Stochastic variational inequalities driven by Poisson random measures

Adrian Zălinescu
University "Alexandru I. Cuza" lași, Romania

6th International Conference on Stochastic Analysis and Its Applications 10-14 September 2012, Będlewo

Introduction

We consider the following equation

$$
d X_{t}+\partial \varphi\left(X_{t}\right)(d t) \ni b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{\mathbb{R}^{d}} \gamma\left(X_{t-}, z\right) d \tilde{N}_{t}(d z)
$$

where

- $\partial \varphi$ is the subdifferential of proper, I.s.c., convex function φ;
- W is a Brownian motion;
- \tilde{N} is the compensated measure of a homogeneous Poisson random measure with intensity v;
- W and \tilde{N} are independent.

Subdifferentials

Let $\varphi: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a proper, I.s.c., convex function with $\operatorname{int}(\operatorname{Dom} \varphi) \neq \varnothing$.
The subdifferential of φ is defined by

$$
\partial \varphi(x):=\left\{x^{*} \in \mathbb{R}^{n} \mid\left\langle x^{*}, y-x\right\rangle+\varphi(x) \leq \varphi(y), \forall y \in \mathbb{R}^{n}\right\} .
$$

The operator $\partial \varphi$ is maximal monotone.

Subdifferentials

Let $\varphi: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a proper, I.s.c., convex function with $\operatorname{int}(\operatorname{Dom} \varphi) \neq \varnothing$.
The subdifferential of φ is defined by

$$
\partial \varphi(x):=\left\{x^{*} \in \mathbb{R}^{n} \mid\left\langle x^{*}, y-x\right\rangle+\varphi(x) \leq \varphi(y), \forall y \in \mathbb{R}^{n}\right\} .
$$

The operator $\partial \varphi$ is maximal monotone.

Examples:

- $\varphi(x):=|x|, x \in \mathbb{R}^{n}$:

$$
\partial \varphi(x)= \begin{cases}\frac{x}{|x|}, & x \neq 0 ; \\ B(0 ; 1), & x=0 .\end{cases}
$$

Subdifferentials

Let $\varphi: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ be a proper, I.s.c., convex function with $\operatorname{int}(\operatorname{Dom} \varphi) \neq \varnothing$.
The subdifferential of φ is defined by

$$
\partial \varphi(x):=\left\{x^{*} \in \mathbb{R}^{n} \mid\left\langle x^{*}, y-x\right\rangle+\varphi(x) \leq \varphi(y), \forall y \in \mathbb{R}^{n}\right\} .
$$

The operator $\partial \varphi$ is maximal monotone.

Examples:

- $\varphi(x):=|x|, x \in \mathbb{R}^{n}$:

$$
\partial \varphi(x)= \begin{cases}\frac{x}{|x|}, & x \neq 0 ; \\ B(0 ; 1), & x=0 .\end{cases}
$$

- $\varphi \equiv I_{\bar{O}}: x \mapsto\left\{\begin{array}{ll}0, & x \in \overline{\bar{O} ;} \\ +\infty, & x \notin \bar{O},\end{array}\right.$ the subdifferential is given by

$$
\partial I_{\bar{O}}(x)= \begin{cases}\{0\}, & x \in O ; \\ N_{\bar{O}}(x), & x \in \mathrm{bd} O ; \\ \varnothing, & x \notin \bar{O} .\end{cases}
$$

This corresponds to the reflected jump-diffusions case:
[Menaldi, Robin, 1985]: $x+\gamma(x, z) \in \bar{O}, \forall x \in \bar{O}$.

Diffusing particles with electrostatic repulsion

[Cépa, Lepingle, 1997]: continuous case
Let $\varphi: \mathbb{R}^{N} \rightarrow \overline{\mathbb{R}}$ be the proper, I.s.c., convex function defined by

$$
\varphi(x):= \begin{cases}-c \sum_{1 \leq i<j \leq N} \ln \left(x^{(j)}-x^{(i)}\right), & x^{(1)}<x^{(2)}<\cdots<x^{(N)} ; \\ +\infty & \text { otherwise. }\end{cases}
$$

Then $\operatorname{Dom} \varphi=\left\{x \in \mathbb{R}^{N} \mid x^{(1)}<x^{(2)}<\cdots<x^{(N)}\right\}$ and, for $x \in \operatorname{Dom} \varphi$

$$
\partial \varphi(x)=\left(c \sum_{1 \leq j \leq N, j \neq i} \frac{1}{x^{(j)}-x^{(i)}}\right)_{1 \leq i \leq N}
$$

Stochastic variational inequalities

Definition of a solution

We consider the following equation

$$
\begin{equation*}
d X_{t}+\partial \varphi\left(X_{t}\right) d t \ni b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{\mathbb{R}^{d}} \gamma\left(X_{t-}, z\right) d \tilde{N}_{t}(d z), \tag{SVI}
\end{equation*}
$$

where $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times d^{\prime}}, \gamma: \mathbb{R}^{n} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ are measurable functions.
$D\left([0, T] ; \mathbb{R}^{n}\right)$: the class of \mathbb{R}^{n}-valued, càdlàg functions on $[0, T]$.

Stochastic variational inequalities

Definition of a solution

We consider the following equation

$$
\begin{equation*}
d X_{t}+\partial \varphi\left(X_{t}\right) d t \ni b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{\mathbb{R}^{d}} \gamma\left(X_{t-}, z\right) d \tilde{N}_{t}(d z), \tag{SVI}
\end{equation*}
$$

where $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times d^{\prime}}, \gamma: \mathbb{R}^{n} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ are measurable functions.
$D\left([0, T] ; \mathbb{R}^{n}\right)$: the class of \mathbb{R}^{n}-valued, càdlàg functions on $[0, T]$.
We say that $(X, K) \in L_{\text {ad }}^{0}\left(\Omega ; D\left([0, T] ; \mathbb{R}^{n}\right)\right) \times L_{\text {ad }}^{0}\left(\Omega ; C\left([0, T] ; \mathbb{R}^{n}\right)\right)$ is a (strong) solution of (SVI) if:

- $\varphi(X) \in L^{1}([0, T])$;

