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Parabolic obstacle problem

Let D € R? (d > 2) be a bounded domain, Dt = [0, T] x D. We
consider the problem
%—i—Au: —f(,u) —pon{h <u< h},
hy <u<hy, (*)
U(T, ) =% U(t, ')\8D =0, te (07 T)7

where A is a uniformly elliptic operator of the form

0
A= Z (a,J (t,x 8x-)

ij=1
and
o f:Dr xR — R, ¢: D — R - measurable functions satisfying
some conditions (to be specified later on), 1 is a bounded
smooth measure on D7,
@ hi,hy : Dt — R are measurable functions such that h; < hy
ae.
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Parabolic obstacle problem

Problem: solve (x) for

@ measurable barriers hy, hy,

e p € LY(D), f satisfying the monotonicity condition in u (for
instance f(x, u) = —|u|9 u for some g > 1) and mild
integrability conditions,

® 1€ Mgy (Mo - space of all smooth signed measures on Dt
with bounded total variation (for instance u(dt dx) = g dt dx
for some g € LY(Dr)).

Known results for irregular barriers:
e M. Pierre (1979, 1980) - linear case (f = f(x)) with L? data
(i.e. o, f, g € L?).
e T. Klimsiak (2012) - y — f(x, y) satisfies the Lipschitz
condition and the linear growth condition, L? data (i.e.

®, f(’ O)ag € L2)
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Cauchy-Dirichlet problem

Let
fu="rf(,u).

We first consider the problem

du _
{m+Au——fu—,uon(0,T)><D, ()

u(T,)=¢, u(t,")op=0, te(0,T).
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Cauchy-Dirichlet problem

X ={(X, Psx)} - Markov family associated with A.

Proposition

Any i € M{ , admits a unique positive AF A" of X such that for
g.e. (s,x) € D,

T T
E.. / (£, Xe) dAY, = / / e hells o e, )
s s D

for every positive Borel function f : Dt — R.

Here p is the transition density for X (weak fundamental solution
for A).
Ex. If u(dt, dx) = g(t, x) dt dx for some g € L1(D7) then

t
Agt—/ g(0,Xp) do.
s
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Cauchy-Dirichlet problem

Assumptions.
(H1) 1€ Mop(Dr),
(H2) ¢ € LY(D),
(H3) £:]0,T] x D x R — R is a measurable function such that
(a) y — f(t,x,y) is continuous for q.e. (t,x) € Dr.
(b) There exists 1 € R such that
(F(t.x,¥) — F(t,x, ¥ )y — ¥') < ly — ' for every
y,y' € R and a.e. (t,x) € Dr.
(C) f(v 70) € Ll(DT)v
(d) Veso(t,x) = supjyi<c |f(t,x,¥)| € L*(Dr).
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Cauchy-Dirichlet problem - main result

Let
& =inf{t>s: X; ¢ D}.

Theorem (T. Klimsiak, A.R.)

Assume (H1)—(H3). Then there exists a unique renormalized
solution u of (xx). Moreover,

EsNT
U(S,X) = ES,X {1{§5>T}90(XT) + / fu(t,Xt) dt
S

EsNT
+ / dA;ﬁt}
S

for g.e. (s,x) € Dr.

u is an entropy solution of (xx).
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Renormalized solutions

Theorem (Droniou, Porretta & Prignet)
Each measure ;i € My (D7) admits a decomposition of the form

where g € L%(0, T; H3(D)), G = (GY,...,G%) € L?(D1)¢,
f e LY(D7).

Remark. The above decomposition means that

T an
ndp = — <g,a>dt—(G,Vn)Lz+ fndm
DT 0 DT

for every n € W(Dt) (m;y denotes the Lebesgue measure on D) ,
where

M ¢ 120, T: H1(D)).

W= {ne 20, T H(D): 5]
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Renormalized solutions

Definition (Droniou, Porretta & Prignet)

A measurable u: Dt — R is a renormalized solution of (xx) if
(a) f, € L}(D7),

(b) For some decomposition (g, G, f) of p,
u—g € L>®0,T;L%D)), Te(u—g) € L0, T; HY(D)) and

lim / |Vu|dmy =0,
N0 J{n<|u—g|<n+1}

(c) Forany S € W?>°(R) with compact support,
%(S(U —g)) +div(aVuS' (u—g))— S"(u—g)aVu-V(u—g
=-S(u—g)f —div(GS'(u—g))+ GS"(u—g)-V(u—

in the sense of distributions,
d) Ti(u—g)(T) = Tu(v) in L2(D) for all k > 0.
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Parabolic obstacle problem

We say that a pair (u,v) consisting of a measurable function
u: Dt — R and a measure v on Dt is a solution of (x) if

(a) f, € L}Y(D7), v e Mo (D7), b1 < u< hy, my-ace,
(b) For g.e. (s,x) € Dr,

EsNT
u(s,x) = Esx {1{§S>T}<P(XT) +/ fu(t, X¢) dt

EsNT
[ d a0 )
S

i.e. u is a renormalized solution of the problem

%—FAU:—fu—,u—z/on(O,T)x D,
U(T, ) =% U(t, ')|8D =0, te€ (07 T)
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Parabolic obstacle problem

We say that u € FD if the process [s, T] — u(t, X;) is cadlag
under Ps , for gq.e. (s,x) € Dr.

