Semilinear obstacle problem with measure data and generalized reflected BSDE

Andrzej Rozkosz
(joint work with T. Klimsiak)

Nicolaus Copernicus University (Toruń, Poland)

6th International Conference on Stochastic Analysis and Its Applications
Będlewo, September 10-14, 2012

Let $D \subset \mathbb{R}^{d}(d \geq 2)$ be a bounded domain, $D_{T}=[0, T] \times D$. We consider the problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A u=-f(\cdot, u)-\mu \text { on }\left\{h_{1}<u<h_{2}\right\}, \tag{*}\\
h_{1} \leq u \leq h_{2}, \\
u(T, \cdot)=\varphi, \quad u(t, \cdot)_{\mid \partial D}=0, \quad t \in(0, T),
\end{array}\right.
$$

where A is a uniformly elliptic operator of the form

$$
A=\sum_{i, j=1}^{d}\left(\frac{\partial}{\partial x_{j}}\left(a_{i j}(t, x) \frac{\partial}{\partial x_{i}}\right)\right.
$$

and

- $f: D_{T} \times \mathbb{R} \rightarrow \mathbb{R}, \varphi: D \rightarrow \mathbb{R}$ - measurable functions satisfying some conditions (to be specified later on), μ is a bounded smooth measure on D_{T},
- $h_{1}, h_{2}: D_{T} \rightarrow \overline{\mathbb{R}}$ are measurable functions such that $h_{1} \leq h_{2}$ a.e..

Problem: solve (*) for

- measurable barriers h_{1}, h_{2},
- $\varphi \in L^{1}(D), f$ satisfying the monotonicity condition in u (for instance $f(x, u)=-|u|^{q-1} u$ for some $\left.q>1\right)$ and mild integrability conditions,
- $\mu \in \mathcal{M}_{0, b}\left(\mathcal{M}_{0, b}\right.$ - space of all smooth signed measures on D_{T} with bounded total variation (for instance $\mu(d t d x)=g d t d x$ for some $g \in L^{1}\left(D_{T}\right)$).

Known results for irregular barriers:

- M. Pierre $(1979,1980)$ - linear case $(f=f(x))$ with L^{2} data (i.e. $\varphi, f, g \in L^{2}$).
- T. Klimsiak (2012) - $y \mapsto f(x, y)$ satisfies the Lipschitz condition and the linear growth condition, L^{2} data (i.e. $\left.\varphi, f(\cdot, 0), g \in L^{2}\right)$.

Cauchy-Dirichlet problem

Let

$$
f_{u}=f(\cdot, u)
$$

We first consider the problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A u=-f_{u}-\mu \text { on }(0, T) \times D, \\
u(T, \cdot)=\varphi, \quad u(t, \cdot)_{\mid \partial D}=0, \quad t \in(0, T) .
\end{array}\right.
$$

Cauchy-Dirichlet problem

$\mathbb{X}=\left\{\left(X, P_{s, x}\right)\right\}$ - Markov family associated with A.

Proposition

Any $\mu \in \mathcal{M}_{0, b}^{+}$admits a unique positive $A F A^{\mu}$ of \mathbb{X} such that for q.e. $(s, x) \in D_{T}$,

$$
E_{s, x} \int_{s}^{T} f\left(t, X_{t}\right) d A_{s, t}^{\mu}=\int_{s}^{T} \int_{D} f(t, y) p(s, x, t, y) d \mu(t, y)
$$

for every positive Borel function $f: D_{T} \rightarrow \mathbb{R}$.
Here p is the transition density for \mathbb{X} (weak fundamental solution for A).
Ex. If $\mu(d t, d x)=g(t, x) d t d x$ for some $g \in L^{1}\left(D_{T}\right)$ then

$$
A_{s, t}^{\mu}=\int_{s}^{t} g\left(\theta, X_{\theta}\right) d \theta
$$

Cauchy-Dirichlet problem

Assumptions.
(H1) $\mu \in \mathcal{M}_{0, b}\left(D_{T}\right)$,
(H2) $\varphi \in L^{1}(D)$,
(H3) $f:[0, T] \times D \times \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function such that
(a) $y \mapsto f(t, x, y)$ is continuous for q.e. $(t, x) \in D_{T}$.
(b) There exists $\mu \in \mathbb{R}$ such that

$$
\left(f(t, x, y)-f\left(t, x, y^{\prime}\right)\right)\left(y-y^{\prime}\right) \leq \mu\left|y-y^{\prime}\right|^{2} \text { for every }
$$

$$
y, y^{\prime} \in \mathbb{R} \text { and a.e. }(t, x) \in D_{T}
$$

(c) $f(\cdot, \cdot, 0) \in L^{1}\left(D_{T}\right)$,
(d) $\forall_{c>0}(t, x) \mapsto \sup _{|y| \leq c}|f(t, x, y)| \in L^{1}\left(D_{T}\right)$.

