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Parabolic obstacle problem

Let D ⊂ Rd (d ≥ 2) be a bounded domain, DT = [0,T ]× D. We
consider the problem

∂u
∂t + Au = −f (·, u)− µ on {h1 < u < h2},
h1 ≤ u ≤ h2 ,

u(T , ·) = ϕ, u(t, ·)|∂D = 0, t ∈ (0,T ),

(∗)

where A is a uniformly elliptic operator of the form

A =
d∑

i ,j=1

(
∂

∂xj
(aij(t, x)

∂

∂xi
)

and
f : DT × R→ R, ϕ : D → R - measurable functions satisfying
some conditions (to be specified later on), µ is a bounded
smooth measure on DT ,
h1, h2 : DT → R̄ are measurable functions such that h1 ≤ h2
a.e..
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Parabolic obstacle problem

Problem: solve (∗) for
measurable barriers h1, h2,
ϕ ∈ L1(D), f satisfying the monotonicity condition in u (for
instance f (x , u) = −|u|q−1u for some q > 1) and mild
integrability conditions,
µ ∈M0,b (M0,b - space of all smooth signed measures on DT
with bounded total variation (for instance µ(dt dx) = g dt dx
for some g ∈ L1(DT )).

Known results for irregular barriers:
M. Pierre (1979, 1980) - linear case (f = f (x)) with L2 data
(i.e. ϕ, f , g ∈ L2).
T. Klimsiak (2012) - y 7→ f (x , y) satisfies the Lipschitz
condition and the linear growth condition, L2 data (i.e.
ϕ, f (·, 0), g ∈ L2).
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Cauchy-Dirichlet problem

Let
fu = f (·, u).

We first consider the problem{
∂u
∂t + Au = −fu − µ on (0,T )× D,
u(T , ·) = ϕ, u(t, ·)|∂D = 0, t ∈ (0,T ).

(∗∗)
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Cauchy-Dirichlet problem

X = {(X ,Ps,x)} - Markov family associated with A.

Proposition

Any µ ∈M+
0,b admits a unique positive AF Aµ of X such that for

q.e. (s, x) ∈ DT ,

Es,x

∫ T

s
f (t,Xt) dAµs,t =

∫ T

s

∫
D
f (t, y)p(s, x , t, y) dµ(t, y)

for every positive Borel function f : DT → R.

Here p is the transition density for X (weak fundamental solution
for A).
Ex. If µ(dt, dx) = g(t, x) dt dx for some g ∈ L1(DT ) then

Aµs,t =

∫ t

s
g(θ,Xθ) dθ.
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Cauchy-Dirichlet problem

Assumptions.
(H1) µ ∈M0,b(DT ),
(H2) ϕ ∈ L1(D),
(H3) f : [0,T ]× D × R→ R is a measurable function such that

(a) y 7→ f (t, x , y) is continuous for q.e. (t, x) ∈ DT .
(b) There exists µ ∈ R such that

(f (t, x , y)− f (t, x , y ′))(y − y ′) ≤ µ|y − y ′|2 for every
y , y ′ ∈ R and a.e. (t, x) ∈ DT .

(c) f (·, ·, 0) ∈ L1(DT ),
(d) ∀c>0 (t, x) 7→ sup|y |≤c |f (t, x , y)| ∈ L1(DT ).
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Cauchy-Dirichlet problem - main result

Let
ξs = inf{t ≥ s : Xt /∈ D}.

Theorem (T. Klimsiak, A.R.)

Assume (H1)–(H3). Then there exists a unique renormalized
solution u of (∗∗). Moreover,

u(s, x) = Es,x

{
1{ξs>T}ϕ(XT ) +

∫ ξs∧T

s
fu(t,Xt) dt

+

∫ ξs∧T

s
dAµs,t

}
for q.e. (s, x) ∈ DT .