Definition (continued)

(c) For every hi, h € FD such that hy < hj < u < hj < hy,
my-a.e. we have

EsNT
/ (u(t, Xe) — (£, X)) dA; =0, Payeis.
S
and

ENT -
/ (h5_(t, X) — u(t, X0)) AL, =0, Py -as.
S

for q.e. (s,x) € Dt (Here h*_(t, X:) = lims<t st h7(s, Xs)).
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Parabolic obstacle problem

Comments.

@ If hy, hy are quasi-continuous and h1(T,:) < @ < hy(T,"),
m-a.e. then condition (c) says that

/DT(U — hy)dvt = /DT(h2 —u)dv =0.

@ |In the linear case with L2 data condition (c) coincides with the
condition introduced by M. Pierre (1979).
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Parabolic obstacle problem

Additional assumption.

(H4) There exists a renormalized solution v of the problem

% + Av = =)\,
V( T, ) =1, V(ta ')|6D =0, te (07 T)

with some A € Mg (D7) and measurable v satisfying 1 > ¢
such that £, € LY(D1) and h; < v < hy, my-a.e. on Dr.
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Parabolic obstacle problem - main result

Theorem (T. Klimsiak, A.R.)
Assume (HI)—(H4).
(i) There exists a unique solution (u,v) of (x). Moreover,
(a) ue FD and

.
Esx sup |u(t,X:)| < oo, ESVX(/ lu(t, X,)|? dt)9/? < oo
s<t<T s

for g € (0,1),

(b) Txu € L2(0, T; HX(D)) for k > 0, where Tpu = (—k)V u Ak,

(c) ue L9(0, T; Wy 9(D)) for g < 42,

ii) If hy, hy are quasi-continuous and hi(T,-) < o < hy(T,"),
) q ‘2
m-a.e. then u is quasi-continuous.
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Parabolic obstacle problem - main result

Theorem (continued)
(iii) Let up be a renormalized solution of the problem

ot

OUn 4 Ay, = —fu, — i —n(up — h1)™ + n(u, — h2) ™,
Un(T, ) =% Un(t, ')\8D =0, te (07 T)

Then u, — u g.e. on Dt and Vu, — Vu in measure my,

(iv) If hp = 400 then v, — v weakly, where v, = n(u, — h1)~.
Similar statement in case hy = —oo. In the general case more
complicated formulation.

Elliptic equations with measure data
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Sketch of proof (for ¢ = 0)

(i) We prove existence of a unique solution (Y, Z, L) of RBSDE

Y, = /f(Xt,Yt dt+/ dA

/ stdt+/ dMs, P -a.s.

for g.e. (s,x) € Dt and show that L = A" for some v € M .

(ii) Taking t = s and integrating with respect to Ps , we conclude
that u defined by u(s, x) = Ys, Ps«-a.s. satisfies the nonlinear
Fenynman-Kac formula

EsNT EsNT
u(s.x) = { [ fexaes [ d(A?,t+A:,t)}.

(i) We show that f, € L}(Dr).
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Sketch of proof (for ¢ = 0)

(iv) We know that

ENT
U(SaX):ES’X/ dA’syh Y=ty m+p+ur.
S

We choose a generalized nest {F,} (i.e. F, C Fpyi1,
cap(K \ Fn) — 0, |[7|(D1 \ U2 1 Fn) = 0) such that
1f, - v € Mo NW', where W' is the space dual to the space

M < 120, T, H-1(D)).

W ={n€L*0,T;H(D)): 5.

and we define

ENT 1
Un(S,X) = Es,X/ As;n
S
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Sketch of proof (for ¢ = 0)

(iv) Then (L2 theory of linear equations) uj, is a weak solution of
the problem

a”" + Aup=—1f,-von (0, T) x D,
Un( ) =0, Un(t, ')|6D =0, te (07 T)a

and hence u, is a renormalized solution.

v) Since |1 v — (f, - m+ p+v)|| v, it follows that u, — u
n H
g.e. in D7 and u is a renormalized solution of (s:x).
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