Cauchy-Dirichlet problem - main result

Let

$$
\xi_{s}=\inf \left\{t \geq s: X_{t} \notin D\right\}
$$

Theorem (T. Klimsiak, A.R.)

Assume (H1)-(H3). Then there exists a unique renormalized solution u of $(* *)$. Moreover,

$$
\begin{gathered}
u(s, x)=E_{s, x}\left\{\mathbf{1}_{\left\{\xi_{s}>T\right\}} \varphi\left(X_{T}\right)+\int_{s}^{\xi_{s} \wedge T} f_{u}\left(t, X_{t}\right) d t\right. \\
\\
\left.+\int_{s}^{\xi_{s} \wedge T} d A_{s, t}^{\mu}\right\}
\end{gathered}
$$

for q.e. $(s, x) \in D_{T}$.

Remark

u is an entropy solution of $(* *)$.

Renormalized solutions

Theorem (Droniou, Porretta \& Prignet)

Each measure $\mu \in \mathcal{M}_{0, b}\left(D_{T}\right)$ admits a decomposition of the form

$$
\mu=g_{t}+\operatorname{div}(G)+f
$$

where $g \in L^{2}\left(0, T ; H_{0}^{1}(D)\right), G=\left(G^{1}, \ldots, G^{d}\right) \in L^{2}\left(D_{T}\right)^{d}$, $f \in L^{1}\left(D_{T}\right)$.

Remark. The above decomposition means that

$$
\int_{D_{T}} \eta d \mu=-\int_{0}^{T}\left\langle g, \frac{\partial \eta}{\partial t}\right\rangle d t-(G, \nabla \eta)_{L^{2}}+\int_{D_{T}} f \eta d m_{1}
$$

for every $\eta \in \mathcal{W}\left(D_{T}\right)$ (m_{1} denotes the Lebesgue measure on D_{T}), where

$$
\mathcal{W}=\left\{\eta \in L^{2}\left(0, T ; H_{0}^{1}(D)\right): \frac{\partial \eta}{\partial t} \in L^{2}\left(0, T ; H^{-1}(D)\right)\right.
$$

Renormalized solutions

Definition (Droniou, Porretta \& Prignet)

A measurable $u: D_{T} \rightarrow \mathbb{R}$ is a renormalized solution of $(* *)$ if
(a) $f_{u} \in L^{1}\left(D_{T}\right)$,
(b) For some decomposition (g, G, f) of μ,

$$
\begin{gathered}
u-g \in L^{\infty}\left(0, T ; L^{2}(D)\right), T_{k}(u-g) \in L^{2}\left(0, T ; H^{1}(D)\right) \text { and } \\
\lim _{n \rightarrow+\infty} \int_{\{n \leq|u-g| \leq n+1\}}|\nabla u| d m_{1}=0,
\end{gathered}
$$

(c) For any $S \in W^{2, \infty}(\mathbb{R})$ with compact support,

$$
\begin{aligned}
& \frac{\partial}{\partial t}(S(u-g))+\operatorname{div}\left(a \nabla u S^{\prime}(u-g)\right)-S^{\prime \prime}(u-g) a \nabla u \cdot \nabla(u-g) \\
& \quad=-S^{\prime}(u-g) f-\operatorname{div}\left(G S^{\prime}(u-g)\right)+G S^{\prime \prime}(u-g) \cdot \nabla(u-g)
\end{aligned}
$$

in the sense of distributions,
(d) $T_{k}(u-g)(T)=T_{k}(\varphi)$ in $L^{2}(D)$ for all $k \geq 0$.

Parabolic obstacle problem

Definition

We say that a pair (u, ν) consisting of a measurable function $u: D_{T} \rightarrow \mathbb{R}$ and a measure ν on D_{T} is a solution of $(*)$ if
(a) $f_{u} \in L^{1}\left(D_{T}\right), \nu \in \mathcal{M}_{0, b}\left(D_{T}\right), h_{1} \leq u \leq h_{2}$, m_{1}-a.e.,
(b) For q.e. $(s, x) \in D_{T}$,

$$
\begin{gathered}
u(s, x)=E_{s, x}\left\{1_{\left\{\xi_{s}>T\right\}} \varphi\left(X_{T}\right)+\int_{s}^{\xi_{s} \wedge T} f_{u}\left(t, X_{t}\right) d t\right. \\
\left.+\int_{s}^{\xi_{s} \wedge T} d\left(A_{s, t}^{\mu}+A_{s, t}^{\nu}\right)\right\}
\end{gathered}
$$

i.e. u is a renormalized solution of the problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+A u=-f_{u}-\mu-\nu \text { on }(0, T) \times D \\
u(T, \cdot)=\varphi, \quad u(t, \cdot)_{\mid \partial D}=0, \quad t \in(0, T) .
\end{array}\right.
$$

Parabolic obstacle problem

We say that $u \in \mathcal{F D}$ if the process $[s, T] \mapsto u\left(t, X_{t}\right)$ is càdlàg under $P_{s, x}$ for q.e. $(s, x) \in D_{T}$.

