On solutions of linear stochastic equations in the critical case.

Dariusz Buraczewski
University of Wrocław
joint with Konrad Kolesko (Wrocław)

Będlewo, 13 IX 2012
I. Random difference equation

$$
X={ }_{d} A X+B,
$$

where X and (A, B) are independent

I．Random difference equation

$$
X={ }_{d} A X+B
$$

where X and (A, B) are independent
II．Homogeneous linear equation／smoothing transform

$$
X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}
$$

X_{i} are independent copies of $X ;\left\{X_{i}\right\}$ and $\left\{N, A_{1}, . ., A_{N}\right\}$ are independent
I. Random difference equation

$$
X={ }_{d} A X+B,
$$

where X and (A, B) are independent
II. Homogeneous linear equation / smoothing transform

$$
X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}
$$

X_{i} are independent copies of $X ;\left\{X_{i}\right\}$ and $\left\{N, A_{1}, . ., A_{N}\right\}$ are independent
III. Inhomogeneous linear equation / smoothing transform

$$
X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B
$$

X_{i} are independent copies of X;
$\left\{X_{i}\right\}$ and $\left\{N, B, A_{1}, . ., A_{N}\right\}$ are independent
I. Random difference equation

$$
X={ }_{d} A X+B,
$$

where X and (A, B) are independent
II. Homogeneous linear equation / smoothing transform

$$
X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}
$$

X_{i} are independent copies of $X ;\left\{X_{i}\right\}$ and $\left\{N, A_{1}, . ., A_{N}\right\}$ are independent
III. Inhomogeneous linear equation / smoothing transform

$$
X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B
$$

X_{i} are independent copies of X;
$\left\{X_{i}\right\}$ and $\left\{N, B, A_{1}, . ., A_{N}\right\}$ are independent
Problem: Find solutions and describe their tails
I. Random difference equation

$$
X={ }_{d} A X+B,
$$

where X and (A, B) are independent
II. Homogeneous linear equation / smoothing transform

$$
X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}
$$

X_{i} are independent copies of $X ;\left\{X_{i}\right\}$ and $\left\{N, A_{1}, . ., A_{N}\right\}$ are independent
III. Inhomogeneous linear equation / smoothing transform

$$
X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B
$$

X_{i} are independent copies of X;
$\left\{X_{i}\right\}$ and $\left\{N, B, A_{1}, . ., A_{N}\right\}$ are independent
Problem: Find solutions and describe their tails
We assume that all the random variables are positive
I.

$$
X={ }_{d} A X+B
$$

Define $\phi(s)=\mathbb{E} A^{s}$.
I.

$$
X={ }_{d} A X+B
$$

Define $\phi(s)=\mathbb{E} A^{s}$.

- If $\mathbb{E} \log A=\phi^{\prime}(0)<0$ and $\mathbb{E} \log ^{+}|B|<\infty$, then equation I possesses a unique solution.

I．

$$
X={ }_{d} A X+B
$$

Define $\phi(s)=\mathbb{E} A^{s}$ ．
－If $\mathbb{E} \log A=\phi^{\prime}(0)<0$ and $\mathbb{E} \log ^{+}|B|<\infty$ ，then equation I possesses a unique solution．
－If moreover $\phi(\alpha)=1$ for some $\alpha>0$ and ．．，then $\mathbb{P}[X>t] \sim t^{-\alpha}$ （Kesten 73，Grincevicius 75，Goldie 91）
I.

$$
X={ }_{d} A X+B
$$

Define $\phi(s)=\mathbb{E} A^{s}$.
The critical case: $\phi^{\prime}(0)=\mathbb{E} \log A=0$.
Then equation $X={ }_{d} A X+B$ has no solutions.
I.

$$
X={ }_{d} A X+B
$$

Define $\phi(s)=\mathbb{E} A^{s}$.
The critical case: $\phi^{\prime}(0)=\mathbb{E} \log A=0$.
Then equation $X={ }_{d} A X+B$ has no solutions. Let us write this equation in terms of measures, i.e μ - the law of $(A, B), \nu$-the law of X, then equation I is equivalent to $\mu * \nu=\nu$,

$$
\int_{\mathbb{R}^{+} \times \mathbb{R}} \int_{\mathbb{R}} f(a x+b) d \mu(a, b) d \nu(x)=\int_{\mathbb{R}} f(x) d \nu(x)
$$

I.

$$
X={ }_{d} A X+B
$$

Define $\phi(s)=\mathbb{E} A^{s}$.
The critical case: $\phi^{\prime}(0)=\mathbb{E} \log A=0$.
Then equation $X={ }_{d} A X+B$ has no solutions. Let us write this equation in terms of measures, i.e μ - the law of $(A, B), \nu$-the law of X, then equation I is equivalent to $\mu * \nu=\nu$,

$$
\int_{\mathbb{R}^{+} \times \mathbb{R}} \int_{\mathbb{R}} f(a x+b) d \mu(a, b) d \nu(x)=\int_{\mathbb{R}} f(x) d \nu(x)
$$