Stochastic variational inequalities

Definition of a solution

We consider the following equation

$$
\begin{equation*}
d X_{t}+\partial \varphi\left(X_{t}\right) d t \ni b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{\mathbb{R}^{d}} \gamma\left(X_{t-}, z\right) d \tilde{N}_{t}(d z), \tag{SVI}
\end{equation*}
$$

where $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times d^{\prime}}, \gamma: \mathbb{R}^{n} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ are measurable functions.
$D\left([0, T] ; \mathbb{R}^{n}\right)$: the class of \mathbb{R}^{n}-valued, càdlàg functions on $[0, T]$.
We say that $(X, K) \in L_{\text {ad }}^{0}\left(\Omega ; D\left([0, T] ; \mathbb{R}^{n}\right)\right) \times L_{\text {ad }}^{0}\left(\Omega ; C\left([0, T] ; \mathbb{R}^{n}\right)\right)$ is a (strong) solution of (SVI) if:

- $\varphi(X) \in L^{1}([0, T])$;
- K has bounded variation;

Stochastic variational inequalities

Definition of a solution

We consider the following equation

$$
\begin{equation*}
d X_{t}+\partial \varphi\left(X_{t}\right) d t \ni b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{\mathbb{R}^{d}} \gamma\left(X_{t-}, z\right) d \tilde{N}_{t}(d z), \tag{SVI}
\end{equation*}
$$

where $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times d^{\prime}}, \gamma: \mathbb{R}^{n} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ are measurable functions.
$D\left([0, T] ; \mathbb{R}^{n}\right)$: the class of \mathbb{R}^{n}-valued, càdlàg functions on $[0, T]$.
We say that $(X, K) \in L_{\text {ad }}^{0}\left(\Omega ; D\left([0, T] ; \mathbb{R}^{n}\right)\right) \times L_{\text {ad }}^{0}\left(\Omega ; C\left([0, T] ; \mathbb{R}^{n}\right)\right)$ is a (strong) solution of (SVI) if:

- $\varphi(X) \in L^{1}([0, T])$;
- K has bounded variation;
- $X_{t}+K_{t}=\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}+\int_{0}^{t} \int_{\mathbb{R}^{d}} \gamma\left(X_{s-}, z\right) d \tilde{N}_{s}(d z)$;

Stochastic variational inequalities

Definition of a solution

We consider the following equation

$$
\begin{equation*}
d X_{t}+\partial \varphi\left(X_{t}\right) d t \ni b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{\mathbb{R}^{d}} \gamma\left(X_{t-}, z\right) d \tilde{N}_{t}(d z), \tag{SVI}
\end{equation*}
$$

where $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times d^{\prime}}, \gamma: \mathbb{R}^{n} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ are measurable functions.
$D\left([0, T] ; \mathbb{R}^{n}\right)$: the class of \mathbb{R}^{n}-valued, càdlàg functions on $[0, T]$.
We say that $(X, K) \in L_{\text {ad }}^{0}\left(\Omega ; D\left([0, T] ; \mathbb{R}^{n}\right)\right) \times L_{\text {ad }}^{0}\left(\Omega ; C\left([0, T] ; \mathbb{R}^{n}\right)\right)$ is a (strong) solution of (SVI) if:

- $\varphi(X) \in L^{1}([0, T])$;
- K has bounded variation;
- $X_{t}+K_{t}=\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}+\int_{0}^{t} \int_{\mathbb{R}^{d}} \gamma\left(X_{s-}, z\right) d \tilde{N}_{s}(d z)$;
- $\int_{0}^{T}\left\langle Y_{t}-X_{t}, d K_{t}\right\rangle+\int_{0}^{T} \varphi\left(X_{t}\right) d t \leq \int_{0}^{T} \varphi\left(Y_{t}\right) d t, \forall Y \in L_{\mathrm{ad}}^{0}\left(\Omega ; D\left([0, T] ; \mathbb{R}^{n}\right)\right)$.

Stochastic variational inequalities

Definition of a solution

We consider the following equation

$$
\begin{equation*}
d X_{t}+\partial \varphi\left(X_{t}\right) d t \ni b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+\int_{\mathbb{R}^{d}} \gamma\left(X_{t-}, z\right) d \tilde{N}_{t}(d z), \tag{SVI}
\end{equation*}
$$

where $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times d^{\prime}}, \gamma: \mathbb{R}^{n} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ are measurable functions.
$D\left([0, T] ; \mathbb{R}^{n}\right)$: the class of \mathbb{R}^{n}-valued, càdlàg functions on $[0, T]$.
We say that $(X, K) \in L_{\text {ad }}^{0}\left(\Omega ; D\left([0, T] ; \mathbb{R}^{n}\right)\right) \times L_{\text {ad }}^{0}\left(\Omega ; C\left([0, T] ; \mathbb{R}^{n}\right)\right)$ is a (strong) solution of (SVI) if:

- $\varphi(X) \in L^{1}([0, T])$;
- K has bounded variation;
- $X_{t}+K_{t}=\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d W_{s}+\int_{0}^{t} \int_{\mathbb{R}^{d}} \gamma\left(X_{s-}, z\right) d \tilde{N}_{s}(d z)$;
- $\int_{0}^{T}\left\langle Y_{t}-X_{t}, d K_{t}\right\rangle+\int_{0}^{T} \varphi\left(X_{t}\right) d t \leq \int_{0}^{T} \varphi\left(Y_{t}\right) d t, \forall Y \in L_{\text {ad }}^{0}\left(\Omega ; D\left([0, T] ; \mathbb{R}^{n}\right)\right)$.
[Asiminoaiei, Rășcanu, 1997]: existence and uniqueness in case $\gamma \equiv 0$.

