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Introduction

Introduction

We consider the following equation

dXe + 99 (Xe) (dt) > b(Xe) dt + 0 (Xe) th—i—/]Rd'y(Xt_,z) i, (dz) |

where
@ J¢ is the subdifferential of proper, |.s.c., convex function ¢;

@ W is a Brownian motion;
o N is the compensated measure of a homogeneous Poisson random measure

with intensity v;
e W and N are independent.
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Subdifferentials
Let ¢ : R" — IR be a proper, |.s.c., convex function with int (Dom ¢) # @.
The subdifferential of ¢ is defined by

99 (x) i= {x €R"| (x',y —x) +¢(x) < p(y), ¥y € R"}.

The operator d¢ is maximal monotone.
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Subdifferentials

Let ¢ : R" — IR be a proper, |.s.c., convex function with int (Dom ¢) # @.
The subdifferential of ¢ is defined by

99 (x) = {x* € R" | (x",y —x) + 9 (x) < 9 (y), ¥y € R},

The operator d¢ is maximal monotone.
Examples:

° ¢(x):=|x], x e R™

=, x # 0;
99 (x) = { /Lgx‘(o- 1), x=0.
o 9p=lg:xr { (-I)-vOO, i ;% the subdifferential is given by
{0}, x € 0;
dlg(x) =4 Ng(x), x€bdO;
Q, x & 0.

This corresponds to the reflected jump-diffusions case:
[Menaldi, Robin, 1985]: x + v (x,z) € O, ¥x € O.



Introduction

Diffusing particles with electrostatic repulsion

[Cépa, Lepingle, 1997]: continuous case

Let ¢ : RN — R be the proper, |.s.c., convex function defined by

q)(X) - { —C21§i<j§N|n (X(J) —X(i)) , X(l) < X(2) < e K X(N)-

+o0 otherwise.

Then Dom ¢ = {x eRN | x(D < x(? <... < x(N)} and, for x € Dom ¢

8¢(X>=<c u)1<)>
1N, j#£ X T X cien
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Stochastic variational inequalities

Definition of a solution
We consider the following equation
(SVI) dXt + a(P (Xt) dt> b (Xt) dt + U(Xt) th + /]Rd Y (th, Z) dNt (dZ) ,

where b: R" — R”, ¢ : R" — R™9", 7 :R" x RY — R" are measurable functions.
D ([0, T];R"): the class of R"-valued, cadlag functions on [0, T].
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Stochastic variational inequalities

Definition of a solution

We consider the following equation
(SVI) dXt + a(P (Xt) dt> b (Xt) dt + U(Xt) th + /IRd Y (th, Z) dNt (dZ) ,

where b:R" = R", o:R" — R™, 7 :R" x RY — R" are measurable functions.
D ([0, T]; R"): the class of R"-valued, cadlag functions on [0, T].
We say that (x K) e L2 (Q; D ([0, T];R™)) x L9, (Q; € ([0, T];R™)) is a (strong)
solution of (SVI) if:
° ¢ (X)L ([o,T));

@ K has bounded variation;
© Xe+ K= [y b(Xs)ds+ [0 (Xs) dWs + [ [ga ¥ (Xs—, 2) ds (dz);

o [ (Ve Xe,dKe) + [ 9 (Xe)dt < [ @ (Ye)dt, VY € L2 (Q; D ([0, T]; R")).

[A5|m|noa|e|, Rascanu, 1997]: existence and uniqueness in case v = 0.



Assumptions

We suppose that the coefficients satisfy the following assumptions:

(H1) [b(x) =b(y)[+|o(x) —o ()| < Lix—yl;
(H2) 7/(0.) € LP (v) and 17 (x,2) = 7 (7, oy < LIx— ] for p € 2.4}
(H3) ¢ (x+7(x,2)) <@ (x)+ 9 (x,7(x,2)), Vx € Dom ¢, where

(fo¥ <x,v<x,z>>2v<dz>)1/2 <L(1+[x%) (1419 ()

for some & > 0 and § < %. Here, (09), (x) := IOy x) (0).
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Uniqueness

Theorem

Under assumptions (H1)-(H2), equation (SVI) has at most one solution starting
from xp € Dom ¢.

For the proof, we consider two solutions (X, K) and (X, K) and apply Itd's
formula to | X; — Xt}zz

Xt — Xe|* + V/Ot (Xs = Xs,d(Ks — Ks)) = 2/(: (Xs — Xs,b(Xs) — b(Xs)) ds
+ Z/Ot (Xs = Xs, [0 (Xs) — 0(Xs)] dWs) + /ot o (Xs) — 0(5(5)‘2 ds
+2/Ot /]Rd {<X5— —Xs_,’Y(Xs—,Z) - 7(X5—,Z)> + |’Y(Xs—,z) — ’Y(XS_,Z)F} d N, (dz)

+/(;t/ﬂ;d <Xs—*5(57:’)/()(5—,2)*’)/()N(s,,z)>y(dz) ds.
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Existence

Theorem

Under assumptions (H1)-(H3), equation (SVI) has a unique solution starting from
xp € Dom ¢.