Theorem [Babillot, Bougerol, Elie, 1997] If $\mathbb{E} \log A=0$, $\mathbb{E}\left[\left(|\log A|+\log ^{+}|B|\right)^{2+\varepsilon}\right]<\infty$ and \ldots, then there exists a unique (up to a constant factor) μ-invariant Radon measure ν on \mathbb{R} $(\nu(\mathbb{R})=\infty)$.
I.

$$
X={ }_{d} A X+B
$$

Define $\phi(s)=\mathbb{E} A^{s}$.
The critical case: $\phi^{\prime}(0)=\mathbb{E} \log A=0$.
Then equation $X={ }_{d} A X+B$ has no solutions. Let us write this equation in terms of measures, i.e μ - the law of $(A, B), \nu$-the law of X, then equation I is equivalent to $\mu * \nu=\nu$,

$$
\int_{\mathbb{R}^{+} \times \mathbb{R}} \int_{\mathbb{R}} f(a x+b) d \mu(a, b) d \nu(x)=\int_{\mathbb{R}} f(x) d \nu(x)
$$

Theorem [Babillot, Bougerol, Elie, 1997] If $\mathbb{E} \log A=0$, $\mathbb{E}\left[\left(|\log A|+\log ^{+}|B|\right)^{2+\varepsilon}\right]<\infty$ and \ldots, then there exists a unique (up to a constant factor) μ-invariant Radon measure ν on \mathbb{R} $(\nu(\mathbb{R})=\infty)$. Moreover $\nu(\alpha x, \beta x) \sim \log \frac{\beta}{\alpha} L(x)$.
I.

$$
X={ }_{d} A X+B
$$

Define $\phi(s)=\mathbb{E} A^{s}$.
The critical case: $\phi^{\prime}(0)=\mathbb{E} \log A=0$.
Then equation $X={ }_{d} A X+B$ has no solutions. Let us write this equation in terms of measures, i.e μ - the law of $(A, B), \nu$-the law of X, then equation I is equivalent to $\mu * \nu=\nu$,

$$
\int_{\mathbb{R}^{+} \times \mathbb{R}} \int_{\mathbb{R}} f(a x+b) d \mu(a, b) d \nu(x)=\int_{\mathbb{R}} f(x) d \nu(x)
$$

Theorem [Babillot, Bougerol, Elie, 1997] If $\mathbb{E} \log A=0$, $\mathbb{E}\left[\left(|\log A|+\log ^{+}|B|\right)^{2+\varepsilon}\right]<\infty$ and \ldots, then there exists a unique (up to a constant factor) μ-invariant Radon measure ν on \mathbb{R}
$(\nu(\mathbb{R})=\infty)$. Moreover $\nu(\alpha x, \beta x) \sim \log \frac{\beta}{\alpha} L(x)$.
Theorem [Brofferio, Damek, B.]

$$
\lim _{x \rightarrow \infty} \nu(\alpha x, \beta x]=\log \frac{\beta}{\alpha} C_{+}, \quad \nu(d x) \sim \frac{C_{+} d x}{x} .
$$

II.

$$
X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}
$$

Define $\phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.
II.

$$
X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}
$$

Define $\phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.
Durrett, Liggett (1983) and Liu (1998) proved

- Equation II has a solution if and only if for some $\alpha \in(0,1]$: $\phi(\alpha)=1$ and $\phi^{\prime}(\alpha) \leq 0$
II.

$$
X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}
$$

Define $\phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.
Durrett, Liggett (1983) and Liu (1998) proved

- Equation II has a solution if and only if for some $\alpha \in(0,1]$: $\phi(\alpha)=1$ and $\phi^{\prime}(\alpha) \leq 0$
- If $\phi(\alpha)=1$ and $\phi^{\prime}(\alpha)<0$ for $\alpha<1, \mathbb{P}[X>t] \sim t^{-\alpha}$
- If $\phi(\alpha)=1$ and $\phi^{\prime}(\alpha)=0$ for $\alpha<1, \mathbb{P}[X>t] \sim \log t t^{-\alpha}$
III. $X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B . \phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.
III. $X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B . \phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.

Existence of solutions. Alsmeyer and Meiners (2011) proved that III has a solution if and only if the random variable
is finite a.s.

$$
R=\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} B_{\gamma}
$$

III．$X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B . \phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$ ．
Existence of solutions．Alsmeyer and Meiners（2011）proved that III has a solution if and only if the random variable
is finite a．s．

$$
R=\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} B_{\gamma}
$$

Notice that if Y solves equation II，then $\mathrm{R}+\mathrm{Y}$ is also a solution of III．
III. $X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B . \phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.

Existence of solutions. Alsmeyer and Meiners (2011) proved that III has a solution if and only if the random variable
is finite a.s.

$$
R=\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} B_{\gamma}
$$

Notice that if Y solves equation II, then $\mathrm{R}+\mathrm{Y}$ is also a solution of III. Alsmeyer and Meiners proved that if $\phi(s)<1$ for some $s<1$ then R is finite a.s. hence III has a solution.
III. $X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B . \phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.

