On solutions of linear stochastic equations in the

critical case.

Dariusz Buraczewski
University of Wroctaw

joint with Konrad Kolesko (Wroctaw)

Bedlewo, 13 IX 2012



I. Random difference equation
X =4 AX + B,

where X and (A, B) are independent



I. Random difference equation
X =4 AX + B,

where X and (A, B) are independent

Il. Homogeneous linear equation / smoothing transform

N
X =4 Z A X,
i—1

X; are independent copies of X; {X;} and {N, Ay, .., An} are independent



I. Random difference equation
X =4 AX + B,

where X and (A, B) are independent

Il. Homogeneous linear equation / smoothing transform

N
X =4 Z A X,
i—1

X; are independent copies of X; {X;} and {N, Ay, .., An} are independent

I1l. Inhomogeneous linear equation / smoothing transform

N
X =4 AiXi+B,
i=1
X; are independent copies of X;
{X;} and {N, B, Ay, .., Ay} are independent



I. Random difference equation
X =4 AX + B,

where X and (A, B) are independent

Il. Homogeneous linear equation / smoothing transform

N
X =4 Z A X,
i—1

X; are independent copies of X; {X;} and {N, Ay, .., An} are independent

I1l. Inhomogeneous linear equation / smoothing transform

N
X =4 AiXi+B,
i=1

X; are independent copies of X;
{X;} and {N, B, Ay, .., Ay} are independent

Problem: Find solutions and describe their tails



I. Random difference equation
X =4 AX + B,

where X and (A, B) are independent

Il. Homogeneous linear equation / smoothing transform

N
X =4 Z A X,
i—1

X; are independent copies of X; {X;} and {N, Ay, .., An} are independent

I1l. Inhomogeneous linear equation / smoothing transform

N
X =4 AiXi+B,
i=1

X; are independent copies of X;
{X;} and {N, B, Ay, .., Ay} are independent

Problem: Find solutions and describe their tails

We assume that all the random variables are positive
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The critical case: ¢'(0) = Elog A= 0.

Then equation X =4 AX 4+ B has no solutions. Let us write this equation
in terms of measures, i.e i - the law of (A, B), v-the law of X, then
equation | is equivalent to p x v = v,

/ /fax+b)duabdu /f Ydv(x
R+ xR

Theorem [Babillot, Bougerol, Elie, 1997] If Elog A =0,

E[(|log A| + log™ |B])?>*¢] < o0 and ..., then there exists a unique (up to
a constant factor) p-invariant Radon measure v on R

(v(R) = 00).Moreover v(ax, Bx) ~ Iogg L(x).

Theorem [Brofferio, Damek, B.]

lim v(ax, Bx] = Iogé C,, v(dx) ~ C+dX,

X—+00 (e X
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Define ¢(s) = [, Af].
Durrett, Liggett (1983) and Liu (1998) proved

@ Equation Il has a solution if and only if for some « € (0, 1]:
¢p(a) =1and ¢'(a) <0

o If p(a) =1and ¢/'(a) <O fora <1, P[X >t]~t@
@ If p(a)=1and ¢'(a) =0fora <1, PX >t] ~logt t™@
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Theorem (Jelenkovic, Olvera-Cravioto, 2011) Assume that the
equation ¢(s) = 1 has two solutions a < 3 (then ¢'(a) < 0 and
¢'(B) > 0). If R is a solution of Ill defined above, then

C
P[R>t]Nt7,8

Positivity of C was proved recently by Damek, Zienkiewicz and B.
Summarizing: there is a family of solutions of equation IlI:

@ one is the minimal one R and P[R > t] ~ t=#

@ all the others are of the form R+ Y and P[R+ Y > t] ~ t™ ¢



L X =4 M AX + B. ¢(s) = E[XN, A

The critical case: we assume that the equation ¢(s) = 1 has exactly
one solution a. Then ¢/(a) =0



