Lower bounds for traces of heat kernels (joint work with Richard Laugesen)

Bartłomiej Siudeja

University of Oregon

Będlewo, September 10, 2012

Eigenvalues of the generator of a killed process

Solutions of $-\Delta u=\lambda u$ on domain D satisfy

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty .
$$

Eigenvalues of the generator of a killed process

Solutions of $-\Delta u=\lambda u$ on domain D satisfy

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty .
$$

Heat trace ($p_{t}(x, y)$ - transition density)

$$
Z_{t}(D)=\int_{D} p_{t}(x, x)=\sum_{i=1}^{\infty} e^{-\lambda_{i} t} .
$$

Eigenvalues of the generator of a killed process

Solutions of $-\Delta u=\lambda u$ on domain D satisfy

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty .
$$

Heat trace ($p_{t}(x, y)$ - transition density)

$$
Z_{t}(D)=\int_{D} p_{t}(x, x)=\sum_{i=1}^{\infty} e^{-\lambda_{i} t}
$$

Same for any nice infinitesimal generator and any stochastic process.

Eigenvalues of the generator of a killed process

Solutions of $-\Delta u=\lambda u$ on domain D satisfy

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty .
$$

Heat trace ($p_{t}(x, y)$ - transition density)

$$
z_{t}(D)=\int_{D} p_{t}(x, x)=\sum_{i=1}^{\infty} e^{-\lambda_{i} t} .
$$

Same for any nice infinitesimal generator and any stochastic process.
Asymptotics from Rodrigo's talk (Laplacian, dimension 2)

$$
4 \pi t Z_{t}(D)=|D|-\sqrt{\pi}|\partial D| \sqrt{t} / 2+o(\sqrt{t})
$$

Eigenvalues of the generator of a killed process

Solutions of $-\Delta u=\lambda u$ on domain D satisfy

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \rightarrow \infty .
$$

Heat trace ($p_{t}(x, y)$ - transition density)

$$
z_{t}(D)=\int_{D} p_{t}(x, x)=\sum_{i=1}^{\infty} e^{-\lambda_{i} t} .
$$

Same for any nice infinitesimal generator and any stochastic process.
Asymptotics from Rodrigo's talk (Laplacian, dimension 2)

$$
4 \pi t Z_{t}(D)=|D|-\sqrt{\pi}|\partial D| \sqrt{t} / 2+o(\sqrt{t})
$$

Let D^{*} be a ball with the same area as D.

- Isoperimetric inequality: $|\partial D| \geq\left|\partial D^{*}\right|$ (trace with $t \rightarrow 0$)
- Faber-Krahn inequality: $\lambda_{1}(D) \geq \lambda_{1}\left(D^{*}\right)$ (trace with $t \rightarrow \infty$)

Bounds for traces (Brownian motion in 2:1 ellipse E)

Easy bounds

$$
\begin{aligned}
& \left.Z_{t}(E) \geq Z_{t}(B) \quad \text { (more killing in } B\right) \\
& \left.Z_{t}(E) \leq Z_{t}(B) \quad \text { (less killing in } B\right)
\end{aligned}
$$

Bounds for traces (Brownian motion in 2:1 ellipse E)

Easy bounds

$$
\begin{aligned}
& \left.Z_{t}(E) \geq Z_{t}(B) \quad \text { (more killing in } B\right) \\
& \left.Z_{t}(E) \leq Z_{t}(B) \quad \text { (less killing in } B\right)
\end{aligned}
$$

Luttinger upper bound

$$
Z_{t}(E) \leq Z_{t}\left(E^{*}\right)
$$

Implies isoperimetric and Faber-Krahn!

