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Introduction

Introduction

We consider the following equation

dXt + ∂ϕ (Xt) (dt) 3 b (Xt) dt + σ (Xt) dWt +
∫

Rd
γ (Xt−, z) dÑt (dz) ,

where

∂ϕ is the subdifferential of proper, l.s.c., convex function ϕ;

W is a Brownian motion;

Ñ is the compensated measure of a homogeneous Poisson random measure
with intensity ν;

W and Ñ are independent.



Introduction

Subdifferentials

Let ϕ : Rn → R be a proper, l.s.c., convex function with int (Dom ϕ) 6= ∅.

The subdifferential of ϕ is defined by

∂ϕ (x) := {x∗ ∈ Rn | 〈x∗, y − x〉+ ϕ (x) ≤ ϕ (y) , ∀y ∈ Rn} .

The operator ∂ϕ is maximal monotone.

Examples:

ϕ (x) := |x |, x ∈ Rn:

∂ϕ (x) =

{ x
|x | , x 6= 0;

B̄ (0; 1) , x = 0.

ϕ ≡ IO : x 7→
{

0, x ∈ O;
+∞, x 6∈ O,

the subdifferential is given by

∂IO (x) =


{0} , x ∈ O;
NO (x) , x ∈ bd O;
∅, x 6∈ O.

This corresponds to the reflected jump-diffusions case:
[Menaldi, Robin, 1985]: x + γ (x , z) ∈ O, ∀x ∈ O.
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Diffusing particles with electrostatic repulsion

[Cépa, Lepingle, 1997]: continuous case

Let ϕ : RN → R be the proper, l.s.c., convex function defined by

ϕ (x) :=

{
−c ∑1≤i<j≤N ln

(
x (j) − x (i)

)
, x (1) < x (2) < · · · < x (N);

+∞ otherwise.

Then Dom ϕ =
{

x ∈ RN | x (1) < x (2) < · · · < x (N)
}

and, for x ∈ Dom ϕ

∂ϕ (x) =

(
c ∑

1≤j≤N, j 6=i

1

x (j) − x (i)

)
1≤i≤N



Introduction Stochastic variational inequalities

Stochastic variational inequalities
Definition of a solution

We consider the following equation

(SVI) dXt + ∂ϕ (Xt ) dt 3 b (Xt ) dt + σ (Xt ) dWt +
∫

Rd
γ (Xt−, z) dÑt (dz) ,

where b : Rn → Rn, σ : Rn → Rn×d ′ , γ : Rn ×Rd → Rn are measurable functions.
D ([0,T ] ; Rn): the class of Rn-valued, càdlàg functions on [0,T ].

We say that (X ,K ) ∈ L0
ad (Ω;D ([0,T ] ; Rn))× L0

ad (Ω;C ([0,T ] ; Rn)) is a (strong)
solution of (SVI) if:

ϕ (X ) ∈ L1 ([0,T ]);

K has bounded variation;

Xt +Kt =
∫ t

0 b (Xs ) ds +
∫ t

0 σ (Xs ) dWs +
∫ t

0

∫
Rd γ (Xs−, z) dÑs (dz);∫ T

0 〈Yt − Xt , dKt 〉+
∫ T

0 ϕ (Xt ) dt ≤
∫ T

0 ϕ (Yt ) dt, ∀Y ∈ L0
ad (Ω;D ([0,T ] ; Rn)).

[Asiminoaiei, Răşcanu, 1997]: existence and uniqueness in case γ ≡ 0.
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Strong solutions

Assumptions

We suppose that the coefficients satisfy the following assumptions:

(H1) |b (x)− b (y)|+ |σ (x)− σ (y)| ≤ L |x − y |;
(H2) γ (0, ·) ∈ Lp (ν) and ‖γ (x , ·)− γ (y , ·)‖Lp(ν) ≤ L |x − y | for p ∈ {2, 4};

(H3) ϕ (x + γ (x , z)) ≤ ϕ (x) + ψ (x , γ (x , z)) , ∀x ∈ Dom ϕ, where(∫
Rd

ψ (x , γ (x , z))2 ν (dz)

)1/2

≤ L
(
1 + |x |α

) (
1 + |(∂ϕ)0 (x)|

β
)

for some α > 0 and β < 4
3 . Here, (∂ϕ)0 (x) := proj∂ϕ(x) (0).