The proof uses the penalization method. We consider Yosida's regularization of ¢
. 2
(ps(x)::mf{%b(—y\ —I—go(y)\yG]R”},s>0,

which is a C!, convex function on R”, with V@, a Lipschitz function with
Lipschitz constant equal to 1/e. Moreover, by (H3),

P x+7(Ex,2) < o (x)+ [V, (O] 17 (8 dex.2) — 7 (£%,2)
+2le |y (t, Jex, z) — (1.“,x,z)|2 + P (dex, v (t, Jex, 2))

where Jex 1= x — eV @, (x) satisfies

1 €
9. () = o2 [ex = x* 4+ 9 (Jex) = 51V, () + @ (Jex).
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Approximation
We consider the jump-diffusion X¢ given by

dXE + Vg, (XE) dt = b(XE) dt + o (XE) dWH—/d'y(Xf_,z) dfl, (dz) .
R

Existence and uniqueness:

@ [Gihman, Skorohod, 1972]
@ [Jacod, 1979]

We will show that X® and K} := fot Vo, (X§) ds converge to some X and K.

First, we obtain uniform boundedness for X¢ and K¢:

T 2
E sup |X{|*+E (/ P, (X$) ds) < C (1 + \x0|4) ;
t€[0,T] 0

2
E | K3y (0,71 < C(1+\x0|4>.



Strong solutions Existence

Cauchy estimates

ds

-t R -t 2
X=X = =2 [ (XE = X, Vg, (X Vs (X)) ds + [ |or (s, XE) — (s, X0)
0 0
t ot
+2/ <Xffo,b(s,X§)fb(s,Xf)>ds+2/ <X§—X§5, [a(s,xg)fa(s,xf)] dW5>
0 0
t
+2/ / (Xeo = Xe 7 (5. X 2) = (s, X 2) ) s (d2)

e

Since (we can suppose that ¢ (x) > ¢ (0) =0, Vx € R" and 0 € int (Dom ¢)).
X =y, Vo (x) = Vo, (y)) 2 = (e +0) (Vo (x) . Vs (¥))

L 2) — (s, X, )‘ dN; (dz) .

we get

E sup |XE—XS|> <4(e+6) IE/ Vgat( $) Vg (X )>ds
s€0,t]

t
+C [ E sup |XE— X’ |%ds.
0 refos]
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It remains to estimate the term Esup;c(g 77 [V, (X§)|2:

t t
GROXE) 2 [0 (XE) [V (X0)* ds < 92(0) +2 | 9.X) (Ve(X0), b (5, X5)) s
t
+2 [ (X0 (Vg (X0), 0 (5, X) dWe)
t €)|2 €)|2 Lt € €)|2
+ [ Ve X 1o (5. X0) P s+ ¢ [ (X9 e (s, X0 ds
t
[ PP 6 XS 2) =2 (X )29, (X ) (T, (X6 ), 7 6, X2, 2)) s ()
t ~
2 [ ] 0N (XE ),y (5, X6 2)) de ()
This gives
2(ye 2 ¢ /T €)2+a ¢ /T g4
E sup g2(X{) <29%(x0) + CE [ (1+1x¢) )ds+€3TIE(O (14 1x¢1*) o

te[0,T]
C T 4(2+a)
+ ﬂIE/ (1+\X§|Tﬂ )ds.
e4p 0




Strong solutions Existence

Finally, we obtain

) N 4-38 1/2 4-38 ) 1/2
E sup |XE—X{2 < cevon (E|KOJ2) 7+ comem (E(k|?)
te[0,T)

from which we conclude the existence of (X, K) as the limit of (X¢, K®) in

L2, (Q; D ([0, T];R™)) x L2, (Q; C ([0, T]; R™)).

It remains only to verify that (X, K) is a solution of equation (SVI), which is done
by passing to the limit in the approximating equation and in relation

T € € r € r 0 . .mn
| o= xzakt) + [ g (xiydr< [ g (Yo dr, WY € L8 (5D (0, TiR").



Weak solutions

Weak Solutions of SVIs

Tightness

The coefficients b, o and 7 (-, z) are only continuous, satisfying the growth
condition:

(H4) [bC)[+ oG]+ {7 (%)l ey < € (L [x]) for p € {2, po} with po > 4.

Theorem

Let | be an arbitrary set of indexes. For each i € I, suppose that
QL F'LPLUF, W N, X', K") is a weak solution of the equation

dX] 4+ 9p(X[)dt > b/ (X])dt + o' (X])dW] + / L V(X 2)dNi (dz), t€ [0, T],
R

where b, o' and «' satisfy (H4) uniformly and sup IE’.|X(’).|2 < +o0. Then
i€l
(X7 K)icy is tight in D([0, T];R") x C([0, T];R").
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Mareingslelproblemapproach
Martingale problem

Notations:

D := D([0, T];R"); C:= C([0, T];R");

Cpy := C([0, T|; R") N BVo([0, T]; R");

Q) := D x C: the canonical space; F := B(Q);
F:= {ﬁt}t>0: the canonical filtration on Q;

Q) is the set of (x,77) € D x Cgy, such that

T T T
L v@=x@.dpe)+ [ o< [ o(y(e)d v eD:

o Q,:={(x,7) € Qo | |nllgy < a}.