Bounds for traces (Brownian motion in 2:1 ellipse E)

Easy bounds

$$
\begin{aligned}
& Z_{t}(E) \geq Z_{t}(B) \quad(\text { more killing in } B) \\
& \left.Z_{t}(E) \leq Z_{t}(B) \quad \text { (less killing in } B\right)
\end{aligned}
$$

Luttinger upper bound

$$
Z_{t}(E) \leq Z_{t}\left(E^{*}\right)
$$

Implies isoperimetric and Faber-Krahn!
Lower bound (Laugesen-S. 2010-2012)

$$
Z_{t}(E) \geq Z_{5 t / 4}\left(E^{*}\right)
$$

Bounds for traces (Brownian motion in 2:1 ellipse E)

Easy bounds

$$
\begin{aligned}
& Z_{t}(E) \geq Z_{t}(B) \quad(\text { more killing in } B) \\
& \left.Z_{t}(E) \leq Z_{t}(B) \quad \text { (less killing in } B\right)
\end{aligned}
$$

Luttinger upper bound

$$
Z_{t}(E) \leq Z_{t}\left(E^{*}\right)
$$

Implies isoperimetric and Faber-Krahn!
Lower bound (Laugesen-S. 2010-2012)

$$
Z_{t}(E) \geq Z_{5 t / 4}\left(E^{*}\right)=Z_{t}\left(2 E^{*} / \sqrt{5}\right)
$$

Bounds for traces (Brownian motion in a:1 ellipse E)

Easy bounds

$$
\begin{aligned}
& \left.Z_{t}(E) \geq Z_{t}(B) \quad \text { (more killing in } B\right) \\
& \left.Z_{t}(E) \leq Z_{t}(B) \quad \text { (less killing in } B\right)
\end{aligned}
$$

Luttinger upper bound

$$
Z_{t}(E) \leq Z_{t}\left(E^{*}\right)
$$

Implies isoperimetric and Faber-Krahn!
Lower bound (Laugesen-S. 2010-2012)

$$
Z_{t}(E) \geq Z_{\left(a^{2}+1\right) t /(2 a)}\left(E^{*}\right)
$$

For narrow ellipses exact trace should be close to our lower bound (we get an almost 1D case).

Our method for eigenvalues

Rayleigh quotient

$$
\begin{aligned}
R[v] & =\frac{\int_{D}|\nabla v|^{2} d x}{\int_{D}|v|^{2} d x}, \\
\lambda_{1}+\cdots+\lambda_{n} & =\inf \left\{R\left[v_{1}\right]+\cdots+R\left[v_{n}\right]: v_{i} \text { orthogonal }\right\}
\end{aligned}
$$

Our method for eigenvalues

Rayleigh quotient

$$
\begin{aligned}
R[v] & =\frac{\int_{D}|\nabla v|^{2} d x}{\int_{D}|v|^{2} d x}, \\
\lambda_{1}+\cdots+\lambda_{n} & =\inf \left\{R\left[v_{1}\right]+\cdots+R\left[v_{n}\right]: v_{i} \text { orthogonal }\right\}
\end{aligned}
$$

Test functions

- u_{i} - eigenfunctions of a suspected extremizer D^{*}.
- U - isometry of the extremizer (isometry group irreducible)
- T - "semi-linear" volume-preserving transformation from D onto extremizing domain D^{*}

Our method for eigenvalues

Rayleigh quotient

$$
\begin{aligned}
R[v] & =\frac{\int_{D}|\nabla v|^{2} d x}{\int_{D}|v|^{2} d x}, \\
\lambda_{1}+\cdots+\lambda_{n} & =\inf \left\{R\left[v_{1}\right]+\cdots+R\left[v_{n}\right]: v_{i} \text { orthogonal }\right\}
\end{aligned}
$$

Test functions

- u_{i} - eigenfunctions of a suspected extremizer D^{*}.
- U - isometry of the extremizer (isometry group irreducible)
- T - "semi-linear" volume-preserving transformation from D onto extremizing domain D^{*}
- $v_{i}=u_{i} \circ U \circ T$ - test function

Our method for eigenvalues

Rayleigh quotient

$$
\begin{aligned}
R[v] & =\frac{\int_{D}|\nabla v|^{2} d x}{\int_{D}|v|^{2} d x}, \\
\lambda_{1}+\cdots+\lambda_{n} & =\inf \left\{R\left[v_{1}\right]+\cdots+R\left[v_{n}\right]: v_{i} \text { orthogonal }\right\}
\end{aligned}
$$

Test functions

- u_{i} - eigenfunctions of a suspected extremizer D^{*}.
- U - isometry of the extremizer (isometry group irreducible)
- T - "semi-linear" volume-preserving transformation from D onto extremizing domain D^{*}
- $v_{i}=u_{i} \circ U \circ T$ - test function

