Semilinear obstacle problem with measure data and generalized reflected BSDE

Andrzej Rozkosz (joint work with T. Klimsiak)

Nicolaus Copernicus University (Toruń, Poland)

6th International Conference on Stochastic Analysis and Its Applications Będlewo, September 10–14, 2012

Parabolic obstacle problem

Let $D \subset \mathbb{R}^d$ $(d \ge 2)$ be a bounded domain, $D_T = [0, T] \times D$. We consider the problem

$$\begin{cases} \frac{\partial u}{\partial t} + Au = -f(\cdot, u) - \mu \text{ on } \{h_1 < u < h_2\}, \\ h_1 \le u \le h_2, \\ u(T, \cdot) = \varphi, \quad u(t, \cdot)_{|\partial D} = 0, \quad t \in (0, T), \end{cases}$$
(*)

where A is a uniformly elliptic operator of the form

$$A = \sum_{i,j=1}^{d} \left(\frac{\partial}{\partial x_j} (a_{ij}(t,x) \frac{\partial}{\partial x_i}) \right)$$

and

- f: D_T × ℝ → ℝ, φ: D → ℝ measurable functions satisfying some conditions (to be specified later on), μ is a bounded smooth measure on D_T,
- $h_1, h_2: D_T \to \overline{\mathbb{R}}$ are measurable functions such that $h_1 \leq h_2$ a.e..

Problem: solve (*) for

- measurable barriers h_1, h_2 ,
- φ ∈ L¹(D), f satisfying the monotonicity condition in u (for instance f(x, u) = −|u|^{q−1}u for some q > 1) and mild integrability conditions,
- $\mu \in \mathcal{M}_{0,b}$ ($\mathcal{M}_{0,b}$ space of all smooth signed measures on D_T with bounded total variation (for instance $\mu(dt \, dx) = g \, dt \, dx$ for some $g \in L^1(D_T)$).

Known results for irregular barriers:

- M. Pierre (1979, 1980) linear case (f = f(x)) with L^2 data (i.e. $\varphi, f, g \in L^2$).
- T. Klimsiak (2012) y → f(x, y) satisfies the Lipschitz condition and the linear growth condition, L² data (i.e. φ, f(·, 0), g ∈ L²).

Let

$$f_u=f(\cdot,u).$$

We first consider the problem

$$\begin{cases} \frac{\partial u}{\partial t} + Au = -f_u - \mu \text{ on } (0, T) \times D, \\ u(T, \cdot) = \varphi, \quad u(t, \cdot)_{|\partial D} = 0, \quad t \in (0, T). \end{cases}$$
(**)

Cauchy-Dirichlet problem

$$\mathbb{X} = \{(X, P_{s,x})\}$$
 - Markov family associated with A.

Proposition

Any $\mu \in \mathcal{M}^+_{0,b}$ admits a unique positive AF A^{μ} of \mathbb{X} such that for q.e. $(s, x) \in D_T$,

$$E_{s,x} \int_{s}^{T} f(t,X_t) \, dA_{s,t}^{\mu} = \int_{s}^{T} \int_{D} f(t,y) p(s,x,t,y) \, d\mu(t,y)$$

for every positive Borel function $f : D_T \to \mathbb{R}$.

Here p is the transition density for \mathbb{X} (weak fundamental solution for A).

Ex. If $\mu(dt, dx) = g(t, x) dt dx$ for some $g \in L^1(D_T)$ then

$$A_{s,t}^{\mu} = \int_{s}^{t} g(\theta, X_{\theta}) \, d\theta.$$

Assumptions.