As a consequence of Helly-Bray theorem, €, is closed.
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Let X and K be the canonical processes on ):

Xe (x,1) = x(8), Re(x) = 11(2).

Let £ be the integro-differential operator defined by
1
Lf(x):= 5 troo* (x) D (x) + (b(x), Df (x))

+ oo F X F7 (0 2)) = £(x) = (DF (x), 7 (x, 2))] v (dz).
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We say that a probability measure P on Q) is a solution of the martingale problem
for (SVI) if

Q P(Q) =1,
@ for each f € C2(IRY), the process

= f(Xt)ff()_(o)fl/(.)tﬁf()_(s)der/(;t<Df()_<s),dR5>, telo, 7],

is a P-martingale.
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Mareingslelproblemapproach
Martingale problem

The two formulations are equivalent:
o If (O, F,P,F, W, N, X, K) is a weak solution of (SVI), then Po (X, K)_1
solves the martingale problem:
application of 1t8's formula for f (Xt).

o Conversely, if P is a solution of the martingale problem, then there exists a
weak solution with distribution P (possibly on an extension of (Q), F, P;TF) ):

[Lepeletier, Marchal, 1976], [Ikeda, Watanabe, 1981]
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Existence

In addition, we impose the conditions
(H5) |(39)o (x)] < L (1 + |X|P°—2) , Vx € Dom ¢ and
(H6) x4+ v (x,z) € Dom ¢, Vx € Dom ¢.

Theorem

Let y be a probability measure on Dom ¢ such that / Ix2p(dx) < +oo. If the

coefficients b, o and <y satisfy conditions (H4)-(H5), then there exists a weak
solution of equation (SVI) with u as initial distribution.
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Existence

In addition, we impose the conditions
(H5) |(09)y (x)| < L (1 + |X|P°—2) . Vx € Dom ¢ and
(H6) x+ 7 (x,z) € Dom ¢, Vx € Dom ¢.

Theorem

Let y be a probability measure on Dom ¢ such that / Ix2p(dx) < +oo. If the

coefficients b, o and <y satisfy conditions (H4)-(H5), then there exists a weak
solution of equation (SVI) with u as initial distribution.

Sketch of the proof. Several steps:

Smoothing: the coefficients b, o and <y are approximated by Lipschitz functions
bn, 0n and 7,. We consider the corresponding SVI with strong solution (X", K").
Then P, := Po (X", K”)_1 solves the associated martingale problem.

By the tightness result, {P,} -1 is a tight family of distributions on (). By
Prohorov's theorem, we can suppose that P, converges weakly to some
probability measure P on Q).
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Existence
Passing to the limit: Let, for f € C2(RY)
i = f(Xt)—f(Xo)—/()tL”f()_(s)ds+/()t<Df()_<s),df<5>, o, T),
with
LF(x) = %tra,,(rf,(x)sz(x) + (bn(x), DF(x))

+ foa If i H 70 (x,2) = £ (x) = (DF (x), 75 (x, 2))] v (dz) .
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Existence
Passing to the limit: Let, for f € C2(IR9)

MER = F(%0) ~ F(%0) ~ [ £77(%e)ds + [ (DF(%),0Re), ¢ € [0, 7],

with

LF(x) = %tra,,(rj‘,(x)sz(x) + (bn(x), DF(x))
t [f (x+ 75 (x,2)) = (x) = (Df (x) 75 (x,2))] v (dz).
Then:
° P,,(Q_o) =1;
e P,o 071 =

o Ep (Mf" Mf") =0, Vf € C2(R"), V¥ € Cp(Qp) N LO(Fs), since
M7 is a P,-martingale.
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Existence
Passing to the limit: Let, for f € C2(IR9)

MER = F(%0) ~ F(%0) ~ [ £77(%e)ds + [ (DF(%),0Re), ¢ € [0, 7],

with
LF(x) = %tranvf,(x)sz(x) + (bn(x), DF(x))
t [f (x+ 75 (x,2)) = (x) = (Df (x) 75 (x,2))] v (dz).
Then:
e P,(O) =
e P,o _(; —y

o Ep (MI'™ — MIM¥ =0, Vf € C2(R"), V¥ € Cp(Qp) N LO(Fs), since
/\_/If'” is a Pp-martingale.
We can pass to the limit in those relations, using the uniform estimates on
(X", K") and the approximation of b, o and y by by, o, respectively y,. We
obtain that P is a solution of the martingale problem and hence there exists a
weak solution to equation (SVI).
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