Existence of solutions. Alsmeyer and Meiners (2011) proved that III has a solution if and only if the random variable
is finite a.s.

$$
R=\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} B_{\gamma}
$$

Notice that if Y solves equation II, then $\mathrm{R}+\mathrm{Y}$ is also a solution of III.
Alsmeyer and Meiners proved that if $\phi(s)<1$ for some $s<1$ then R is finite a.s. hence III has a solution.

Theorem (Jelenkovic, Olvera-Cravioto, 2011) Assume that the equation $\phi(s)=1$ has two solutions $\alpha<\beta$ (then $\phi^{\prime}(\alpha)<0$ and $\left.\phi^{\prime}(\beta)>0\right)$. If R is a solution of III defined above, then

$$
\mathbb{P}[R>t] \sim \frac{C}{t^{\beta}}
$$

Positivity of C was proved recently by Damek, Zienkiewicz and B.
III. $X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B . \phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.

Existence of solutions. Alsmeyer and Meiners (2011) proved that III has a solution if and only if the random variable
is finite a.s.

$$
R=\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} B_{\gamma}
$$

Notice that if Y solves equation II, then $\mathrm{R}+\mathrm{Y}$ is also a solution of III.
Alsmeyer and Meiners proved that if $\phi(s)<1$ for some $s<1$ then R is finite a.s. hence III has a solution.
Theorem (Jelenkovic, Olvera-Cravioto, 2011) Assume that the equation $\phi(s)=1$ has two solutions $\alpha<\beta$ (then $\phi^{\prime}(\alpha)<0$ and $\left.\phi^{\prime}(\beta)>0\right)$. If R is a solution of III defined above, then

$$
\mathbb{P}[R>t] \sim \frac{C}{t^{\beta}}
$$

Positivity of C was proved recently by Damek, Zienkiewicz and B. Summarizing: there is a family of solutions of equation III:

- one is the minimal one R and $\mathbb{P}[R>t] \sim t^{-\beta}$
- all the others are of the form $R+Y$ and $\mathbb{P}[R+Y>t] \sim t^{-\alpha}$
III. $X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B . \phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.

The critical case: we assume that the equation $\phi(s)=1$ has exactly one solution α. Then $\phi^{\prime}(\alpha)=0$
III. $X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B . \phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.

The critical case: we assume that the equation $\phi(s)=1$ has exactly one solution α. Then $\phi^{\prime}(\alpha)=0$
Theorem (Kolesko, B.) Assume

- there exists $\alpha \in(0,1)$ such that $\phi(\alpha)=1$ and $\phi^{\prime}(\alpha)=0$;
- $\mathbb{E}\left[N^{1+\delta}+B^{\alpha+\delta}+\sum_{i=1}^{N}\left(A_{i}^{-\delta}+A_{i}^{\alpha+\delta}\right)\right]<\infty$;
- ...
then $R=\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} B_{\gamma}$ is finite a.s. (thus is a solution of III) and

$$
\mathbb{P}[R>t] \sim t^{-\alpha}
$$

III. $X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B . \phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.

The critical case: we assume that the equation $\phi(s)=1$ has exactly one solution α. Then $\phi^{\prime}(\alpha)=0$

Theorem (Kolesko, B.) Assume

- there exists $\alpha \in(0,1)$ such that $\phi(\alpha)=1$ and $\phi^{\prime}(\alpha)=0$;
- $\mathbb{E}\left[N^{1+\delta}+B^{\alpha+\delta}+\sum_{i=1}^{N}\left(A_{i}^{-\delta}+A_{i}^{\alpha+\delta}\right)\right]<\infty$;
- ...
then $R=\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} B_{\gamma}$ is finite a.s. (thus is a solution of III) and

$$
\mathbb{P}[R>t] \sim t^{-\alpha}
$$

Summarizing: in the critical case there is a family of solutions of equation III:

- one is the minimal one R and $\mathbb{P}[R>t] \sim \frac{1}{t^{\alpha}}$
- all the others are of the form $R+Y$ and $\mathbb{P}[R+Y>t] \sim \frac{\log t}{t^{\alpha}}$ ([Durrett. Liggett], [Liu])
III. $X={ }_{d} \sum_{i=1}^{N} A_{i} X_{i}+B . \phi(s)=\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{s}\right]$.

The critical case: we assume that the equation $\phi(s)=1$ has exactly one solution α. Then $\phi^{\prime}(\alpha)=0$

Theorem (Kolesko, B.) Assume

- there exists $\alpha \in(0,1)$ such that $\phi(\alpha)=1$ and $\phi^{\prime}(\alpha)=0$;
- $\mathbb{E}\left[N^{1+\delta}+B^{\alpha+\delta}+\sum_{i=1}^{N}\left(A_{i}^{-\delta}+A_{i}^{\alpha+\delta}\right)\right]<\infty$;
- ...
then $R=\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} B_{\gamma}$ is finite a.s. (thus is a solution of III) and

$$
\mathbb{P}[R>t] \sim t^{-\alpha}
$$

Summarizing: in the critical case there is a family of solutions of equation III:

- one is the minimal one R and $\mathbb{P}[R>t] \sim \frac{1}{t^{\alpha}}$
- all the others are of the form $R+Y$ and $\mathbb{P}[R+Y>t] \sim \frac{\log t}{t^{\alpha}}$ ([Durrett. Liggett], [Liu])
Remark: existence of a solution was proved by Alsmeyer and Meiners for $\alpha<1 / 5$.