$$\begin{array}{ll} (\text{H1}) & \mu \in \mathcal{M}_{0,b}(D_{\mathcal{T}}), \\ (\text{H2}) & \varphi \in L^{1}(D), \\ (\text{H3}) & f: [0, T] \times D \times \mathbb{R} \to \mathbb{R} \text{ is a measurable function such that} \\ & (a) & y \mapsto f(t, x, y) \text{ is continuous for q.e. } (t, x) \in D_{\mathcal{T}}. \\ & (b) & \text{There exists } \mu \in \mathbb{R} \text{ such that} \\ & & (f(t, x, y) - f(t, x, y'))(y - y') \leq \mu |y - y'|^{2} \text{ for every} \\ & & y, y' \in \mathbb{R} \text{ and a.e. } (t, x) \in D_{\mathcal{T}}. \\ & (c) & f(\cdot, \cdot, 0) \in L^{1}(D_{\mathcal{T}}), \\ & (d) & \forall_{c > 0}(t, x) \mapsto \sup_{|y| \leq c} |f(t, x, y)| \in L^{1}(D_{\mathcal{T}}). \end{array}$$

Cauchy-Dirichlet problem - main result

Let

$$\xi_s = \inf\{t \ge s : X_t \notin D\}.$$

Theorem (T. Klimsiak, A.R.)

Assume (H1)-(H3). Then there exists a unique renormalized solution u of (**). Moreover,

$$u(s,x) = E_{s,x} \left\{ \mathbf{1}_{\{\xi_s > T\}} \varphi(X_T) + \int_s^{\xi_s \wedge T} f_u(t,X_t) dt + \int_s^{\xi_s \wedge T} dA_{s,t}^{\mu} \right\}$$

for q.e. $(s, x) \in D_T$.

Remark

u is an entropy solution of (**).

Renormalized solutions

Theorem (Droniou, Porretta & Prignet)

Each measure $\mu \in \mathcal{M}_{0,b}(D_{\mathcal{T}})$ admits a decomposition of the form

 $\mu = g_t + div(G) + f,$

where $g \in L^2(0, T; H^1_0(D))$, $G = (G^1, \dots, G^d) \in L^2(D_T)^d$, $f \in L^1(D_T)$.

Remark. The above decomposition means that

$$\int_{D_{T}} \eta \, d\mu = -\int_{0}^{T} \langle g, \frac{\partial \eta}{\partial t} \rangle \, dt - (G, \nabla \eta)_{L^{2}} + \int_{D_{T}} f \eta \, dm_{1}$$

for every $\eta \in \mathcal{W}(D_{\mathcal{T}})$ $(m_1$ denotes the Lebesgue measure on $D_{\mathcal{T}})$, where

$$\mathcal{W} = \{\eta \in L^2(0, T; H^1_0(D)) : \frac{\partial \eta}{\partial t} \in L^2(0, T; H^{-1}(D)).$$

Renormalized solutions

Definition (Droniou, Porretta & Prignet)

A measurable $u : D_T \to \mathbb{R}$ is a renormalized solution of (**) if (a) $f_u \in L^1(D_T)$, (b) For some decomposition (g, G, f) of μ , $u - g \in L^{\infty}(0, T; L^2(D))$, $T_k(u - g) \in L^2(0, T; H^1(D))$ and $\lim_{n \to +\infty} \int_{\{n \le |u - g| \le n + 1\}} |\nabla u| \, dm_1 = 0$,

(c) For any $S \in W^{2,\infty}(\mathbb{R})$ with compact support,

$$\frac{\partial}{\partial t}(S(u-g)) + div(a\nabla uS'(u-g)) - S''(u-g)a\nabla u \cdot \nabla(u-g)$$
$$= -S'(u-g)f - div(GS'(u-g)) + GS''(u-g) \cdot \nabla(u-g)$$

in the sense of distributions,

(d)
$$T_k(u-g)(T) = T_k(\varphi)$$
 in $L^2(D)$ for all $k \ge 0$.