Remark
u is an entropy solution of (∗∗).
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Renormalized solutions

Theorem (Droniou, Porretta & Prignet)

Each measure µ ∈M0,b(DT ) admits a decomposition of the form

µ = gt + div(G ) + f ,

where g ∈ L2(0,T ;H1
0 (D)), G = (G 1, . . . ,Gd ) ∈ L2(DT )d ,

f ∈ L1(DT ).

Remark. The above decomposition means that∫
DT

η dµ = −
∫ T

0
〈g , ∂η

∂t
〉 dt − (G ,∇η)L2 +

∫
DT

f η dm1

for every η ∈ W(DT ) (m1 denotes the Lebesgue measure on DT ) ,
where

W = {η ∈ L2(0,T ;H1
0 (D)) :

∂η

∂t
∈ L2(0,T ;H−1(D)).
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Renormalized solutions

Definition (Droniou, Porretta & Prignet)

A measurable u : DT → R is a renormalized solution of (∗∗) if
(a) fu ∈ L1(DT ),
(b) For some decomposition (g ,G , f ) of µ,

u − g ∈ L∞(0,T ; L2(D)), Tk(u − g) ∈ L2(0,T ;H1(D)) and

lim
n→+∞

∫
{n≤|u−g |≤n+1}

|∇u| dm1 = 0,

(c) For any S ∈W 2,∞(R) with compact support,

∂

∂t
(S(u − g)) + div(a∇uS ′(u − g))− S ′′(u − g)a∇u · ∇(u − g)

= −S ′(u − g)f − div(GS ′(u − g)) + GS ′′(u − g) · ∇(u − g)

in the sense of distributions,
(d) Tk(u − g)(T ) = Tk(ϕ) in L2(D) for all k ≥ 0.
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Parabolic obstacle problem

Definition
We say that a pair (u, ν) consisting of a measurable function
u : DT → R and a measure ν on DT is a solution of (∗) if
(a) fu ∈ L1(DT ), ν ∈M0,b(DT ), h1 ≤ u ≤ h2, m1-a.e.,
(b) For q.e. (s, x) ∈ DT ,

u(s, x) = Es,x

{
1{ξs>T}ϕ(XT ) +

∫ ξs∧T

s
fu(t,Xt) dt

+

∫ ξs∧T

s
d(Aµs,t + Aνs,t)

}
,

i.e. u is a renormalized solution of the problem{
∂u
∂t + Au = −fu − µ− ν on (0,T )× D,
u(T , ·) = ϕ, u(t, ·)|∂D = 0, t ∈ (0,T ).
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Parabolic obstacle problem

We say that u ∈ FD if the process [s,T ] 7→ u(t,Xt) is càdlàg
under Ps,x for q.e. (s, x) ∈ DT .

Definition (continued)

(c) For every h∗1, h
∗
2 ∈ FD such that h1 ≤ h∗1 ≤ u ≤ h∗2 ≤ h2,

m1-a.e. we have∫ ξs∧T

s
(u(t,Xt)− h∗1−(t,Xt)) dAν

+

s,t = 0, Ps,x -a.s.

and ∫ ξs∧T

s
(h∗2−(t,Xt)− u(t,Xt)) dAν

−
s,t = 0, Ps,x -a.s.

for q.e. (s, x) ∈ DT (Here h∗i−(t,Xt) = lims<t,s→t h∗i (s,Xs)).
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Parabolic obstacle problem

Comments.
1 If h1, h2 are quasi-continuous and h1(T , ·) ≤ ϕ ≤ h2(T , ·),

m-a.e. then condition (c) says that∫
DT

(u − h1) dν+ =

∫
DT

(h2 − u) dν− = 0.