Definition (continued)

(c) For every $h_{1}^{*}, h_{2}^{*} \in \mathcal{F D}$ such that $h_{1} \leq h_{1}^{*} \leq u \leq h_{2}^{*} \leq h_{2}$, m_{1}-a.e. we have

$$
\int_{s}^{\xi_{s} \wedge T}\left(u\left(t, X_{t}\right)-h_{1-}^{*}\left(t, X_{t}\right)\right) d A_{s, t}^{\nu^{+}}=0, \quad P_{s, x^{-}} \text {a.s. }
$$

and

$$
\begin{gathered}
\qquad \int_{s}^{\xi_{s} \wedge T}\left(h_{2-}^{*}\left(t, X_{t}\right)-u\left(t, X_{t}\right)\right) d A_{s, t}^{\nu^{-}}=0, \quad P_{s, x^{-}-\mathrm{a} . \mathrm{s}} \\
\text { for q.e. }(s, x) \in D_{T}\left(\text { Here } h_{i-}^{*}\left(t, X_{t}\right)=\lim _{s<t, s \rightarrow t} h_{i}^{*}\left(s, X_{s}\right)\right)
\end{gathered}
$$

Comments.
(1) If h_{1}, h_{2} are quasi-continuous and $h_{1}(T, \cdot) \leq \varphi \leq h_{2}(T, \cdot)$, m-a.e. then condition (c) says that

$$
\int_{D_{T}}\left(u-h_{1}\right) d \nu^{+}=\int_{D_{T}}\left(h_{2}-u\right) d \nu^{-}=0 .
$$

(2) In the linear case with L^{2} data condition (c) coincides with the condition introduced by M. Pierre (1979).

Additional assumption.
(H4) There exists a renormalized solution v of the problem

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial t}+A v=-\lambda, \\
v(T, \cdot)=\psi, \quad v(t, \cdot)_{\mid \partial D}=0, \quad t \in(0, T)
\end{array}\right.
$$

with some $\lambda \in \mathcal{M}_{0, b}\left(D_{T}\right)$ and measurable ψ satisfying $\psi \geq \varphi$ such that $f_{v} \in L^{1}\left(D_{T}\right)$ and $h_{1} \leq v \leq h_{2}, m_{1}$-a.e. on D_{T}.

Parabolic obstacle problem - main result

Theorem (T. Klimsiak, A.R.)

Assume (H1)-(H4).
(i) There exists a unique solution (u, ν) of $(*)$. Moreover, (a) $u \in \mathcal{F D}$ and

$$
E_{s, x} \sup _{s \leq t \leq T}\left|u\left(t, X_{t}\right)\right|^{q}<\infty, \quad E_{s, x}\left(\int_{s}^{T}\left|u\left(t, X_{t}\right)\right|^{2} d t\right)^{q / 2}<\infty
$$

$$
\text { for } q \in(0,1) \text {, }
$$

(b) $T_{k} u \in L^{2}\left(0, T ; H_{0}^{1}(D)\right)$ for $k>0$, where $T_{k} u=(-k) \vee u \wedge k$, (c) $u \in L^{q}\left(0, T ; W_{0}^{1, q}(D)\right)$ for $q<\frac{d+2}{d+1}$.
(ii) If h_{1}, h_{2} are quasi-continuous and $h_{1}(T, \cdot) \leq \varphi \leq h_{2}(T, \cdot)$, m-a.e. then u is quasi-continuous.

Parabolic obstacle problem - main result

Theorem (continued)

(iii) Let u_{n} be a renormalized solution of the problem

$$
\left\{\begin{array}{l}
\frac{\partial u_{n}}{\partial t}+A_{t} u_{n}=-f_{u_{n}}-\mu-n\left(u_{n}-h_{1}\right)^{-}+n\left(u_{n}-h_{2}\right)^{-} \\
u_{n}(T, \cdot)=\varphi, \quad u_{n}(t, \cdot)_{\mid \partial D}=0, \quad t \in(0, T)
\end{array}\right.
$$

Then $u_{n} \rightarrow u$ q.e. on D_{T} and $\nabla u_{n} \rightarrow \nabla u$ in measure m_{1},
(iv) If $h_{2}=+\infty$ then $\nu_{n} \rightarrow \nu$ weakly, where $\nu_{n}=n\left(u_{n}-h_{1}\right)^{-}$.