Assumptions

We suppose that the coefficients satisfy the following assumptions:
(H1) $|b(x)-b(y)|+|\sigma(x)-\sigma(y)| \leq L|x-y|$;
(H2) $\gamma(0, \cdot) \in L^{p}(v)$ and $\|\gamma(x, \cdot)-\gamma(y, \cdot)\|_{L^{p}(v)} \leq L|x-y|$ for $p \in\{2,4\}$;
(H3) $\varphi(x+\gamma(x, z)) \leq \varphi(x)+\psi(x, \gamma(x, z)), \forall x \in \overline{\operatorname{Dom} \varphi}$, where

$$
\left(\int_{\mathbb{R}^{d}} \psi(x, \gamma(x, z))^{2} v(d z)\right)^{1 / 2} \leq L\left(1+|x|^{\alpha}\right)\left(1+\left|(\partial \varphi)_{0}(x)\right|^{\beta}\right)
$$

for some $\alpha>0$ and $\beta<\frac{4}{3}$. Here, $(\partial \varphi)_{0}(x):=\operatorname{proj}_{\partial \varphi(x)}(0)$.

Uniqueness

Theorem

Under assumptions (H1)-(H2), equation (SVI) has at most one solution starting from $x_{0} \in \overline{\operatorname{Dom} \varphi}$.

For the proof, we consider two solutions (X, K) and (\tilde{X}, \tilde{K}) and apply Itô's formula to $\left|X_{t}-\tilde{X}_{t}\right|^{2}$:

$$
\begin{aligned}
& \left|X_{t}-\tilde{X}_{t}\right|^{2}+\int_{0}^{t}\left\langle X_{s}-\tilde{X}_{s}, d\left(K_{s}-\tilde{K}_{s}\right)\right\rangle=2 \int_{0}^{t}\left\langle X_{s}-\tilde{X}_{s}, b\left(X_{s}\right)-b\left(\tilde{X}_{s}\right)\right\rangle d s \\
& +2 \int_{0}^{t}\left\langle X_{s}-\tilde{X}_{s},\left[\sigma\left(X_{s}\right)-\sigma\left(\tilde{X}_{s}\right)\right] d W_{s}\right\rangle+\int_{0}^{t}\left|\sigma\left(X_{s}\right)-\sigma\left(\tilde{X}_{s}\right)\right|^{2} d s \\
& +2 \int_{0}^{t} \int_{\mathbb{R}^{d}}\left\{\left\langle X_{s-}-\tilde{X}_{s-}, \gamma\left(X_{s-}, z\right)-\gamma\left(\tilde{X}_{s-}, z\right)\right\rangle+\left|\gamma\left(X_{s-}, z\right)-\gamma\left(\tilde{X}_{s-}, z\right)\right|^{2}\right\} d \tilde{N}_{s}(d z) \\
& +\int_{0}^{t} \int_{\mathbb{R}^{d}}\left\langle X_{s-}-\tilde{X}_{s-}, \gamma\left(X_{s-}, z\right)-\gamma\left(\tilde{X}_{s-}, z\right)\right\rangle v(d z) d s .
\end{aligned}
$$

Existence

Theorem

Under assumptions (H1)-(H3), equation (SVI) has a unique solution starting from $x_{0} \in \overline{\operatorname{Dom} \varphi}$.

The proof uses the penalization method. We consider Yosida's regularization of φ

$$
\varphi_{\varepsilon}(x):=\inf \left\{\left.\frac{1}{2 \varepsilon}|x-y|^{2}+\varphi(y) \right\rvert\, y \in \mathbb{R}^{n}\right\}, \varepsilon>0
$$

which is a C^{1}, convex function on \mathbb{R}^{n}, with $\nabla \varphi_{\varepsilon}$ a Lipschitz function with Lipschitz constant equal to $1 / \varepsilon$. Moreover, by (H3),

$$
\begin{aligned}
\varphi_{\varepsilon}(x+\gamma(t, x, z)) \leq & \varphi_{\varepsilon}(x)+\left|\nabla \varphi_{\varepsilon}(x)\right|\left|\gamma\left(t, J_{\varepsilon} x, z\right)-\gamma(t, x, z)\right| \\
& +\frac{1}{2 \varepsilon}\left|\gamma\left(t, J_{\varepsilon} x, z\right)-\gamma(t, x, z)\right|^{2}+\psi\left(J_{\varepsilon} x, \gamma\left(t, J_{\varepsilon} x, z\right)\right)
\end{aligned}
$$

where $J_{\varepsilon} x:=x-\varepsilon \nabla \varphi_{\varepsilon}(x)$ satisfies

$$
\varphi_{\varepsilon}(x)=\frac{1}{2 \varepsilon}\left|J_{\varepsilon} x-x\right|^{2}+\varphi\left(J_{\varepsilon} x\right)=\frac{\varepsilon}{2}\left|\nabla \varphi_{\varepsilon}(x)\right|^{2}+\varphi\left(J_{\varepsilon} x\right) .
$$

Approximation

We consider the jump-diffusion X^{ε} given by

$$
d X_{t}^{\varepsilon}+\nabla \varphi_{\varepsilon}\left(X_{t}^{\varepsilon}\right) d t=b\left(X_{t}^{\varepsilon}\right) d t+\sigma\left(X_{t}^{\varepsilon}\right) d W_{t}+\int_{\mathbb{R}^{d}} \gamma\left(X_{t-}^{\varepsilon}, z\right) d \tilde{N}_{t}(d z) .
$$

Existence and uniqueness:

- [Gihman, Skorohod, 1972]
- [Jacod, 1979]

We will show that X^{ε} and $K_{t}^{\varepsilon}:=\int_{0}^{t} \nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right) d s$ converge to some X and K.
First, we obtain uniform boundedness for X^{ε} and K^{ε} :

$$
\begin{aligned}
\mathbb{E} \sup _{t \in[0, T]}\left|X_{t}^{\varepsilon}\right|^{4}+\mathbb{E}\left(\int_{0}^{T} \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right) d s\right)^{2} & \leq C\left(1+\left|x_{0}\right|^{4}\right) ; \\
\mathbb{E}\left\|K^{\varepsilon}\right\|_{B V\left([0, T] ; \mathbb{R}^{n}\right)}^{2} & \leq C\left(1+\left|x_{0}\right|^{4}\right) .
\end{aligned}
$$