Sketch of the proof

Let $\Lambda(s)=\mathbb{E}\left[e^{-s R}\right]$ be the Laplace transform of R ．In view of the Tauberian theorem：

$$
t^{\alpha} P[R>t] \sim L(t) \text { as } t \rightarrow \infty \text { iff } \frac{1-\Lambda(s)}{s^{\alpha}} \sim L(1 / s) \text { as } s \rightarrow 0,
$$

it is sufficient to prove that $D(x)=e^{\alpha x}\left(1-\Lambda\left(e^{-x}\right)\right) \rightarrow C$ as $x \rightarrow \infty$

Let $\Lambda(s)=\mathbb{E}\left[e^{-s R}\right]$ be the Laplace transform of R. In view of the Tauberian theorem:

$$
t^{\alpha} P[R>t] \sim L(t) \text { as } t \rightarrow \infty \text { iff } \frac{1-\Lambda(s)}{s^{\alpha}} \sim L(1 / s) \text { as } s \rightarrow 0,
$$

it is sufficient to prove that $D(x)=e^{\alpha x}\left(1-\Lambda\left(e^{-x}\right)\right) \rightarrow C$ as $x \rightarrow \infty$ Define new random variable:

$$
\mathbb{E}[h(Y)]=\mathbb{E}\left[\sum_{i=1}^{N} h\left(-\log A_{i}\right) A_{i}^{\alpha}\right] .
$$

Then

$$
\mathbb{E} Y=-\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{\alpha} \cdot \log A_{i}\right]=-\phi^{\prime}(\alpha)=0
$$

Let $\Lambda(s)=\mathbb{E}\left[e^{-s R}\right]$ be the Laplace transform of R. In view of the Tauberian theorem:

$$
t^{\alpha} P[R>t] \sim L(t) \text { as } t \rightarrow \infty \text { iff } \frac{1-\Lambda(s)}{s^{\alpha}} \sim L(1 / s) \text { as } s \rightarrow 0,
$$

it is sufficient to prove that $D(x)=e^{\alpha x}\left(1-\Lambda\left(e^{-x}\right)\right) \rightarrow C$ as $x \rightarrow \infty$ Define new random variable:

$$
\mathbb{E}[h(Y)]=\mathbb{E}\left[\sum_{i=1}^{N} h\left(-\log A_{i}\right) A_{i}^{\alpha}\right] .
$$

Then

$$
\mathbb{E} Y=-\mathbb{E}\left[\sum_{i=1}^{N} A_{i}^{\alpha} \cdot \log A_{i}\right]=-\phi^{\prime}(\alpha)=0
$$

We consider the Poisson equation:

$$
D(x)=\mathbb{E}[D(x+Y)]-G(x)
$$

Step 1: $\lim _{x \rightarrow \infty} \frac{D(x+y)}{D(x)}=1, \forall y$

$$
D(x)=\mathbb{E}[D(x+Y)]-G(x)
$$

Step 1: $\lim _{x \rightarrow \infty} \frac{D(x+y)}{D(x)}=1, \forall y$

$$
D(x)=\mathbb{E}[D(x+Y)]-G(x)
$$

We prove $\lim _{x \rightarrow \infty} G(x) / D(x)=0$.

Step 1: $\lim _{x \rightarrow \infty} \frac{D(x+y)}{D(x)}=1, \forall y$

$$
D(x)=\mathbb{E}[D(x+Y)]-G(x)
$$

We prove $\lim _{x \rightarrow \infty} G(x) / D(x)=0$.
We define $h_{x}(y)=D(x+y) / D(x)$, then the family h_{x} is relatively compact (in the topology of uniform convergence on compacts). We write the Poisson equation at $x+y$ and divide by $D(x)$:

$$
h_{x}(y)=\mathbb{E}\left[h_{x}(y+Y)\right]-\frac{G(x+y)}{D(x+y)} h_{x}(y)
$$

Step 1: $\lim _{x \rightarrow \infty} \frac{D(x+y)}{D(x)}=1, \forall y$

$$
D(x)=\mathbb{E}[D(x+Y)]-G(x)
$$

We prove $\lim _{x \rightarrow \infty} G(x) / D(x)=0$.
We define $h_{x}(y)=D(x+y) / D(x)$, then the family h_{x} is relatively compact (in the topology of uniform convergence on compacts). We write the Poisson equation at $x+y$ and divide by $D(x)$:

$$
h_{x}(y)=\mathbb{E}\left[h_{x}(y+Y)\right]-\frac{G(x+y)}{D(x+y)} h_{x}(y)
$$

Let h be any accumulation point, then passing with x to infinity

$$
h(y)=\mathbb{E} h(y+Y) .
$$

Step 1: $\lim _{x \rightarrow \infty} \frac{D(x+y)}{D(x)}=1, \forall y$

$$
D(x)=\mathbb{E}[D(x+Y)]-G(x)
$$

We prove $\lim _{x \rightarrow \infty} G(x) / D(x)=0$.
We define $h_{x}(y)=D(x+y) / D(x)$, then the family h_{x} is relatively compact (in the topology of uniform convergence on compacts). We write the Poisson equation at $x+y$ and divide by $D(x)$:

$$
h_{x}(y)=\mathbb{E}\left[h_{x}(y+Y)\right]-\frac{G(x+y)}{D(x+y)} h_{x}(y)
$$

Let h be any accumulation point, then passing with x to infinity

$$
h(y)=\mathbb{E} h(y+Y) .
$$

Since $h(0)=1$ and h is positive: $h \equiv 1$.
$\mathbb{E}[h(Y)]=\mathbb{E}\left[\sum_{i=1}^{N} h\left(-\log A_{i}\right) A_{i}^{\alpha}\right]$.
Step 1: $\lim _{x \rightarrow \infty} \frac{D(x+y)}{D(x)}=1, \forall y$
$\mathbb{E}[h(Y)]=\mathbb{E}\left[\sum_{i=1}^{N} h\left(-\log A_{i}\right) A_{i}^{\alpha}\right]$.
Step 1: $\lim _{x \rightarrow \infty} \frac{D(x+y)}{D(x)}=1, \forall y$

Step 2.

We again look at the Poisson equation:

$$
D(x)=\mathbb{E}[D(x+Y)]-G(x) .
$$

$\mathbb{E}[h(Y)]=\mathbb{E}\left[\sum_{i=1}^{N} h\left(-\log A_{i}\right) A_{i}^{\alpha}\right]$.
Step 1: $\lim _{x \rightarrow \infty} \frac{D(x+y)}{D(x)}=1, \forall y$

Step 2.

We again look at the Poisson equation:

$$
D(x)=\mathbb{E}[D(x+Y)]-G(x) .
$$

We define the martingale $M_{n}(x)=D\left(x+S_{n}\right)-\sum_{i=0}^{n-1} G\left(x+S_{i}\right)$, where S_{i} is a sum of independent i copies of Y.
$\tau=\inf \left\{n: S_{n}>0\right\}$, then for fixed $n, n \wedge \tau$ is a bounded stopping time. By the optional stopping theorem

$$
\mathbb{E}\left[D\left(x+S_{n \wedge \tau}\right)-\sum_{i=0}^{n \wedge \tau-1} G\left(x+S_{i}\right)\right]=\mathbb{E}\left[M_{n \wedge \tau}\right]=\mathbb{E}\left[M_{0}(x)\right]=D(x)
$$

$\mathbb{E}[h(Y)]=\mathbb{E}\left[\sum_{i=1}^{N} h\left(-\log A_{i}\right) A_{i}^{\alpha}\right]$.
Step 1: $\lim _{x \rightarrow \infty} \frac{D(x+y)}{D(x)}=1, \forall y$

Step 2.

We again look at the Poisson equation:

$$
D(x)=\mathbb{E}[D(x+Y)]-G(x) .
$$

We define the martingale $M_{n}(x)=D\left(x+S_{n}\right)-\sum_{i=0}^{n-1} G\left(x+S_{i}\right)$, where S_{i} is a sum of independent i copies of Y.
$\tau=\inf \left\{n: S_{n}>0\right\}$, then for fixed $n, n \wedge \tau$ is a bounded stopping time.
By the optional stopping theorem

$$
\mathbb{E}\left[D\left(x+S_{n \wedge \tau}\right)-\sum_{i=0}^{n \wedge \tau-1} G\left(x+S_{i}\right)\right]=\mathbb{E}\left[M_{n \wedge \tau}\right]=\mathbb{E}\left[M_{0}(x)\right]=D(x)
$$

We pass with n to infinity and use the duality lemma ($T_{n}=\inf \left\{n>T_{n-1}: S_{n} \leq S_{T_{n-1}}\right\}$ - ladder times):

$$
\mathbb{E}\left[D\left(x+S_{\tau}\right)\right]-D(x)=\mathbb{E}\left[\sum_{i=0}^{\infty} G\left(x+S_{T_{i}}\right)\right] .
$$

$\tau=\inf \left\{n: S_{n}>0\right\}, T_{n}=\inf \left\{n>T_{n-1}: S_{n} \leq S_{T_{n-1}}\right\}$,

$$
\mathbb{E}\left[D\left(x+S_{\tau}\right)\right]-D(x)=\mathbb{E}\left[\sum_{i=0}^{\infty} G\left(x+S_{T_{i}}\right)\right] .
$$

$\tau=\inf \left\{n: S_{n}>0\right\}, T_{n}=\inf \left\{n>T_{n-1}: S_{n} \leq S_{T_{n-1}}\right\}$,

$$
\mathbb{E}\left[D\left(x+S_{\tau}\right)\right]-D(x)=\mathbb{E}\left[\sum_{i=0}^{\infty} G\left(x+S_{T_{i}}\right)\right] .
$$