Strong solutions Uniqueness

Uniqueness

Theorem

Under assumptions (H1)-(H2), equation (SVI) has at most one solution starting
from x0 ∈ Dom ϕ.

For the proof, we consider two solutions (X , K ) and (X̃ , K̃ ) and apply Itô’s

formula to
∣∣Xt − X̃t

∣∣2:

|Xt − X̃t |2 +
∫ t

0

〈
Xs − X̃s , d(Ks − K̃s )

〉
= 2

∫ t

0

〈
Xs − X̃s , b (Xs )− b(X̃s )

〉
ds

+ 2
∫ t

0

〈
Xs − X̃s ,

[
σ (Xs )− σ(X̃s )

]
dWs

〉
+
∫ t

0

∣∣σ (Xs )− σ(X̃s )
∣∣2 ds

+ 2
∫ t

0

∫
Rd

{〈
Xs− − X̃s−, γ (Xs−, z)− γ(X̃s−, z)

〉
+
∣∣γ (Xs−, z)− γ(X̃s−, z)

∣∣2} dÑs (dz)

+
∫ t

0

∫
Rd

〈
Xs− − X̃s−, γ (Xs−, z)− γ(X̃s−, z)

〉
ν (dz) ds.



Strong solutions Existence

Existence

Theorem

Under assumptions (H1)-(H3), equation (SVI) has a unique solution starting from
x0 ∈ Dom ϕ.

The proof uses the penalization method. We consider Yosida’s regularization of ϕ

ϕε (x) := inf
{

1
2ε |x − y |2 + ϕ (y) | y ∈ Rn

}
, ε > 0,

which is a C 1, convex function on Rn, with ∇ϕε a Lipschitz function with
Lipschitz constant equal to 1/ε. Moreover, by (H3),

ϕε (x + γ (t, x , z)) ≤ ϕε (x) + |∇ϕε (x)| |γ (t, Jεx , z)− γ (t, x , z)|

+
1

2ε
|γ (t, Jεx , z)− γ (t, x , z)|2 + ψ (Jεx , γ (t, Jεx , z)) ,

where Jεx := x − ε∇ϕε (x) satisfies

ϕε (x) =
1

2ε
|Jεx − x |2 + ϕ (Jεx) =

ε

2
|∇ϕε (x)|

2 + ϕ (Jεx) .



Strong solutions Existence

Approximation

We consider the jump-diffusion X ε given by

dX ε
t +∇ϕε (X

ε
t ) dt = b (X ε

t ) dt + σ (X ε
t ) dWt +

∫
Rd

γ (X ε
t−, z) dÑt (dz) .

Existence and uniqueness:

[Gihman, Skorohod, 1972]

[Jacod, 1979]

We will show that X ε and K ε
t :=

∫ t
0 ∇ϕε (X

ε
s ) ds converge to some X and K .

First, we obtain uniform boundedness for X ε and K ε:

E sup
t∈[0,T ]

|X ε
t |

4 + E

(∫ T

0
ϕε (X

ε
s ) ds

)2

≤ C
(

1 + |x0|4
)

;

E ‖K ε‖2
BV ([0,T ];Rn) ≤ C

(
1 + |x0|4

)
.



Strong solutions Existence

Cauchy estimates

|X ε
t − X δ

t |2 = −2
∫ t

0

〈
X ε
s − X δ

s ,∇ϕε (X
ε
s )−∇ϕδ(X

δ
s )
〉
ds +

∫ t

0

∣∣∣σ (s,X ε
s )− σ(s,X δ

s )
∣∣∣2 ds

+ 2
∫ t

0

〈
X ε
t − X δ

t , b (s,X ε
s )− b(s,X δ

s )
〉
ds + 2

∫ t

0

〈
X ε
t − X δ

t ,
[
σ (s,X ε

s )− σ(s,X δ
s )
]
dWs

〉
+ 2

∫ t

0

∫
Rd

〈
X ε
s− − X δ

s−, γ (s,X ε
s−, z)− γ(s,X δ

s−, z)
〉
dÑs (dz)

+
∫ t

0

∫
Rd

∣∣∣γ (s,X ε
s−, z)− γ(s,X δ

s−, z)
∣∣∣2 dNs (dz) .

Since (we can suppose that ϕ (x) ≥ ϕ (0) = 0, ∀x ∈ Rn and 0 ∈ int (Dom ϕ)).