L X =4 M AX + B. ¢(s) = E[XN, A

The critical case: we assume that the equation ¢(s) = 1 has exactly
one solution a. Then ¢/(a) =0

Theorem (Kolesko, B.) Assume
@ there exists a € (0, 1) such that ¢(a) =1 and ¢'(a) = 0;
© E[N 4 Bt 370 (A7 + AP < oo
° ..

then R =3 _,M,B, is finite a.s. (thus is a solution of IIl) and

PR>t]~t™¢



L X =4 M AX + B. ¢(s) = E[XN, A

The critical case: we assume that the equation ¢(s) = 1 has exactly
one solution a. Then ¢/(a) =0

Theorem (Kolesko, B.) Assume
@ there exists a € (0, 1) such that ¢(a) =1 and ¢'(a) = 0;
o E[N'*? 4+ Bo+d + S (A% + APT0)] < o0;
o ..
then R =3 _,M,B, is finite a.s. (thus is a solution of IIl) and
PR>t]~t™¢
Summarizing: in the critical case there is a family of solutions of
equation IlI:
@ one is the minimal one R and P[R > t] ~ —a

log t
o

@ all the others are of the form R+ Y and P[R + Y > t] ~ =
([Durrett. Liggett], [Liu])



L X =4 M AX + B. ¢(s) = E[XN, A

The critical case: we assume that the equation ¢(s) = 1 has exactly
one solution a. Then ¢/(a) =0

Theorem (Kolesko, B.) Assume
@ there exists a € (0, 1) such that ¢(a) =1 and ¢'(a) = 0;
© E[N 4 Bt 370 (A7 + AP < oo
° ..

then R =3 _,M,B, is finite a.s. (thus is a solution of IIl) and
PR>t]~t™¢
Summarizing: in the critical case there is a family of solutions of
equation IlI:
@ one is the minimal one R and P[R > t] ~ —a
@ all the others are of the form R+ Y and PR+ Y > t] ~ I%t
([Durrett. Liggett], [Liu])

Remark: existence of a solution was proved by Alsmeyer and Meiners for
a < 1/5.
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Sketch of the proof

Let A(s) = E[e*F] be the Laplace transform of R. In view of the
Tauberian theorem:

1-A(s)

t*P[R > t] ~ L(t) as t — oo iff L(1/s) as s — 0,

it is sufficient to prove that D(x) = e**(1 — A(e ™)) = C as x = o0

Define new random variable:

E[h(Y {Z h(—log A;)A ]

Then N
EY = —E{ZA? : IogA,-] =—¢'(a)=0

i=1

We consider the Poisson equation:

D(x) = E[D(x + Y)] - G(x).
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Step 1: limy_, oo Dg&)ﬂ =1, Vy

D(x) =E[D(x+ Y)] — G(x).
We prove limy_oo G(x)/D(x) = 0.

We define hy(y) = D(x + y)/D(x), then the family h, is relatively
compact (in the topology of uniform convergence on compacts). We
write the Poisson equation at x + y and divide by D(x):

G(x+y)

he(y)-
Let h be any accumulation point, then passing with x to infinity
h(y) =Eh(y +Y).

Since h(0) =1 and h is positive: h = 1.
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Step 2.
We again look at the Poisson equation:

D(x) =E[D(x+ Y)] — G(x).
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Step 1: limy_, o0 Dg(i)y) =1 Vy

Step 2.
We again look at the Poisson equation:

D(x) =E[D(x+ Y)] — G(x).

We define the martingale M,(x) = D(x + S,) — .7+ —o G(x+S;), where
S; is a sum of independent i copies of Y.

7 =inf{n:S, > 0}, then for fixed n, n A 7 is a bounded stopping time.
By the optional stopping theorem

nAT—1

]E{ (x+ Sanr) — Z G(x+S;) } = E[Manr] = E[Mo(x)] = D(x).