2 In the linear case with L2 data condition (c) coincides with the
condition introduced by M. Pierre (1979).
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Parabolic obstacle problem

Additional assumption.
(H4) There exists a renormalized solution v of the problem{

∂v
∂t + Av = −λ,
v(T , ·) = ψ, v(t, ·)|∂D = 0, t ∈ (0,T )

with some λ ∈M0,b(DT ) and measurable ψ satisfying ψ ≥ ϕ
such that fv ∈ L1(DT ) and h1 ≤ v ≤ h2, m1-a.e. on DT .
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Parabolic obstacle problem - main result

Theorem (T. Klimsiak, A.R.)

Assume (H1)–(H4).
(i) There exists a unique solution (u, ν) of (∗). Moreover,

(a) u ∈ FD and

Es,x sup
s≤t≤T

|u(t,Xt)|q <∞, Es,x(

∫ T

s
|u(t,Xt)|2 dt)q/2 <∞

for q ∈ (0, 1),
(b) Tku ∈ L2(0,T ; H1

0 (D)) for k > 0, where Tku = (−k) ∨ u ∧ k,
(c) u ∈ Lq(0,T ; W 1,q

0 (D)) for q < d+2
d+1 .

(ii) If h1, h2 are quasi-continuous and h1(T , ·) ≤ ϕ ≤ h2(T , ·),
m-a.e. then u is quasi-continuous.

Andrzej Rozkosz, NCU (Toruń) Elliptic equations with measure data 14/19



Parabolic obstacle problem - main result

Theorem (continued)

(iii) Let un be a renormalized solution of the problem{
∂un
∂t + Atun = −fun − µ− n(un − h1)− + n(un − h2)−,

un(T , ·) = ϕ, un(t, ·)|∂D = 0, t ∈ (0,T ).

Then un → u q.e. on DT and ∇un → ∇u in measure m1,
(iv) If h2 = +∞ then νn → ν weakly, where νn = n(un − h1)−.

Similar statement in case h1 = −∞. In the general case more
complicated formulation.
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Sketch of proof (for ϕ = 0)

(i) We prove existence of a unique solution (Y ,Z , L) of RBSDE

Yt =

∫ τ

t∧t
f (Xt ,Yt) dt +

∫ τ

τ∧t
dAµt

+

∫ τ

τ∧t
dLt dt +

∫ τ

τ∧t
dMs , Ps,x -a.s.

for q.e. (s, x) ∈ DT and show that L = Aν for some ν ∈M0,b.
(ii) Taking t = s and integrating with respect to Ps,x we conclude

that u defined by u(s, x) = Ys , Ps,x -a.s. satisfies the nonlinear
Fenynman-Kac formula

u(s, x) = Es,x

{∫ ξs∧T

s
fu(t,Xt) dt +

∫ ξs∧T

s
d(Aµs,t + Aνs,t)

}
.

(iii) We show that fu ∈ L1(DT ).
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Sketch of proof (for ϕ = 0)

(iv) We know that

u(s, x) = Es,x

∫ ξs∧T

s
dAγs,t , γ = fu ·m + µ+ ν.

We choose a generalized nest {Fn} (i.e. Fn ⊂ Fn+1,
cap(K \ Fn)→ 0, |γ|(DT \

⋃∞
n=1 Fn) = 0) such that

1Fn · γ ∈M0,b ∩W ′, where W ′ is the space dual to the space

W = {η ∈ L2(0,T ;H1
0 (D)) :

∂η

∂t
∈ L2(0,T ;H−1(D)).

and we define

un(s, x) = Es,x

∫ ξs∧T

s
A1Fn ·γ

s,t .
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Sketch of proof (for ϕ = 0)

(iv) Then (L2 theory of linear equations) un is a weak solution of
the problem{

∂un
∂t + Aun = −1Fn · γ on (0,T )× D,
un(T , ·) = 0, un(t, ·)|∂D = 0, t ∈ (0,T ),

and hence un is a renormalized solution.
(v) Since ‖1Fn · γ − (fu ·m + µ+ ν)‖TV , it follows that un → u

q.e. in DT and u is a renormalized solution of (∗∗).
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