Integrating both sides of equation above we get

$$
\begin{aligned}
& \int_{0}^{x} \mathbb{E}\left[\left[D\left(z+S_{\tau}\right)\right]-D(z)\right] d z=\int_{0}^{x} \mathbb{E}\left[\sum_{i=0}^{\infty} G\left(z+S_{T_{i}}\right)\right] d z . \\
& \mathbb{E}\left[\int_{0}^{S_{\tau}} D(x+z) d z\right]=\int_{0}^{x} \mathbb{E}\left[G * U_{T_{1}}(z)\right] d z+\mathbb{E}\left[\int_{0}^{S_{\tau}} D(z) d z\right] .
\end{aligned}
$$

$\tau=\inf \left\{n: S_{n}>0\right\}, T_{n}=\inf \left\{n>T_{n-1}: S_{n} \leq S_{T_{n-1}}\right\}$,

$$
\mathbb{E}\left[D\left(x+S_{\tau}\right)\right]-D(x)=\mathbb{E}\left[\sum_{i=0}^{\infty} G\left(x+S_{T_{i}}\right)\right] .
$$

Integrating both sides of equation above we get

$$
\begin{aligned}
& \int_{0}^{x} \mathbb{E}\left[\left[D\left(z+S_{\tau}\right)\right]-D(z)\right] d z=\int_{0}^{x} \mathbb{E}\left[\sum_{i=0}^{\infty} G\left(z+S_{T_{i}}\right)\right] d z . \\
& \mathbb{E}\left[\int_{0}^{S_{\tau}} D(x+z) d z\right]=\int_{0}^{x} \mathbb{E}\left[G * U_{T_{1}}(z)\right] d z+\mathbb{E}\left[\int_{0}^{S_{\tau}} D(z) d z\right] .
\end{aligned}
$$

Finally, since $\lim _{x \rightarrow \infty} \frac{D(x+y)}{D(x)}=1$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{D(x)}{x}=\lim _{x \rightarrow \infty} & \frac{D(x)}{x} \frac{1}{\mathbb{E} S_{\tau}} \mathbb{E}\left[\int_{0}^{S_{\tau}} \frac{D(x+z)}{D(x)} d z\right] \\
& =\frac{1}{\mathbb{E} S_{\tau}} \lim _{x \rightarrow \infty} \frac{1}{x} \int_{0}^{x} G * U_{T_{1}}(z) d z=\frac{\int G}{\mathbb{E} S_{\tau} \mathbb{E}\left[-S_{T_{1}}\right]}
\end{aligned}
$$

We have just proved

$$
\frac{D(x)}{x} \rightarrow \frac{\int G}{\sigma^{2}}=C_{1}
$$

We have just proved

$$
\frac{D(x)}{x} \rightarrow \frac{\int G}{\sigma^{2}}=C_{1}
$$

We want to prove $D(x) \rightarrow C_{2}$.

We have just proved

$$
\frac{D(x)}{x} \rightarrow \frac{\int G}{\sigma^{2}}=C_{1}
$$

We want to prove $D(x) \rightarrow C_{2}$.
If $\int G=0$, then $D(x) \rightarrow \frac{2 \int x G(x) d x}{\sigma^{2}}=C_{2}$.

We have just proved

$$
\frac{D(x)}{x} \rightarrow \frac{\int G}{\sigma^{2}}=C_{1}
$$

We want to prove $D(x) \rightarrow C_{2}$.
If $\int G=0$, then $D(x) \rightarrow \frac{2 \int x G(x) d x}{\sigma^{2}}=C_{2}$.
Next we prove that $C_{1}+C_{2}>0$, thus either $\mathbb{P}[R>t] \sim \frac{C_{1} \log t}{t^{\alpha}}$ or $\mathbb{P}[R>t] \sim \frac{C_{2}}{t^{\alpha}}$

Either $\mathbb{P}[R>t] \sim \frac{C_{1} \log t}{t^{\alpha}}$ or $\mathbb{P}[R>t] \sim \frac{C_{2}}{t^{\alpha}}$

Either $\mathbb{P}[R>t] \sim \frac{C_{1} \log t}{t^{\alpha}}$ or $\mathbb{P}[R>t] \sim \frac{C_{2}}{t^{\alpha}}$ Step 3: $\mathbb{P}[R>t] \leq \frac{c}{t^{\alpha}}$.

Either $\mathbb{P}[R>t] \sim \frac{C_{1} \log t}{t^{\alpha}}$ or $\mathbb{P}[R>t] \sim \frac{C_{2}}{t^{\alpha}}$
Step 3: $\mathbb{P}[R>t] \leq \frac{C}{t^{\alpha}}$.
Recall $R=\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} B_{\gamma}$. Assume $B_{\gamma}=1$.

