponential inequality for Riesz transforms

Now take $\Phi(t)=e^{t}-1-t$ and recall that

$$
L(K)=\frac{K}{\pi} \int_{\mathbb{R}} \frac{\Phi\left(\left|\frac{2}{\pi K} \log \right| t| |\right)}{t^{2}+1} \mathrm{~d} t
$$

Theorem (A.O.)
For any f with $\|f\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq 1$,

$$
\int_{\mathbb{R}^{d}} \Phi\left(\left|R_{j} f(x)\right| / K\right) d x \leq \frac{L(K)\|f\|_{L^{1}\left(\mathbb{R}^{d}\right)}}{K}
$$

and the constant is the best possible.

Exponential inequality for Riesz transforms

Proof. We have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \Phi\left(\left|T_{j^{j}}^{y} f(x)\right| / K\right) \mathrm{d} x & \leq \int_{\mathbb{R}^{d}} \mathbb{E} \Phi\left(\left|\zeta_{\infty}^{x, y}\right| / K\right) \mathrm{d} x \\
& \leq \int_{\mathbb{R}^{d}} \frac{L(K)}{K} \mathbb{E}\left|\xi_{\infty}^{x, y}\right| \mathrm{d} x=\frac{L(K)| | f \|_{L^{1}\left(\mathbb{R}^{d}\right)}}{K} .
\end{aligned}
$$

LlogL estimate

Let $\Psi(t)=(t+1) \log (t+1)-t$ - a conjugate to Φ.
Theorem (A.O., JFA (2012))
For any integer $d, K>2 / \pi$ and $A \subset \mathbb{R}^{d}$,

For each K and d the constant $L(K)$ is the best possible. Proof: Use duality and the previous bound.

LlogL estimate

Let $\Psi(t)=(t+1) \log (t+1)-t$ - a conjugate to Φ.
Theorem (A.O., JFA (2012))
For any integer $d, K>2 / \pi$ and $A \subset \mathbb{R}^{d}$,

$$
\int_{A}\left|R_{j} f(x)\right| d x \leq K \int_{\mathbb{R}^{d}} \Psi(|f(x)|) d x+|A| \cdot L(K) .
$$

For each K and d the constant $L(K)$ is the best possible.
Proof: Use duality and the previous bound.

LlogL estimate

Let $\Psi(t)=(t+1) \log (t+1)-t$ - a conjugate to Φ.
Theorem (A.O., JFA (2012))
For any integer $d, K>2 / \pi$ and $A \subset \mathbb{R}^{d}$,

$$
\int_{A}\left|R_{j} f(x)\right| d x \leq K \int_{\mathbb{R}^{d}} \Psi(|f(x)|) d x+|A| \cdot L(K) .
$$

For each K and d the constant $L(K)$ is the best possible.
Proof: Use duality and the previous bound.

Some questions

1. Let $1 \leq p<\infty$. What is the best constant c_{p} in the estimate

$$
\left|\left\{x:\left|R_{j} f(x)\right| \geq 1\right\}\right| \leq c_{p} \int_{\mathbb{R}^{d}}|f(x)|^{p} \mathrm{~d} x ?
$$

2. Does the inequality

holds with some constant c_{1} not depending on the dimension? 3. What about sharp bounds for vector Riesz transform

Some questions

1. Let $1 \leq p<\infty$. What is the best constant c_{p} in the estimate

$$
\left|\left\{x:\left|R_{j} f(x)\right| \geq 1\right\}\right| \leq c_{p} \int_{\mathbb{R}^{d}}|f(x)|^{p} \mathrm{~d} x ?
$$

2. Does the inequality

$$
\left|\left\{x:\left|R_{j} f(x)\right| \geq 1\right\}\right| \leq c_{1} \int_{\mathbb{R}^{d}}|f(x)| \mathrm{d} x
$$

holds with some constant c_{1} not depending on the dimension?
3. What about sharp bounds for vector Riesz transform

Some questions

1. Let $1 \leq p<\infty$. What is the best constant c_{p} in the estimate

$$
\left|\left\{x:\left|R_{j} f(x)\right| \geq 1\right\}\right| \leq c_{p} \int_{\mathbb{R}^{d}}|f(x)|^{p} \mathrm{~d} x ?
$$

2. Does the inequality

$$
\left|\left\{x:\left|R_{j} f(x)\right| \geq 1\right\}\right| \leq c_{1} \int_{\mathbb{R}^{d}}|f(x)| \mathrm{d} x
$$

holds with some constant c_{1} not depending on the dimension?
3. What about sharp bounds for vector Riesz transform

$$
R f=\left(R_{1} f, R_{2} f, \ldots, R_{d} f\right) ?
$$