Cauchy estimates

$$
\begin{aligned}
& \left|X_{t}^{\varepsilon}-X_{t}^{\delta}\right|^{2}=-2 \int_{0}^{t}\left\langle X_{s}^{\varepsilon}-X_{s}^{\delta}, \nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)-\nabla \varphi_{\delta}\left(X_{s}^{\delta}\right)\right\rangle d s+\int_{0}^{t}\left|\sigma\left(s, X_{s}^{\varepsilon}\right)-\sigma\left(s, X_{s}^{\delta}\right)\right|^{2} d s \\
& \quad+2 \int_{0}^{t}\left\langle X_{t}^{\varepsilon}-X_{t}^{\delta}, b\left(s, X_{s}^{\varepsilon}\right)-b\left(s, X_{s}^{\delta}\right)\right\rangle d s+2 \int_{0}^{t}\left\langle X_{t}^{\varepsilon}-X_{t}^{\delta},\left[\sigma\left(s, X_{s}^{\varepsilon}\right)-\sigma\left(s, X_{s}^{\delta}\right)\right] d W_{s}\right\rangle \\
& +2 \int_{0}^{t} \int_{\mathbb{R}^{d}}\left\langle X_{s-}^{\varepsilon}-X_{s-}^{\delta}, \gamma\left(s, X_{s-}^{\varepsilon}, z\right)-\gamma\left(s, X_{s-}^{\delta}, z\right)\right\rangle d \tilde{N}_{s}(d z) \\
& +\int_{0}^{t} \int_{\mathbb{R}^{d}}\left|\gamma\left(s, X_{s-}^{\varepsilon}, z\right)-\gamma\left(s, X_{s-}^{\delta}, z\right)\right|^{2} d N_{s}(d z) .
\end{aligned}
$$

Since (we can suppose that $\varphi(x) \geq \varphi(0)=0, \forall x \in \mathbb{R}^{n}$ and $0 \in \operatorname{int}(\operatorname{Dom} \varphi)$).

$$
\left\langle x-y, \nabla \varphi_{\varepsilon}(x)-\nabla \varphi_{\delta}(y)\right\rangle \geq-(\varepsilon+\delta)\left\langle\nabla \varphi_{\varepsilon}(x), \nabla \varphi_{\delta}(y)\right\rangle
$$

we get

$$
\begin{aligned}
\mathbb{E} \sup _{s \in[0, t]}\left|X_{s}^{\varepsilon}-X_{s}^{\delta}\right|^{2} \leq 4(\varepsilon+\delta) \mathbb{E} \int_{0}^{t}\left\langle\nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right), \nabla \varphi_{\delta}\left(X_{s}^{\delta}\right)\right\rangle d s & \\
& +C \int_{0}^{t} \mathbb{E} \sup _{r \in[0, s]}\left|X_{r}^{\varepsilon}-X_{r}^{\delta}\right|^{2} d s .
\end{aligned}
$$

It remains to estimate the term $\mathbb{E} \sup _{t \in[0, T]}\left|\nabla \varphi_{\varepsilon}\left(X_{t}^{\varepsilon}\right)\right|^{2}$:

$$
\begin{aligned}
& \varphi_{\varepsilon}^{2}\left(X_{t}^{\varepsilon}\right)+2 \int_{0}^{t} \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\left|\nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\right|^{2} d s \leq \varphi_{\varepsilon}^{2}\left(x_{0}\right)+2 \int_{0}^{t} \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\left\langle\nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right), b\left(s, X_{s}^{\varepsilon}\right)\right\rangle d s \\
& +2 \int_{0}^{t} \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\left\langle\nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right), \sigma\left(s, X_{s}^{\varepsilon}\right) d W_{s}\right\rangle \\
& +\int_{0}^{t}\left|\nabla \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\right|^{2}\left|\sigma\left(s, X_{s}^{\varepsilon}\right)\right|^{2} d s+\frac{1}{\varepsilon} \int_{0}^{t} \varphi_{\varepsilon}\left(X_{s}^{\varepsilon}\right)\left|\sigma\left(s, X_{s}^{\varepsilon}\right)\right|^{2} d s \\
& +\int_{0}^{t} \int_{\mathbb{R}^{d}} \varphi_{\varepsilon}^{2}\left(X_{s--}^{\varepsilon}+\gamma\left(s, X_{s-}^{\varepsilon}, z\right)\right)-\varphi_{\varepsilon}^{2}\left(X_{s-}^{\varepsilon}\right)-2 \varphi_{\varepsilon}\left(X_{s-}^{\varepsilon}\right)\left\langle\nabla \varphi_{\varepsilon}\left(X_{s-}^{\varepsilon}\right), \gamma\left(s, X_{s-}^{\varepsilon}, z\right)\right\rangle d N_{s}(d z) \\
& +2 \int_{0}^{t} \int_{\mathbb{R}^{d}} \varphi_{\varepsilon}\left(X_{s-}^{\varepsilon}\right)\left\langle\nabla \varphi_{\varepsilon}\left(X_{s-}^{\varepsilon}\right), \gamma\left(s, X_{s-}^{\varepsilon}, z\right)\right\rangle d \tilde{N}_{s}(d z)
\end{aligned}
$$

This gives
$\mathbb{E} \sup _{t \in[0, T]} \varphi_{\varepsilon}^{2}\left(X_{t}^{\varepsilon}\right) \leq 2 \varphi^{2}\left(x_{0}\right)+\frac{C}{\varepsilon} \mathbb{E} \int_{0}^{T}\left(1+\left|X_{s}^{\varepsilon}\right|^{2+\alpha}\right) d s+\frac{C}{\varepsilon^{3 / 2}} \mathbb{E} \int_{0}^{T}\left(1+\left|X_{s}^{\varepsilon}\right|^{4}\right) d s$

$$
+\frac{C}{\varepsilon^{\frac{4+\beta}{4-\beta}}} \mathbb{E} \int_{0}^{T}\left(1+\left|X_{s}^{\varepsilon}\right|^{\frac{4(2+\alpha)}{4-\beta}}\right) d s .
$$