9/19

data

Parabolic obstacle problem

Definition

We say that a pair (u, ν) consisting of a measurable function $u: D_T \to \mathbb{R}$ and a measure ν on D_T is a solution of (*) if (a) $f_u \in L^1(D_T), \nu \in \mathcal{M}_{0,b}(D_T), h_1 \leq u \leq h_2, m_1\text{-a.e.},$ (b) For q.e. $(s, x) \in D_T$,

$$u(s,x) = E_{s,x} \left\{ \mathbf{1}_{\{\xi_s > T\}} \varphi(X_T) + \int_s^{\xi_s \wedge T} f_u(t,X_t) dt + \int_s^{\xi_s \wedge T} d(A_{s,t}^{\mu} + A_{s,t}^{\nu}) \right\},$$

i.e. u is a renormalized solution of the problem

$$\begin{cases} \frac{\partial u}{\partial t} + Au = -f_u - \mu - \nu \text{ on } (0, T) \times D, \\ u(T, \cdot) = \varphi, \quad u(t, \cdot)_{|\partial D} = 0, \quad t \in (0, T). \end{cases}$$

Parabolic obstacle problem

We say that $u \in \mathcal{FD}$ if the process $[s, T] \mapsto u(t, X_t)$ is càdlàg under $P_{s,x}$ for q.e. $(s, x) \in D_T$.

Definition (continued)

(c) For every $h_1^*, h_2^* \in \mathcal{FD}$ such that $h_1 \leq h_1^* \leq u \leq h_2^* \leq h_2$, m_1 -a.e. we have

$$\int_{s}^{\xi_{s} \wedge T} (u(t, X_{t}) - h_{1-}^{*}(t, X_{t})) \, dA_{s,t}^{\nu^{+}} = 0, \quad P_{s,x}\text{-a.s.}$$

and

$$\int_{s}^{\xi_{s}\wedge T} (h_{2-}^{*}(t,X_{t}) - u(t,X_{t})) \, dA_{s,t}^{\nu^{-}} = 0, \quad P_{s,x}\text{-a.s.}$$

for q.e. $(s, x) \in D_T$ (Here $h_{i-}^*(t, X_t) = \lim_{s < t, s \to t} h_i^*(s, X_s)$).

Comments.

 If h₁, h₂ are quasi-continuous and h₁(T, ·) ≤ φ ≤ h₂(T, ·), m-a.e. then condition (c) says that

$$\int_{D_{\tau}} (u-h_1) \, d\nu^+ = \int_{D_{\tau}} (h_2-u) \, d\nu^- = 0.$$

② In the linear case with L^2 data condition (c) coincides with the condition introduced by M. Pierre (1979).

Additional assumption.

(H4) There exists a renormalized solution v of the problem

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + A\mathbf{v} = -\lambda, \\ \mathbf{v}(T, \cdot) = \psi, \quad \mathbf{v}(t, \cdot)_{|\partial D} = 0, \quad t \in (0, T) \end{cases}$$

with some $\lambda \in \mathcal{M}_{0,b}(D_T)$ and measurable ψ satisfying $\psi \geq \varphi$ such that $f_v \in L^1(D_T)$ and $h_1 \leq v \leq h_2$, m_1 -a.e. on D_T .

Theorem (T. Klimsiak, A.R.)

Assume (H1)–(H4). (i) There exists a unique solution (u, ν) of (*). Moreover, (a) $u \in \mathcal{FD}$ and $E_{s,x} \sup_{s \leq t \leq T} |u(t,X_t)|^q < \infty, \quad E_{s,x} (\int_{t}^{T} |u(t,X_t)|^2 dt)^{q/2} < \infty$ for $q \in (0, 1)$. (b) $T_k u \in L^2(0, T; H^1_0(D))$ for k > 0, where $T_k u = (-k) \vee u \wedge k$, (c) $u \in L^q(0, T; W_0^{1,q}(D))$ for $q < \frac{d+2}{d+1}$. (ii) If h_1, h_2 are quasi-continuous and $h_1(T, \cdot) \le \varphi \le h_2(T, \cdot)$, *m*-*a*.*e*. then *u* is quasi-continuous.