We pass with n to infinity and use the duality lemma
(Th=inf{n> T,_1:5, < St,_,} - ladder times):

E[D(x+ S;)] — D(x) = E[Z G(x + ST,)} :
i=0
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T=inf{n:S, >0}, T,=inf{n>T,_1:5,<57,_,},

E[D(x + S.)] — [ZGanST}

Integrating both sides of equation above we get

/OX]E[[D(2+ST)] D(z}dz—/ {ZczjtsT}

EMST D(x+z)dz] :/OX]E[G*UTI(Z)]dzJFEUOST D(z)dz}

D(x+y)

Finally, since limy_. oo Do) = 1
_ D(x) . DKx) 1 > D(x + z)
= — E ——d.
xli)moo X xll[ro]o X EST /(; D(X) ‘
x G
_ ! lim 1 G« Ur(z)dz = __Je

ES, x50 x J, ES,E[-S7]
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Step 3: P[R>t] < £.

Recall R =3, MNyB,. Assume B, = 1.

Define R = max,e7 .
Define new random variable:

N
E[h(Y)] = E {Z h(— log A,-)A?‘] .

i=1

Then Y is a centered random variable with second moment. Let Y; be a
sequence of iid copies of Y and S, partial sums of Y;'s. Then by
induction we prove

E[e** (51, Sz, ., Sn)] = E[ > f(—logM,,,—logM.,, .., —logM,,)]|.

[v|=n
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E[e®>f(S1, Sz, ., Sn)] = E[ > f(~logM,,, —logN,,.... ~logM,,)|.

lv|=n

We have

P[R>t]=P M, >t
[R > 1] = P[maxT, > 1]

S ZE|: Z 1{|'|ﬂ/1<t7,,’|'|%1<t,|'|-y,1>t}:|

[vI=n

= E ]E|: E 1{—Iog|'|«,1>—Iogt,--,—|0gn“/n_1>_|°gf7—|°gn%<_|°gt}:|

n |’y‘:n

S -
= ZE{GQ 1{51>—logt,..,sn_1>—Iogt,$n<—logt}] st
n
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lv|=n
It is sufficient to prove that P[R > t,R < t] < £.

P[R > t,R < t]_P{Z M, >tand A{mea7>5|'l,y < t}
yeT

S ]P)|: Z I_I’Yl{n,ylgt for'y’gry} > t:|
YET

1
< ;]E { Z n,yl{nv,gt for v’<7}]
yeT

1 _
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E[e*>f (51,5, ..,Sn)] = ]E[ > f(—logN,,, —logM,,, .., log n%)}
lv|=n
It is sufficient to prove that P[R > t,R < t] < £.

P[R > t,R < t]_P{Z M, >tand A{mea7>5|'l,y < t}
yeT

S ]P)|: Z I_Iﬂyl{n,ylgt for'y’gry} > t:|
YET

1
< ;]E { Z n,yl{nv,gt for v’<7}]
yeT

1 _
= " Z E {eas"e Snl{—Skglogt for k<n}:|

1 —« a— [o]
_ ;tl Z]E[e( 1)(Sp+! gt)l{SkJrIog £<0 forkgn}]

Finally we have to prove that for a centered random walk S, the function
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Finally we have to prove that for a centered random walk S, the function

R(x) = E{Z e_(x+5”)1{sj+xzo forj<n}:| is bounded
n=0

Let 7 =inf{n: S, < 0}. Then

R(x)=E [ Z e_(x+s")1{s,+xzo forj<n}:|
n=0

o0

T—1
=E { Z ei(x+5")1{5j+x20 forJSn}} +E { Z ei(x+s")1{5j+xzo forjgn}]

n=0 n=t

T—1 00
=E [ Z e_(XJrS")} Loy +E {Z e_(x+s")1{sj+x20 forjgn}]

n=0 n=1
T—1
=E l:z 6_5":| e_X].{XZ()} + E[R(X + ST)]
n=0
= Ce L0y + E[R(x + 5,)]

Thus, R = U  f, where U is the potential and f(x) = e 1,0} and by
the renewal theorem the function R is bounded.