Averaging over isometries

$$
\sum_{i=1}^{n} \lambda_{i}(D) \leq \sum_{i=1}^{n} R\left[u_{i} \circ U \circ T\right]
$$

Our method for eigenvalues

Rayleigh quotient

$$
\begin{aligned}
R[v] & =\frac{\int_{D}|\nabla v|^{2} d x}{\int_{D}|v|^{2} d x}, \\
\lambda_{1}+\cdots+\lambda_{n} & =\inf \left\{R\left[v_{1}\right]+\cdots+R\left[v_{n}\right]: v_{i} \text { orthogonal }\right\}
\end{aligned}
$$

Test functions

- u_{i} - eigenfunctions of a suspected extremizer D^{*}.
- U - isometry of the extremizer (isometry group irreducible)
- T - "semi-linear" volume-preserving transformation from D onto extremizing domain D^{*}
- $v_{i}=u_{i} \circ U \circ T$ - test function

Averaging over isometries

$$
\sum_{i=1}^{n} \lambda_{i}(D) \leq f_{U} \sum_{i=1}^{n} R\left[u_{i} \circ U \circ T\right]
$$

Our method for eigenvalues

Rayleigh quotient

$$
\begin{aligned}
R[v] & =\frac{\int_{D}|\nabla v|^{2} d x}{\int_{D}|v|^{2} d x}, \\
\lambda_{1}+\cdots+\lambda_{n} & =\inf \left\{R\left[v_{1}\right]+\cdots+R\left[v_{n}\right]: v_{i} \text { orthogonal }\right\}
\end{aligned}
$$

Test functions

- u_{i} - eigenfunctions of a suspected extremizer D^{*}.
- U - isometry of the extremizer (isometry group irreducible)
- T - "semi-linear" volume-preserving transformation from D onto extremizing domain D^{*}
- $v_{i}=u_{i} \circ U \circ T$ - test function

Averaging over isometries

$$
\sum_{i=1}^{n} \lambda_{i}(D) \leq f_{U} \sum_{i=1}^{n} R\left[u_{i} \circ U \circ T\right]=C(T) \sum_{i=1}^{n} R\left[u_{i}\right]=C(T) \sum_{i=1}^{n} \lambda_{i}\left(D^{*}\right)
$$

Linear maps, fractional Laplacian and symmetric domains

- T-linear map
- D^{*} - extremizer with any irreducible isometry group (regular polygons, regular solids, ball)
- $\lambda_{i}^{(\alpha)}$ - eigenvalues of fractional Laplacian

Linear maps, fractional Laplacian and symmetric domains

- T-linear map
- D^{*} - extremizer with any irreducible isometry group (regular polygons, regular solids, ball)
- $\lambda_{i}^{(\alpha)}$ - eigenvalues of fractional Laplacian

Theorem (2D statement, A - area, I - moment of inertia (2010))
Suppose that $D=T^{-1}\left(D^{*}\right)$.

$$
\left(\lambda_{1}^{(\alpha)}(D)+\cdots+\lambda_{n}^{(\alpha)}(D)\right)^{2 / \alpha} A \frac{A^{2}}{l} \text { is maximal for } D^{*}(T=c \mathbb{I})
$$

Linear maps, fractional Laplacian and symmetric domains

- T - linear map
- D^{*} - extremizer with any irreducible isometry group (regular polygons, regular solids, ball)
- $\lambda_{i}^{(\alpha)}$ - eigenvalues of fractional Laplacian

Theorem (2D statement, A - area, I - moment of inertia (2010))
Suppose that $D=T^{-1}\left(D^{*}\right)$.

$$
\left(\lambda_{1}^{(\alpha)}(D)+\cdots+\lambda_{n}^{(\alpha)}(D)\right)^{2 / \alpha} A \frac{A^{2}}{l} \text { is maximal for } D^{*}(T=c \mathbb{I})
$$

Examples

- All rectangles are extremal for $\lambda_{1}^{(2)}$ among parallelograms.