Finally, we obtain

$$
\mathbb{E} \sup _{t \in[0, T]}\left|X_{t}^{\varepsilon}-X_{t}^{\delta}\right|^{2} \leq C \varepsilon^{\frac{4-3 \beta}{(4-\beta)}}\left(\mathbb{E}\left\|K^{\delta}\right\|^{2}\right)^{1 / 2}+C \delta^{\frac{4-3 \beta}{4(4-\beta)}}\left(\mathbb{E}\left\|K^{\varepsilon}\right\|^{2}\right)^{1 / 2},
$$

from which we conclude the existence of (X, K) as the limit of $\left(X^{\varepsilon}, K^{\varepsilon}\right)$ in $L_{\mathrm{ad}}^{2}\left(\Omega ; D\left([0, T] ; \mathbb{R}^{n}\right)\right) \times L_{\mathrm{ad}}^{2}\left(\Omega ; C\left([0, T] ; \mathbb{R}^{n}\right)\right)$.
It remains only to verify that (X, K) is a solution of equation (SVI), which is done by passing to the limit in the approximating equation and in relation

$$
\int_{0}^{T}\left\langle Y_{r}-X_{r}^{\varepsilon}, d K_{r}^{\varepsilon}\right\rangle+\int_{0}^{T} \varphi_{\varepsilon}\left(X_{r}^{\varepsilon}\right) d r \leq \int_{0}^{T} \varphi_{\varepsilon}\left(Y_{r}\right) d r, \forall Y \in L_{\mathrm{ad}}^{0}\left(\Omega ; D\left([0, T] ; \mathbb{R}^{n}\right)\right) .
$$

Weak Solutions of SVIs

Tightness

The coefficients b, σ and $\gamma(\cdot, z)$ are only continuous, satisfying the growth condition:
(H4) $|b(x)|+|\sigma(x)|+\|\gamma(x, \cdot)\|_{L^{p}(v)} \leq c(1+|x|)$ for $p \in\left\{2, p_{0}\right\}$ with $p_{0} \geq 4$.

Theorem

Let I be an arbitrary set of indexes. For each $i \in I$, suppose that $\left(\Omega^{i}, \mathcal{F}^{i}, P^{i}, \mathbb{F}^{i}, W^{i}, N^{i}, X^{i}, K^{i}\right)$ is a weak solution of the equation

$$
d X_{t}^{i}+\partial \varphi\left(X_{t}^{i}\right) d t \ni b^{i}\left(X_{t}^{i}\right) d t+\sigma^{i}\left(X_{t}^{i}\right) d W_{t}^{i}+\int_{\mathbb{R}^{d}} \gamma^{i}\left(X_{t-}^{i}, z\right) d \tilde{N}_{t}^{i}(d z), t \in[0, T]
$$

where b^{i}, σ^{i} and γ^{i} satisfy $(H 4)$ uniformly and $\sup _{i \in I} \mathbb{E}^{i}\left|X_{0}^{i}\right|^{2}<+\infty$. Then $\left(X^{i}, K^{i}\right)_{i \in I}$ is tight in $D\left([0, T] ; \mathbb{R}^{n}\right) \times C\left([0, T] ; \mathbb{R}^{n}\right)$.

Martingale problem

Notations:

- $\mathbf{D}:=D\left([0, T] ; \mathbb{R}^{n}\right) ; \mathbf{C}:=C\left([0, T] ; \mathbb{R}^{n}\right)$;

Martingale problem

Notations:

- $\mathbf{D}:=D\left([0, T] ; \mathbb{R}^{n}\right) ; \mathbf{C}:=C\left([0, T] ; \mathbb{R}^{n}\right)$;
- $\mathbf{C}_{B V}:=C\left([0, T] ; \mathbb{R}^{n}\right) \cap B V_{0}\left([0, T] ; \mathbb{R}^{n}\right)$;

Martingale problem

Notations:

- D $:=D\left([0, T] ; \mathbb{R}^{n}\right) ; \mathbf{C}:=C\left([0, T] ; \mathbb{R}^{n}\right)$;
- $\mathbf{C}_{B V}:=C\left([0, T] ; \mathbb{R}^{n}\right) \cap B V_{0}\left([0, T] ; \mathbb{R}^{n}\right)$;
- $\bar{\Omega}:=\mathbf{D} \times \mathbf{C}:$ the canonical space; $\overline{\mathcal{F}}:=\mathcal{B}(\bar{\Omega})$;

Martingale problem

Notations:

- $\mathbf{D}:=D\left([0, T] ; \mathbb{R}^{n}\right) ; \mathbf{C}:=C\left([0, T] ; \mathbb{R}^{n}\right)$;
- $\mathbf{C}_{B V}:=C\left([0, T] ; \mathbb{R}^{n}\right) \cap B V_{0}\left([0, T] ; \mathbb{R}^{n}\right)$;
- $\bar{\Omega}:=\mathbf{D} \times \mathbf{C}$: the canonical space; $\overline{\mathcal{F}}:=\mathcal{B}(\bar{\Omega})$;
- $\overline{\mathbb{F}}:=\left\{\overline{\mathcal{F}}_{t}\right\}_{t \geq 0}$: the canonical filtration on $\bar{\Omega}$;

Martingale problem

Notations:

- D $:=D\left([0, T] ; \mathbb{R}^{n}\right) ; \mathbf{C}:=C\left([0, T] ; \mathbb{R}^{n}\right)$;
- $\mathrm{C}_{B V}:=C\left([0, T] ; \mathbb{R}^{n}\right) \cap B V_{0}\left([0, T] ; \mathbb{R}^{n}\right)$;
- $\bar{\Omega}:=\mathbf{D} \times \mathbf{C}$: the canonical space; $\overline{\mathcal{F}}:=\mathcal{B}(\bar{\Omega})$;
- $\overline{\mathbb{F}}:=\left\{\overline{\mathcal{F}}_{t}\right\}_{t \geq 0}$: the canonical filtration on $\bar{\Omega}$;
- $\bar{\Omega}_{0}$ is the set of $(x, \eta) \in \mathbf{D} \times \mathbf{C}_{B V}$ such that

$$
\int_{0}^{T}\langle y(t)-x(t), d \eta(t)\rangle+\int_{0}^{T} \varphi(x(t)) d t \leq \int_{0}^{T} \varphi(y(t)) d t, \forall y \in \mathbf{D}
$$

Martingale problem

Notations:

- $\mathbf{D}:=D\left([0, T] ; \mathbb{R}^{n}\right) ; \mathbf{C}:=C\left([0, T] ; \mathbb{R}^{n}\right)$;
- $\mathbf{C}_{B V}:=C\left([0, T] ; \mathbb{R}^{n}\right) \cap B V_{0}\left([0, T] ; \mathbb{R}^{n}\right)$;
- $\bar{\Omega}:=\mathbf{D} \times \mathbf{C}:$ the canonical space; $\overline{\mathcal{F}}:=\mathcal{B}(\bar{\Omega})$;
- $\overline{\mathbb{F}}:=\left\{\overline{\mathcal{F}}_{t}\right\}_{t \geq 0}$: the canonical filtration on $\bar{\Omega}$;
- $\bar{\Omega}_{0}$ is the set of $(x, \eta) \in \mathbf{D} \times \mathbf{C}_{B V}$ such that

$$
\int_{0}^{T}\langle y(t)-x(t), d \eta(t)\rangle+\int_{0}^{T} \varphi(x(t)) d t \leq \int_{0}^{T} \varphi(y(t)) d t, \forall y \in \mathbf{D}
$$

- $\bar{\Omega}_{a}:=\left\{(x, \eta) \in \bar{\Omega}_{0} \mid\|\eta\|_{B V} \leq a\right\}$.

Martingale problem

Notations:

- D $:=D\left([0, T] ; \mathbb{R}^{n}\right) ; \mathbf{C}:=C\left([0, T] ; \mathbb{R}^{n}\right)$;
- $\mathrm{C}_{B V}:=C\left([0, T] ; \mathbb{R}^{n}\right) \cap B V_{0}\left([0, T] ; \mathbb{R}^{n}\right)$;
- $\bar{\Omega}:=\mathbf{D} \times \mathbf{C}:$ the canonical space; $\overline{\mathcal{F}}:=\mathcal{B}(\bar{\Omega})$;
- $\overline{\mathbb{F}}:=\left\{\overline{\mathcal{F}}_{t}\right\}_{t \geq 0}:$ the canonical filtration on $\bar{\Omega}$;
- $\bar{\Omega}_{0}$ is the set of $(x, \eta) \in \mathbf{D} \times \mathbf{C}_{B V}$ such that

$$
\int_{0}^{T}\langle y(t)-x(t), d \eta(t)\rangle+\int_{0}^{T} \varphi(x(t)) d t \leq \int_{0}^{T} \varphi(y(t)) d t, \forall y \in \mathbf{D}
$$

- $\bar{\Omega}_{a}:=\left\{(x, \eta) \in \bar{\Omega}_{0} \mid\|\eta\|_{B V} \leq a\right\}$.

As a consequence of Helly-Bray theorem, $\bar{\Omega}_{a}$ is closed.

Martingale problem

Let \bar{X} and \bar{K} be the canonical processes on $\bar{\Omega}$:

$$
\bar{X}_{t}(\mathbf{x}, \boldsymbol{\eta}):=\mathbf{x}(t), \bar{K}_{t}(\mathbf{x}, \boldsymbol{\eta}):=\boldsymbol{\eta}(t) .
$$

Let \mathcal{L} be the integro-differential operator defined by

$$
\begin{aligned}
\mathcal{L} f(x):=\frac{1}{2} \operatorname{tr} \sigma & \sigma^{*}(x) D^{2} f(x)+\langle b(x), D f(x)\rangle \\
& \quad+\int_{\mathbb{R}^{d}}[f(x+\gamma(x, z))-f(x)-\langle D f(x), \gamma(x, z)\rangle] v(d z) .
\end{aligned}
$$

Martingale problem

Let \bar{X} and \bar{K} be the canonical processes on $\bar{\Omega}$:

$$
\bar{X}_{t}(\mathbf{x}, \boldsymbol{\eta}):=\mathbf{x}(t), \bar{K}_{t}(\mathbf{x}, \boldsymbol{\eta}):=\boldsymbol{\eta}(t) .
$$

Let \mathcal{L} be the integro-differential operator defined by

$$
\begin{aligned}
& \mathcal{L} f(x):=\frac{1}{2} \operatorname{tr} \sigma \sigma^{*}(x) D^{2} f(x)+\langle b(x), D f(x)\rangle \\
& \quad+\int_{\mathbb{R}^{d}}[f(x+\gamma(x, z))-f(x)-\langle D f(x), \gamma(x, z)\rangle] v(d z) .
\end{aligned}
$$

We say that a probability measure \mathbf{P} on $\bar{\Omega}$ is a solution of the martingale problem for (SVI) if

Martingale problem

Let \bar{X} and \bar{K} be the canonical processes on $\bar{\Omega}$:

$$
\bar{X}_{t}(\mathbf{x}, \boldsymbol{\eta}):=\mathbf{x}(t), \bar{K}_{t}(\mathbf{x}, \boldsymbol{\eta}):=\boldsymbol{\eta}(t) .
$$

Let \mathcal{L} be the integro-differential operator defined by

$$
\begin{aligned}
\mathcal{L} f(x):= & \frac{1}{2} \operatorname{tr} \sigma \sigma^{*}(x) D^{2} f(x)+\langle b(x), D f(x)\rangle \\
& \quad+\int_{\mathbb{R}^{d}}[f(x+\gamma(x, z))-f(x)-\langle D f(x), \gamma(x, z)\rangle] v(d z) .
\end{aligned}
$$

We say that a probability measure \mathbf{P} on $\bar{\Omega}$ is a solution of the martingale problem for (SVI) if
(1) $\mathbf{P}\left(\bar{\Omega}_{0}\right)=1$;

Martingale problem

Let \bar{X} and \bar{K} be the canonical processes on $\bar{\Omega}$:

$$
\bar{X}_{t}(\mathbf{x}, \boldsymbol{\eta}):=\mathbf{x}(t), \bar{K}_{t}(\mathbf{x}, \boldsymbol{\eta}):=\boldsymbol{\eta}(t) .
$$

Let \mathcal{L} be the integro-differential operator defined by

$$
\begin{aligned}
\mathcal{L} f(x):=\frac{1}{2} & \operatorname{tr} \sigma \sigma^{*}(x) D^{2} f(x)+\langle b(x), D f(x)\rangle \\
& \quad+\int_{\mathbb{R}^{d}}[f(x+\gamma(x, z))-f(x)-\langle D f(x), \gamma(x, z)\rangle] v(d z) .
\end{aligned}
$$

We say that a probability measure \mathbf{P} on $\bar{\Omega}$ is a solution of the martingale problem for (SVI) if
(1) $\mathbf{P}\left(\bar{\Omega}_{0}\right)=1$;
(2) for each $f \in C_{c}^{2}\left(\mathbb{R}^{d}\right)$, the process

$$
\bar{M}_{t}^{f}:=f\left(\bar{X}_{t}\right)-f\left(\bar{X}_{0}\right)-\int_{0}^{t} \mathcal{L} f\left(\bar{X}_{s}\right) d s+\int_{0}^{t}\left\langle D f\left(\bar{X}_{s}\right), d \bar{K}_{s}\right\rangle, t \in[0, T],
$$

is a \mathbf{P}-martingale.