Either $\mathbb{P}[R>t] \sim \frac{C_{1} \log t}{t^{\alpha}}$ or $\mathbb{P}[R>t] \sim \frac{C_{2}}{t^{\alpha}}$
Step 3: $\mathbb{P}[R>t] \leq \frac{c}{t^{\alpha}}$.
Recall $R=\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} B_{\gamma}$. Assume $B_{\gamma}=1$.
Define $\tilde{R}=\max _{\gamma \in \mathcal{T}} \Pi_{\gamma}$.
Define new random variable:

$$
\mathbb{E}[h(Y)]=\mathbb{E}\left[\sum_{i=1}^{N} h\left(-\log A_{i}\right) A_{i}^{\alpha}\right] .
$$

Then Y is a centered random variable with second moment. Let Y_{i} be a sequence of iid copies of Y and S_{n} partial sums of Y_{i} 's. Then by induction we prove

$$
\mathbb{E}\left[e^{\alpha S_{n}} f\left(S_{1}, S_{2}, . ., S_{n}\right)\right]=\mathbb{E}\left[\sum_{|\gamma|=n} f\left(-\log \Pi_{\gamma_{1}},-\log \Pi_{\gamma_{2}}, . .,-\log \Pi_{\gamma_{n}}\right)\right]
$$

$$
\mathbb{E}\left[e^{\alpha S_{n}} f\left(S_{1}, S_{2}, . ., S_{n}\right)\right]=\mathbb{E}\left[\sum_{|\gamma|=n} f\left(-\log \Pi_{\gamma_{1}},-\log \Pi_{\gamma_{2}}, . .,-\log \Pi_{\gamma_{n}}\right)\right] .
$$

$$
\mathbb{E}\left[e^{\alpha S_{n}} f\left(S_{1}, S_{2}, . ., S_{n}\right)\right]=\mathbb{E}\left[\sum_{|\gamma|=n} f\left(-\log \Pi_{\gamma_{1}},-\log \Pi_{\gamma_{2}}, . .,-\log \Pi_{\gamma_{n}}\right)\right]
$$

We have

$$
\begin{aligned}
& \mathbb{P}[\tilde{R}>t]=\mathbb{P}\left[\max _{\gamma \in \mathcal{T}} \Pi_{\gamma}>t\right] \\
& \quad \leq \sum_{n} \mathbb{E}\left[\sum_{|\gamma|=n} \mathbf{1}_{\left\{\Pi_{\gamma_{1}}<t, \ldots, \Pi_{\gamma_{n-1}}<t, \Pi_{\gamma_{n}}>t\right\}}\right] \\
&=\sum_{n} \mathbb{E}\left[\sum_{|\gamma|=n} \mathbf{1}_{\left\{-\log \Pi_{\gamma_{1}}>-\log t, \ldots,-\log \Pi_{\gamma_{n-1}}>-\log t,-\log \Pi_{\gamma_{n}}<-\log t\right\}}\right] \\
&= \sum_{n} \mathbb{E}\left[e^{\alpha S_{n}} \mathbf{1}_{\left\{S_{1}>-\log t, \ldots, S_{n-1}>-\log t, S_{n}<-\log t\right\}}\right] \leq t^{-\alpha}
\end{aligned}
$$

$$
\mathbb{E}\left[e^{\alpha S_{n}} f\left(S_{1}, S_{2}, . ., S_{n}\right)\right]=\mathbb{E}\left[\sum_{|\gamma|=n} f\left(-\log \Pi_{\gamma_{1}},-\log \Pi_{\gamma_{2}}, . .,-\log \Pi_{\gamma_{n}}\right)\right] .
$$

$$
\mathbb{E}\left[e^{\alpha S_{n}} f\left(S_{1}, S_{2}, . ., S_{n}\right)\right]=\mathbb{E}\left[\sum_{|\gamma|=n} f\left(-\log \Pi_{\gamma_{1}},-\log \Pi_{\gamma_{2}}, . .,-\log \Pi_{\gamma_{n}}\right)\right] .
$$

It is sufficient to prove that $\mathbb{P}[R>t, \tilde{R}<t] \leq \frac{C}{t^{\alpha}}$.

$$
\mathbb{E}\left[e^{\alpha S_{n}} f\left(S_{1}, S_{2}, . ., S_{n}\right)\right]=\mathbb{E}\left[\sum_{|\gamma|=n} f\left(-\log \Pi_{\gamma_{1}},-\log \Pi_{\gamma_{2}}, . .,-\log \Pi_{\gamma_{n}}\right)\right] .
$$

It is sufficient to prove that $\mathbb{P}[R>t, \tilde{R}<t] \leq \frac{C}{t^{\alpha}}$.

$$
\begin{aligned}
\mathbb{P}[R>t, \tilde{R}<t]= & \mathbb{P}\left[\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma}>t \text { and } \max _{\gamma \in \mathcal{T}} \Pi_{\gamma}<t\right] \\
& \leq \mathbb{P}\left[\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} \mathbf{1}_{\left\{\Pi_{\gamma^{\prime}} \leq t \text { for } \gamma^{\prime} \leq \gamma\right\}}>t\right] \\
& \leq \frac{1}{t} \mathbb{E}\left[\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} \mathbf{1}_{\left\{\Pi_{\gamma^{\prime}} \leq t \text { for } \gamma^{\prime} \leq \gamma\right\}}\right] \\
= & \frac{1}{t} \sum_{n} \mathbb{E}\left[e^{\alpha S_{n}} e^{-S_{n}} \mathbf{1}_{\left\{-S_{k} \leq \log t \text { for } k \leq n\right\}}\right] \\
& =\frac{1}{t} t^{1-\alpha} \sum_{n} \mathbb{E}\left[e^{(\alpha-1)\left(S_{n}+\log t\right)} \mathbf{1}_{\left\{S_{k}+\log t \leq 0 \text { for } k \leq n\right\}}\right]
\end{aligned}
$$

$$
\mathbb{E}\left[e^{\alpha S_{n}} f\left(S_{1}, S_{2}, . ., S_{n}\right)\right]=\mathbb{E}\left[\sum_{|\gamma|=n} f\left(-\log \Pi_{\gamma_{1}},-\log \Pi_{\gamma_{2}}, . .,-\log \Pi_{\gamma_{n}}\right)\right] .
$$