Similar statement in case $h_{1}=-\infty$. In the general case more complicated formulation.

Sketch of proof (for $\varphi=0$)

(i) We prove existence of a unique solution (Y, Z, L) of RBSDE

$$
\begin{aligned}
Y_{t}= & \int_{t \wedge t}^{\tau} f\left(X_{t}, Y_{t}\right) d t+\int_{\tau \wedge t}^{\tau} d A_{t}^{\mu} \\
& +\int_{\tau \wedge t}^{\tau} d L_{t} d t+\int_{\tau \wedge t}^{\tau} d M_{s}, \quad P_{s, x} \text {-a.s. }
\end{aligned}
$$

for q.e. $(s, x) \in D_{T}$ and show that $L=A^{\nu}$ for some $\nu \in \mathcal{M}_{0, b}$.
(ii) Taking $t=s$ and integrating with respect to $P_{s, x}$ we conclude that u defined by $u(s, x)=Y_{s}, P_{s, x}$-a.s. satisfies the nonlinear Fenynman-Kac formula

$$
u(s, x)=E_{s, x}\left\{\int_{s}^{\xi_{s} \wedge T} f_{u}\left(t, X_{t}\right) d t+\int_{s}^{\xi_{s} \wedge T} d\left(A_{s, t}^{\mu}+A_{s, t}^{\nu}\right)\right\}
$$

(iii) We show that $f_{u} \in L^{1}\left(D_{T}\right)$.

Sketch of proof (for $\varphi=0$)

(iv) We know that

$$
u(s, x)=E_{s, x} \int_{s}^{\xi_{s} \wedge T} d A_{s, t}^{\gamma}, \quad \gamma=f_{u} \cdot m+\mu+\nu
$$

We choose a generalized nest $\left\{F_{n}\right\}$ (i.e. $F_{n} \subset F_{n+1}$,
$\left.\operatorname{cap}\left(K \backslash F_{n}\right) \rightarrow 0,|\gamma|\left(D_{T} \backslash \bigcup_{n=1}^{\infty} F_{n}\right)=0\right)$ such that
$1_{F_{n}} \cdot \gamma \in \mathcal{M}_{0, b} \cap \mathcal{W}^{\prime}$, where \mathcal{W}^{\prime} is the space dual to the space

$$
\mathcal{W}=\left\{\eta \in L^{2}\left(0, T ; H_{0}^{1}(D)\right): \frac{\partial \eta}{\partial t} \in L^{2}\left(0, T ; H^{-1}(D)\right)\right.
$$

and we define

$$
u_{n}(s, x)=E_{s, x} \int_{s}^{\xi_{s} \wedge T} A_{s, t}^{1_{F_{n}} \cdot \gamma} .
$$

Sketch of proof (for $\varphi=0$)

(iv) Then (L^{2} theory of linear equations) u_{n} is a weak solution of the problem

$$
\left\{\begin{array}{l}
\frac{\partial u_{n}}{\partial t}+A u_{n}=-\mathbf{1}_{F_{n}} \cdot \gamma \text { on }(0, T) \times D, \\
u_{n}(T, \cdot)=0, \quad u_{n}(t, \cdot)_{\mid \partial D}=0, \quad t \in(0, T),
\end{array}\right.
$$

and hence u_{n} is a renormalized solution.
(v) Since $\left\|1_{F_{n}} \cdot \gamma-\left(f_{u} \cdot m+\mu+\nu\right)\right\|_{T V}$, it follows that $u_{n} \rightarrow u$ q.e. in D_{T} and u is a renormalized solution of $(* *)$.
T. Klimsiak, Reflected BSDEs and the obstacle problem for semilinear PDEs in divergence form, Stochastic Process. Appl. 122 (2012) 134-169.
T. Klimsiak, BSDEs with monotone generator and two irregular reflecting barriers. Bull. Sci. Math. (2012) DOI: 10.1016/j.bulsci.2012.06.006.
T. Klimsiak, Cauchy problem for semilinear parabolic equation with time-dependent obstacles: a BSDEs approach, Potential Anal., to appear.
A. Rozkosz and L. Słomiński, Stochastic representation of entropy solutions of semilinear elliptic obstacle problems with measure data, Electron. J. Probab. 17 (2012), no. 40, 1-27.