〈x − y ,∇ϕε (x)−∇ϕδ (y)〉 ≥ − (ε + δ) 〈∇ϕε (x) ,∇ϕδ (y)〉 ,

we get

E sup
s∈[0,t]

|X ε
s − X δ

s |2 ≤ 4 (ε + δ)E

∫ t

0

〈
∇ϕε (X

ε
s ) ,∇ϕδ(X

δ
s )
〉
ds

+ C
∫ t

0
E sup

r∈[0,s ]
|X ε

r − X δ
r |2ds.
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It remains to estimate the term E supt∈[0,T ] |∇ϕε (X
ε
t )|

2:

ϕ2
ε (X

ε
t ) + 2

∫ t

0
ϕε(X

ε
s ) |∇ϕε(X

ε
s )|

2 ds ≤ ϕ2
ε (x0) + 2

∫ t

0
ϕε(X

ε
s )〈∇ϕε(X

ε
s ), b (s,X ε

s )〉ds

+ 2
∫ t

0
ϕε(X

ε
s )〈∇ϕε(X

ε
s ), σ (s,X ε

s ) dWs 〉

+
∫ t

0
|∇ϕε(X

ε
s )|

2 |σ (s,X ε
s )|

2 ds +
1

ε

∫ t

0
ϕε(X

ε
s ) |σ (s,X ε

s )|
2 ds

+
∫ t

0

∫
Rd

ϕ2
ε (X

ε
s−+γ (s,X ε

s−, z))−ϕ2
ε (X

ε
s−)−2ϕε(X

ε
s−)〈∇ϕε(X

ε
s−), γ (s,X ε

s−, z)〉dNs (dz)

+ 2
∫ t

0

∫
Rd

ϕε(X
ε
s−)〈∇ϕε(X

ε
s−), γ (s,X ε

s−, z)〉dÑs (dz)

This gives

E sup
t∈[0,T ]

ϕ2
ε (X

ε
t ) ≤ 2ϕ2(x0) +

C

ε
E

∫ T

0

(
1 + |X ε

s |
2+α
)
ds +

C

ε3/2
E

∫ T

0

(
1 + |X ε

s |
4
)
ds

+
C

ε
4+β
4−β

E

∫ T

0

(
1 + |X ε

s |
4(2+α)

4−β

)
ds.
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Finally, we obtain

E sup
t∈[0,T ]

|X ε
t − X δ

t |2 ≤ C ε
4−3β

4(4−β)

(
E ‖K δ ‖2

)1/2
+ Cδ

4−3β
4(4−β)

(
E ‖K ε‖2

)1/2
,

from which we conclude the existence of (X , K ) as the limit of (X ε, K ε) in
L2

ad (Ω; D ([0, T ] ; Rn))× L2
ad (Ω; C ([0, T ] ; Rn)).

It remains only to verify that (X , K ) is a solution of equation (SVI), which is done
by passing to the limit in the approximating equation and in relation∫ T

0
〈Yr − X ε

r , dK ε
r 〉+

∫ T

0
ϕε (X

ε
r ) dr ≤

∫ T

0
ϕε (Yr ) dr , ∀Y ∈ L0

ad (Ω;D ([0,T ] ; Rn)) .



Weak solutions

Weak Solutions of SVIs
Tightness

The coefficients b, σ and γ (·, z) are only continuous, satisfying the growth
condition:

(H4) |b(x)|+ |σ(x)|+ ‖γ (x , ·)‖Lp(ν) ≤ c (1 + |x |) for p ∈ {2, p0} with p0 ≥ 4.

Theorem

Let I be an arbitrary set of indexes. For each i ∈ I , suppose that
(Ωi ,F i , P i , Fi , W i , N i , X i , K i ) is a weak solution of the equation

dX i
t + ∂ϕ(X i

t )dt 3 bi (X i
t )dt + σi (X i

t )dW
i
t +

∫
Rd

γi (X i
t−, z)dÑ i

t (dz) , t ∈ [0,T ],

where bi , σi and γi satisfy (H4) uniformly and sup
i∈I

Ei |X i
0|2 < +∞. Then

(X i , K i )i∈I is tight in D([0, T ]; Rn)× C ([0, T ]; Rn).