It is sufficient to prove that $\mathbb{P}[R>t, \tilde{R}<t] \leq \frac{C}{t^{\alpha}}$.

$$
\begin{aligned}
\mathbb{P}[R>t, \tilde{R}<t]= & \mathbb{P}\left[\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma}>t \text { and } \max _{\gamma \in \mathcal{T}} \Pi_{\gamma}<t\right] \\
& \leq \mathbb{P}\left[\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} \mathbf{1}_{\left\{\Pi_{\gamma^{\prime}} \leq t \text { for } \gamma^{\prime} \leq \gamma\right\}}>t\right] \\
& \leq \frac{1}{t} \mathbb{E}\left[\sum_{\gamma \in \mathcal{T}} \Pi_{\gamma} \mathbf{1}_{\left\{\Pi_{\gamma^{\prime}} \leq t \text { for } \gamma^{\prime} \leq \gamma\right\}}\right] \\
= & \frac{1}{t} \sum_{n} \mathbb{E}\left[e^{\alpha S_{n}} e^{-S_{n}} \mathbf{1}_{\left\{-S_{k} \leq \log t \text { for } k \leq n\right\}}\right] \\
& =\frac{1}{t} t^{1-\alpha} \sum_{n} \mathbb{E}\left[e^{(\alpha-1)\left(S_{n}+\log t\right)} \mathbf{1}_{\left\{S_{k}+\log t \leq 0 \text { for } k \leq n\right\}}\right]
\end{aligned}
$$

Finally we have to prove that for a centered random walk S_{n} the function

$$
R(x)=\mathbb{E}\left[\sum_{n=0}^{\infty} e^{-\left(x+S_{n}\right)} \mathbf{1}_{\left\{S_{j}+x \geq 0 \text { for } j \leq n\right\}}\right] \text { is bounded }
$$

Finally we have to prove that for a centered random walk S_{n} the function

$$
R(x)=\mathbb{E}\left[\sum_{n=0}^{\infty} e^{-\left(x+S_{n}\right)} \mathbf{1}_{\left\{S_{j}+x \geq 0 \text { for } j \leq n\right\}}\right] \text { is bounded }
$$

Finally we have to prove that for a centered random walk S_{n} the function

$$
R(x)=\mathbb{E}\left[\sum_{n=0}^{\infty} e^{-\left(x+S_{n}\right)} \mathbf{1}_{\left\{S_{j}+x \geq 0 \text { for } j \leq n\right\}}\right] \text { is bounded }
$$

Let $\tau=\inf \left\{n: S_{n}<0\right\}$. Then

$$
\begin{aligned}
& R(x)=\mathbb{E}\left[\sum_{n=0}^{\infty} e^{-\left(x+S_{n}\right)} \mathbf{1}_{\left\{S_{j}+x \geq 0 \text { for } j \leq n\right\}}\right] \\
& =\mathbb{E}\left[\sum_{n=0}^{\tau-1} e^{-\left(x+S_{n}\right)} \mathbf{1}_{\left\{S_{j}+x \geq 0 \text { for } j \leq n\right\}}\right]+\mathbb{E}\left[\sum_{n=\tau}^{\infty} e^{-\left(x+S_{n}\right)} \mathbf{1}_{\left\{S_{j}+x \geq 0 \text { for } j \leq n\right\}}\right] \\
& =\mathbb{E}\left[\sum_{n=0}^{\tau-1} e^{-\left(x+S_{n}\right)}\right] \mathbf{1}_{\{x \geq 0\}}+\mathbb{E}\left[\sum_{n=\tau}^{\infty} e^{-\left(x+S_{n}\right)} \mathbf{1}_{\left\{S_{j}+x \geq 0 \text { for } j \leq n\right\}}\right] \\
& =\mathbb{E}\left[\sum_{n=0}^{\tau-1} e^{-S_{n}}\right] e^{-x} \mathbf{1}_{\{x \geq 0\}}+\mathbb{E}\left[R\left(x+S_{\tau}\right)\right] \\
& =C e^{-x} \mathbf{1}_{\{x \geq 0\}}+\mathbb{E}\left[R\left(x+S_{\tau}\right)\right]
\end{aligned}
$$

Thus, $R=U * f$, where U is the potential and $f(x)=e^{-x} \mathbf{1}_{\{x \geq 0\}}$ and by the renewal theorem the function R is bounded.