Martingale problem

The two formulations are equivalent:

- If $(\Omega, \mathcal{F}, P, \mathbb{F}, W, N, X, K)$ is a weak solution of (SVI), then $P \circ(X, K)^{-1}$ solves the martingale problem:

Martingale problem

The two formulations are equivalent:

- If $(\Omega, \mathcal{F}, P, \mathbb{F}, W, N, X, K)$ is a weak solution of (SVI), then $P \circ(X, K)^{-1}$ solves the martingale problem:
application of Itô's formula for $f\left(X_{t}\right)$.

Martingale problem

The two formulations are equivalent:

- If $(\Omega, \mathcal{F}, P, \mathbb{F}, W, N, X, K)$ is a weak solution of (SVI), then $P \circ(X, K)^{-1}$ solves the martingale problem: application of Itô's formula for $f\left(X_{t}\right)$.
- Conversely, if \mathbf{P} is a solution of the martingale problem, then there exists a weak solution with distribution \mathbf{P} (possibly on an extension of $(\bar{\Omega}, \overline{\mathcal{F}}, \mathbf{P} ; \overline{\mathbb{F}})$):

Martingale problem

The two formulations are equivalent:

- If $(\Omega, \mathcal{F}, P, \mathbb{F}, W, N, X, K)$ is a weak solution of (SVI), then $P \circ(X, K)^{-1}$ solves the martingale problem: application of Itô's formula for $f\left(X_{t}\right)$.
- Conversely, if \mathbf{P} is a solution of the martingale problem, then there exists a weak solution with distribution \mathbf{P} (possibly on an extension of $(\bar{\Omega}, \overline{\mathcal{F}}, \mathbf{P} ; \overline{\mathbb{F}})$): [Lepeletier, Marchal, 1976], [Ikeda, Watanabe, 1981]

Existence

In addition, we impose the conditions
(H5) $\left|(\partial \varphi)_{0}(x)\right| \leq L\left(1+|x|^{p_{0}-2}\right), \forall x \in \overline{\operatorname{Dom} \varphi}$ and
$(\mathrm{H} 6) x+\gamma(x, z) \in \overline{\operatorname{Dom} \varphi}, \forall x \in \overline{\operatorname{Dom} \varphi}$.

Theorem

Let μ be a probability measure on $\overline{\operatorname{Dom} \varphi}$ such that $\int|x|^{2} \mu(d x)<+\infty$. If the coefficients b, σ and γ satisfy conditions (H4)-(H5), then there exists a weak solution of equation (SVI) with μ as initial distribution.

Existence

In addition, we impose the conditions
(H5) $\left|(\partial \varphi)_{0}(x)\right| \leq L\left(1+|x|^{p_{0}-2}\right), \forall x \in \overline{\operatorname{Dom} \varphi}$ and
$(\mathrm{H} 6) x+\gamma(x, z) \in \overline{\operatorname{Dom} \varphi}, \forall x \in \overline{\operatorname{Dom} \varphi}$.

Theorem

Let μ be a probability measure on $\overline{\operatorname{Dom} \varphi}$ such that $\int|x|^{2} \mu(d x)<+\infty$. If the coefficients b, σ and γ satisfy conditions (H4)-(H5), then there exists a weak solution of equation (SVI) with μ as initial distribution.

Sketch of the proof. Several steps:

Existence

In addition, we impose the conditions
(H5) $\left|(\partial \varphi)_{0}(x)\right| \leq L\left(1+|x|^{p_{0}-2}\right), \forall x \in \overline{\operatorname{Dom} \varphi}$ and
$(\mathrm{H} 6) x+\gamma(x, z) \in \overline{\operatorname{Dom} \varphi}, \forall x \in \overline{\operatorname{Dom} \varphi}$.

Theorem

Let μ be a probability measure on $\overline{\operatorname{Dom} \varphi}$ such that $\int|x|^{2} \mu(d x)<+\infty$. If the coefficients b, σ and γ satisfy conditions (H4)-(H5), then there exists a weak solution of equation (SVI) with μ as initial distribution.

Sketch of the proof. Several steps:
Smoothing: the coefficients b, σ and γ are approximated by Lipschitz functions b_{n}, σ_{n} and γ_{n}. We consider the corresponding SVI with strong solution $\left(X^{n}, K^{n}\right)$. Then $\mathbf{P}_{n}:=P \circ\left(X^{n}, K^{n}\right)^{-1}$ solves the associated martingale problem. By the tightness result, $\left\{\mathbf{P}_{n}\right\}_{n \geq 1}$ is a tight family of distributions on $\bar{\Omega}$. By Prohorov's theorem, we can suppose that \mathbf{P}_{n} converges weakly to some probability measure \mathbf{P} on $\bar{\Omega}$.