Linear maps, fractional Laplacian and symmetric domains

- T - linear map
- D^{*} - extremizer with any irreducible isometry group (regular polygons, regular solids, ball)
- $\lambda_{i}^{(\alpha)}$ - eigenvalues of fractional Laplacian

Theorem (2D statement, A - area, I - moment of inertia (2010))
Suppose that $D=T^{-1}\left(D^{*}\right)$.

$$
\left(\lambda_{1}^{(\alpha)}(D)+\cdots+\lambda_{n}^{(\alpha)}(D)\right)^{2 / \alpha} A \frac{A^{2}}{l} \text { is maximal for } D^{*}(T=c \mathbb{I})
$$

Examples

- All rectangles are extremal for $\lambda_{1}^{(2)}$ among parallelograms.
- Tetrahedron is the only extremizer among simplexes.
- Ball is the only extremizer among ellipsoids.

Area-preserving maps, Laplacian and star-like domains

Area-preserving maps, Laplacian and star-like domains

Area-preserving means $R(\theta)^{2} d \theta=d \phi$.

Area-preserving maps, Laplacian and star-like domains

Area-preserving means $R(\theta)^{2} d \theta=d \phi$.
Averaging is very challenging here. We get 2 geometric factors:

$$
G_{0}=\frac{1}{2 \pi} \int_{\partial \Omega} \frac{1}{x \cdot N(x)} d s(x) \geq 1, \quad G_{1}=\frac{2 \pi I}{A^{2}} \geq 1 .
$$

Area-preserving maps, Laplacian and star-like domains

Area-preserving means $R(\theta)^{2} d \theta=d \phi$.
Averaging is very challenging here. We get 2 geometric factors:

$$
G_{0}=\frac{1}{2 \pi} \int_{\partial \Omega} \frac{1}{x \cdot N(x)} d s(x) \geq 1, \quad G_{1}=\frac{2 \pi I}{A^{2}} \geq 1 .
$$

Theorem (Laugesen-S. 2012)

Among starlike plane domains D

$$
\lambda_{1} A / G_{0} \quad \text { AND } \quad\left(\lambda_{1}+\cdots+\lambda_{n}\right) A / \max \left\{G_{0}, G_{1}\right\}
$$

are maximal for centered balls.

From eigenvalues to traces

Theorem (Majorization: Hardy, Littlewood, Pólya)
If $a_{1} \leq a_{2} \leq a_{3} \leq \cdots$ and $b_{1} \leq b_{2} \leq b_{3} \leq \cdots$ and

$$
a_{1}+\cdots+a_{n} \leq b_{1}+\cdots+b_{n} \quad \forall n \geq 1
$$

then

$$
\Phi\left(a_{1}\right)+\cdots+\Phi\left(a_{n}\right) \leq \Phi\left(b_{1}\right)+\cdots+\Phi\left(b_{n}\right) \quad \forall n \geq 1
$$

for all concave increasing functions Φ.

From eigenvalues to traces

Theorem (Majorization: Hardy, Littlewood, Pólya)
If $a_{1} \leq a_{2} \leq a_{3} \leq \cdots$ and $b_{1} \leq b_{2} \leq b_{3} \leq \cdots$ and

$$
a_{1}+\cdots+a_{n} \leq b_{1}+\cdots+b_{n} \quad \forall n \geq 1
$$

then

$$
\Phi\left(a_{1}\right)+\cdots+\Phi\left(a_{n}\right) \leq \Phi\left(b_{1}\right)+\cdots+\Phi\left(b_{n}\right) \quad \forall n \geq 1
$$

for all concave increasing functions Φ.

Used on eigenvalues gives the following bounds:

- lower for heat traces: $\Phi(x)=-e^{-c x}$,

From eigenvalues to traces

Theorem (Majorization: Hardy, Littlewood, Pólya)
If $a_{1} \leq a_{2} \leq a_{3} \leq \cdots$ and $b_{1} \leq b_{2} \leq b_{3} \leq \cdots$ and

$$
a_{1}+\cdots+a_{n} \leq b_{1}+\cdots+b_{n} \quad \forall n \geq 1
$$

then

$$
\Phi\left(a_{1}\right)+\cdots+\Phi\left(a_{n}\right) \leq \Phi\left(b_{1}\right)+\cdots+\Phi\left(b_{n}\right) \quad \forall n \geq 1
$$

for all concave increasing functions Φ.