Theorem (continued)

(iii) Let u_n be a renormalized solution of the problem

$$\begin{cases} \frac{\partial u_n}{\partial t} + A_t u_n = -f_{u_n} - \mu - n(u_n - h_1)^- + n(u_n - h_2)^-, \\ u_n(T, \cdot) = \varphi, \quad u_n(t, \cdot)_{|\partial D} = 0, \quad t \in (0, T). \end{cases}$$

Then $u_n \rightarrow u$ q.e. on D_T and $\nabla u_n \rightarrow \nabla u$ in measure m_1 , (iv) If $h_2 = +\infty$ then $\nu_n \rightarrow \nu$ weakly, where $\nu_n = n(u_n - h_1)^-$. Similar statement in case $h_1 = -\infty$. In the general case more complicated formulation. Sketch of proof (for $\varphi = 0$)

(i) We prove existence of a unique solution (Y, Z, L) of RBSDE

$$Y_{t} = \int_{t\wedge t}^{\tau} f(X_{t}, Y_{t}) dt + \int_{\tau\wedge t}^{\tau} dA_{t}^{\mu} + \int_{\tau\wedge t}^{\tau} dL_{t} dt + \int_{\tau\wedge t}^{\tau} dM_{s}, \quad P_{s,x}\text{-a.s.}$$

for q.e. (s,x) ∈ D_T and show that L = A^ν for some ν ∈ M_{0,b}.
(ii) Taking t = s and integrating with respect to P_{s,x} we conclude that u defined by u(s,x) = Y_s, P_{s,x}-a.s. satisfies the nonlinear Fenynman-Kac formula

$$u(s,x) = E_{s,x} \left\{ \int_{s}^{\xi_{s} \wedge T} f_{u}(t,X_{t}) dt + \int_{s}^{\xi_{s} \wedge T} d(A_{s,t}^{\mu} + A_{s,t}^{\nu}) \right\}.$$

(iii) We show that $f_u \in L^1(D_T)$.

Sketch of proof (for $\varphi = 0$)

(iv) We know that

$$u(s,x) = E_{s,x} \int_{s}^{\xi_s \wedge T} dA_{s,t}^{\gamma}, \quad \gamma = f_u \cdot m + \mu + \nu.$$

We choose a generalized nest $\{F_n\}$ (i.e. $F_n \subset F_{n+1}$, $\operatorname{cap}(K \setminus F_n) \to 0$, $|\gamma|(D_T \setminus \bigcup_{n=1}^{\infty} F_n) = 0$) such that $\mathbf{1}_{F_n} \cdot \gamma \in \mathcal{M}_{0,b} \cap \mathcal{W}'$, where \mathcal{W}' is the space dual to the space

$$\mathcal{W} = \{\eta \in L^2(0, T; H^1_0(D)) : \frac{\partial \eta}{\partial t} \in L^2(0, T; H^{-1}(D)).$$

and we define

$$u_n(s,x) = E_{s,x} \int_s^{\xi_s \wedge T} A_{s,t}^{\mathbf{1}_{F_n} \cdot \gamma}.$$

(iv) Then (L^2 theory of linear equations) u_n is a weak solution of the problem

$$\begin{cases} \frac{\partial u_n}{\partial t} + Au_n = -\mathbf{1}_{F_n} \cdot \gamma \text{ on } (0, T) \times D, \\ u_n(T, \cdot) = 0, \quad u_n(t, \cdot)_{|\partial D} = 0, \quad t \in (0, T), \end{cases}$$

and hence u_n is a renormalized solution.

(v) Since $\|\mathbf{1}_{F_n} \cdot \gamma - (f_u \cdot m + \mu + \nu)\|_{TV}$, it follows that $u_n \to u$ q.e. in D_T and u is a renormalized solution of (**).

- T. Klimsiak, Reflected BSDEs and the obstacle problem for semilinear PDEs in divergence form, *Stochastic Process. Appl.* 122 (2012) 134–169.
- T. Klimsiak, BSDEs with monotone generator and two irregular reflecting barriers. *Bull. Sci. Math.* (2012) DOI: 10.1016/j.bulsci.2012.06.006.
- T. Klimsiak, Cauchy problem for semilinear parabolic equation with time-dependent obstacles: a BSDEs approach, *Potential Anal.*, to appear.
- A. Rozkosz and L. Słomiński, Stochastic representation of entropy solutions of semilinear elliptic obstacle problems with measure data, *Electron. J. Probab.* 17 (2012), no. 40, 1–27.