Existence

Passing to the limit: Let, for $f \in C_{c}^{2}\left(\mathbb{R}^{d}\right)$

$$
\bar{M}_{t}^{f, n}:=f\left(\bar{X}_{t}\right)-f\left(\bar{X}_{0}\right)-\int_{0}^{t} \mathcal{L}^{n} f\left(\bar{X}_{s}\right) d s+\int_{0}^{t}\left\langle D f\left(\bar{X}_{s}\right), d \bar{K}_{s}\right\rangle, t \in[0, T]
$$

with

$$
\begin{aligned}
\mathcal{L}^{n} f(x):=\frac{1}{2} & \operatorname{tr} \sigma_{n} \sigma_{n}^{*}(x) D^{2} f(x)+\left\langle b_{n}(x), D f(x)\right\rangle \\
& +\int_{\mathbb{R}^{d}}\left[f\left(x+\gamma_{n}(x, z)\right)-f(x)-\left\langle D f(x), \gamma_{n}(x, z)\right\rangle\right] v(d z) .
\end{aligned}
$$

Existence

Passing to the limit: Let, for $f \in C_{c}^{2}\left(\mathbb{R}^{d}\right)$

$$
\bar{M}_{t}^{f, n}:=f\left(\bar{X}_{t}\right)-f\left(\bar{X}_{0}\right)-\int_{0}^{t} \mathcal{L}^{n} f\left(\bar{X}_{s}\right) d s+\int_{0}^{t}\left\langle D f\left(\bar{X}_{s}\right), d \bar{K}_{s}\right\rangle, t \in[0, T]
$$

with

$$
\begin{aligned}
\mathcal{L}^{n} f(x):=\frac{1}{2} & \operatorname{tr} \sigma_{n} \sigma_{n}^{*}(x) D^{2} f(x)+\left\langle b_{n}(x), D f(x)\right\rangle \\
& +\int_{\mathbb{R}^{d}}\left[f\left(x+\gamma_{n}(x, z)\right)-f(x)-\left\langle D f(x), \gamma_{n}(x, z)\right\rangle\right] v(d z) .
\end{aligned}
$$

Then:

- $\mathbf{P}_{n}\left(\bar{\Omega}_{0}\right)=1$;
- $\mathbf{P}_{n} \circ \bar{X}_{0}^{-1}=\mu$;
- $\mathbb{E}_{\mathbf{P}_{n}}\left(\bar{M}_{t}^{f, n}-\bar{M}_{s}^{f, n}\right) \Psi=0, \forall f \in C^{2}\left(\mathbb{R}^{n}\right), \forall \Psi \in C_{b}\left(\bar{\Omega}_{0}\right) \cap L^{0}\left(\hat{\mathcal{F}}_{s}\right)$, since $\bar{M}^{f, n}$ is a \mathbf{P}_{n}-martingale.

Existence

Passing to the limit: Let, for $f \in C_{c}^{2}\left(\mathbb{R}^{d}\right)$

$$
\bar{M}_{t}^{f, n}:=f\left(\bar{X}_{t}\right)-f\left(\bar{X}_{0}\right)-\int_{0}^{t} \mathcal{L}^{n} f\left(\bar{X}_{s}\right) d s+\int_{0}^{t}\left\langle D f\left(\bar{X}_{s}\right), d \bar{K}_{s}\right\rangle, t \in[0, T]
$$

with

$$
\begin{aligned}
\mathcal{L}^{n} f(x):=\frac{1}{2} & \operatorname{tr} \sigma_{n} \sigma_{n}^{*}(x) D^{2} f(x)+\left\langle b_{n}(x), D f(x)\right\rangle \\
& +\int_{\mathbb{R}^{d}}\left[f\left(x+\gamma_{n}(x, z)\right)-f(x)-\left\langle D f(x), \gamma_{n}(x, z)\right\rangle\right] v(d z) .
\end{aligned}
$$

Then:

- $\mathbf{P}_{n}\left(\bar{\Omega}_{0}\right)=1$;
- $\mathbf{P}_{n} \circ \bar{X}_{0}^{-1}=\mu$;
- $\mathbb{E}_{\mathbf{P}_{n}}\left(\bar{M}_{t}^{f, n}-\bar{M}_{s}^{f, n}\right) \Psi=0, \forall f \in C^{2}\left(\mathbb{R}^{n}\right), \forall \Psi \in C_{b}\left(\bar{\Omega}_{0}\right) \cap L^{0}\left(\hat{\mathcal{F}}_{s}\right)$, since $\bar{M}^{f, n}$ is a \mathbf{P}_{n}-martingale.
We can pass to the limit in those relations, using the uniform estimates on (X^{n}, K^{n}) and the approximation of b, σ and γ by b_{n}, σ_{n}, respectively γ_{n}. We obtain that \mathbf{P} is a solution of the martingale problem and hence there exists a weak solution to equation (SVI).

References

國 I. Asiminoaiei, A. Rășcanu, Approximation and simulation of stochastic variational inequalities - splitting up method. Numer. Funct. Anal. Optim. 18 (3-4) (1997), 251-282.
E. Cépa, D. Lépingle, Diffusing particles with electrostatic repulsion, Probab. Theory Relat. Fields 107, 429-449 (1997)
围 N. El Karoui, D. Hüủ Nguyen, M. Jeanblanc-Picqué, Compactification methods in the control of degenerate diffusions: existence of an optimal control. Stochastics 20 (3) (1987), 169-219.
I. Gihman, A.V. Skorohod, 1972, Stochastic Differential Equations (Berlin: Springer-Verlag).
Q J. Jacod, 1979, Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Math., 714 (Berlin: Springer-Verlag).
N. Ikeda, S. Watanabe, 1981, Stochastic differential equations and diffusion processes (North-Holland Mathematical Library, Vol. 24)

References

嗇 J．－P．Lepeltier，B．Marchal，Problèmes de Martingales et EDS associées à un opérateur intégro－différentiel，Ann．Inst．Henri Poincaré，vol．XII，no． 1 （1976），43－103．
围 J．－L．Menaldi，M．Robin，Reflected Diffusion Processes with Jumps，Ann． Probab．Volume 13，Number 2 （1985），319－341．
囯 D．W．Stroock，S．R．S．Varadhan，Diffusion processes with continuous coefficients．I\＆II．Comm．Pure Appl．Math． 22 （1969），345－400 and 479－530．
囦 A．Zălinescu，Weak Solutions and Optimal Control for Multivalued Stochastic Differential Equations，Nonlinear Differ．Equ．Appl．（2008），Vol．15，No．4－5， 511－533．
W．A．Zheng，Tightness results for laws of diffusion processes application to stochastic mechanics．Ann．Inst．H．Poincaré，Probab．Stat． 21 （2）（1985）， 103－124．

Thank you for your attention!