Used on eigenvalues gives the following bounds:

- lower for heat traces: $\Phi(x)=-e^{-c x}$,
- lower for spectral zeta function: $\Phi(x)=-1 / x^{s}$ with $s>0$,
- upper for products: $\Phi(x)=\ln x$,
- upper for sloshing in cylinders: $\Phi(x)=\sqrt{x} \tanh (c \sqrt{x})$.

Our scaling factors and expected exit time

Easy bounds

$$
\begin{aligned}
& \mathbf{E}^{x}\left(\tau_{D}\right) \geq \mathbf{E}^{x}\left(\tau_{B}\right) \quad(\text { more killing in } B) \\
& \left.\mathbf{E}^{x}\left(\tau_{D}\right) \leq \mathbf{E}^{x}\left(\tau_{B}\right) \quad \text { (less killing in } B\right)
\end{aligned}
$$

Our scaling factors and expected exit time

Easy bounds

$$
\begin{array}{ll}
\mathbf{E}^{x}\left(\tau_{D}\right) \geq \mathbf{E}^{x}\left(\tau_{B}\right) & (\text { more killing in } B) \\
\mathbf{E}^{x}\left(\tau_{D}\right) \leq \mathbf{E}^{x}\left(\tau_{B}\right) & \text { (less killing in } B)
\end{array}
$$

Symmetrization

$$
\mathbf{E}^{x}\left(\tau_{D}\right) \leq \mathbf{E}^{0}\left(\tau_{D^{*}}\right)
$$

Our scaling factors and expected exit time

Easy bounds

$$
\begin{array}{ll}
\mathbf{E}^{x}\left(\tau_{D}\right) \geq \mathbf{E}^{x}\left(\tau_{B}\right) & (\text { more killing in } B) \\
\mathbf{E}^{x}\left(\tau_{D}\right) \leq \mathbf{E}^{x}\left(\tau_{B}\right) & \text { (less killing in } B)
\end{array}
$$

Symmetrization

$$
\mathbf{E}^{x}\left(\tau_{D}\right) \leq \mathbf{E}^{0}\left(\tau_{D^{*}}\right)
$$

Can we get a lower bound?

$$
\mathbf{E}^{0}\left(\tau_{D}\right) \geq \mathbf{E}^{0}\left(\tau_{D^{*} / G}\right)
$$

Our scaling factors and expected exit time

Easy bounds

$$
\begin{aligned}
& \left.\mathbf{E}^{x}\left(\tau_{D}\right) \geq \mathbf{E}^{x}\left(\tau_{B}\right) \quad \text { (more killing in } B\right) \\
& \left.\mathbf{E}^{x}\left(\tau_{D}\right) \leq \mathbf{E}^{x}\left(\tau_{B}\right) \quad \text { (less killing in } B\right)
\end{aligned}
$$

Symmetrization

$$
\mathbf{E}^{x}\left(\tau_{D}\right) \leq \mathbf{E}^{0}\left(\tau_{D^{*}}\right)
$$

Can we get a lower bound?

$$
\mathbf{E}^{0}\left(\tau_{D}\right) \geq \mathbf{E}^{0}\left(\tau_{D^{*} / G}\right)
$$

This is actually exact formula for the expected exit time from ellipse!

Our scaling factors and expected exit time

Easy bounds

$$
\begin{array}{ll}
\mathbf{E}^{X}\left(\tau_{D}\right) \geq \mathbf{E}^{x}\left(\tau_{B}\right) & (\text { more killing in } B) \\
\mathbf{E}^{x}\left(\tau_{D}\right) \leq \mathbf{E}^{x}\left(\tau_{B}\right) & (\text { less killing in } B)
\end{array}
$$

Symmetrization

$$
\mathbf{E}^{x}\left(\tau_{D}\right) \leq \mathbf{E}^{0}\left(\tau_{D^{*}}\right)
$$

Can we get a lower bound?

$$
\mathbf{E}^{0}\left(\tau_{D}\right) \geq \mathbf{E}^{0}\left(\tau_{D^{*} / G}\right)
$$

This is actually exact formula for the expected exit time from ellipse!
Can we get an off-center lower bound?

$$
\mathbf{E}^{x}\left(\tau_{D}\right) \geq \mathbf{E}^{0}\left(\tau_{D^{*} / G_{x}}\right)
$$