Weak solutions Martingale problem approach

Martingale problem
Notations:

D := D([0, T ]; Rn); C := C ([0, T ]; Rn);

CBV := C ([0, T ]; Rn) ∩ BV0([0, T ]; Rn);

Ω̄ := D×C: the canonical space; F̄ := B(Ω̄);

F̄ :=
{
F̄t
}
t≥0: the canonical filtration on Ω̄;

Ω̄0 is the set of (x , η) ∈ D×CBV such that∫ T

0
〈y (t)− x (t) , dη (t)〉+

∫ T

0
ϕ (x (t)) dt ≤

∫ T

0
ϕ (y (t)) dt, ∀y ∈ D;

Ω̄a := {(x , η) ∈ Ω̄0 | ‖η‖BV ≤ a}.
As a consequence of Helly-Bray theorem, Ω̄a is closed.
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Martingale problem

Let X̄ and K̄ be the canonical processes on Ω̄:

X̄t (x, η) := x (t) , K̄t (x, η) := η (t) .

Let L be the integro-differential operator defined by

Lf (x) :=
1

2
tr σσ∗(x)D2f (x) + 〈b(x), Df (x)〉

+
∫

Rd
[f (x + γ (x , z))− f (x)− 〈Df (x) , γ (x , z)〉] ν (dz) .

We say that a probability measure P on Ω̄ is a solution of the martingale problem
for (SVI) if

1 P(Ω̄0) = 1;
2 for each f ∈ C 2

c (R
d ), the process

M̄ f
t := f (X̄t)− f (X̄0)−

∫ t

0
Lf (X̄s )ds +

∫ t

0
〈Df (X̄s ), dK̄s 〉, t ∈ [0, T ],

is a P-martingale.
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Martingale problem

The two formulations are equivalent:

If (Ω,F , P, F, W , N, X , K ) is a weak solution of (SVI), then P ◦ (X , K )−1

solves the martingale problem:

application of Itô’s formula for f (Xt).

Conversely, if P is a solution of the martingale problem, then there exists a
weak solution with distribution P (possibly on an extension of (Ω̄, F̄ ,P; F̄) ):

[Lepeletier, Marchal, 1976], [Ikeda, Watanabe, 1981]
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Existence

In addition, we impose the conditions

(H5) |(∂ϕ)0 (x)| ≤ L
(

1 + |x |p0−2
)

, ∀x ∈ Dom ϕ and

(H6) x + γ (x , z) ∈ Dom ϕ, ∀x ∈ Dom ϕ.

Theorem

Let µ be a probability measure on Dom ϕ such that
∫
|x |2µ(dx) < +∞. If the

coefficients b, σ and γ satisfy conditions (H4)-(H5), then there exists a weak
solution of equation (SVI) with µ as initial distribution.

Sketch of the proof. Several steps:
Smoothing : the coefficients b, σ and γ are approximated by Lipschitz functions
bn, σn and γn. We consider the corresponding SVI with strong solution (X n, Kn).

Then Pn := P ◦ (X n, Kn)−1 solves the associated martingale problem.
By the tightness result, {Pn}n≥1 is a tight family of distributions on Ω̄. By
Prohorov’s theorem, we can suppose that Pn converges weakly to some
probability measure P on Ω̄.
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Existence

Passing to the limit: Let, for f ∈ C 2
c (R

d )

M̄ f ,n
t := f (X̄t)− f (X̄0)−

∫ t

0
Lnf (X̄s )ds +

∫ t

0
〈Df (X̄s ), dK̄s 〉, t ∈ [0, T ],

with

Lnf (x) :=
1

2
tr σnσ∗n(x)D

2f (x) + 〈bn(x), Df (x)〉

+
∫

Rd
[f (x + γn (x , z))− f (x)− 〈Df (x) , γn (x , z)〉] ν (dz) .

Then:

Pn(Ω̄0) = 1;
Pn ◦ X̄−1

0 = µ;

EPn
(M̄ f ,n

t − M̄ f ,n
s )Ψ = 0, ∀f ∈ C 2(Rn), ∀Ψ ∈ Cb(Ω̄0) ∩ L0(F̂s ), since

M̄ f ,n is a Pn-martingale.

We can pass to the limit in those relations, using the uniform estimates on
(X n, Kn) and the approximation of b, σ and γ by bn, σn, respectively γn. We
obtain that P is a solution of the martingale problem and hence there exists a
weak solution to equation (SVI).
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Notes in Math., 714 (Berlin: Springer-Verlag).

N. Ikeda, S. Watanabe, 1981, Stochastic differential equations and diffusion
processes (North-Holland Mathematical Library, Vol. 24)



Weak solutions Existence

References
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