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I. Random difference equation

X =d AX + B,

where X and (A,B) are independent

II. Homogeneous linear equation / smoothing transform

X =d

N∑
i=1

AiXi ,

Xi are independent copies of X ; {Xi} and {N,A1, ..,AN} are independent

III. Inhomogeneous linear equation / smoothing transform

X =d

N∑
i=1

AiXi + B,

Xi are independent copies of X ;
{Xi} and {N,B,A1, ..,AN} are independent

Problem: Find solutions and describe their tails

We assume that all the random variables are positive
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I.
X =d AX + B

Define φ(s) = EAs .

If E logA = φ′(0) < 0 and E log+ |B| <∞, then equation I
possesses a unique solution.

If moreover φ(α) = 1 for some α > 0 and .., then P[X > t] ∼ t−α

(Kesten 73, Grincevicius 75, Goldie 91)
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I.
X =d AX + B

Define φ(s) = EAs .

The critical case: φ′(0) = E logA = 0.
Then equation X =d AX + B has no solutions.

Let us write this equation
in terms of measures, i.e µ - the law of (A,B), ν-the law of X , then
equation I is equivalent to µ ∗ ν = ν,∫

R+×R

∫
R
f (ax + b)dµ(a, b)dν(x) =

∫
R
f (x)dν(x)

Theorem [Babillot, Bougerol, Elie, 1997] If E logA = 0,
E[(| logA|+ log+ |B|)2+ε] <∞ and ..., then there exists a unique (up to
a constant factor) µ-invariant Radon measure ν on R
(ν(R) =∞).Moreover ν(αx , βx) ∼ log β

α L(x).

Theorem [Brofferio, Damek, B.]

lim
x→∞

ν(αx , βx ] = log
β

α
C+, ν(dx) ∼ C+dx

x
.
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II.

X =d

N∑
i=1

AiXi

Define φ(s) = E[
∑N

i=1 A
s
i ].

Durrett, Liggett (1983) and Liu (1998) proved

Equation II has a solution if and only if for some α ∈ (0, 1]:
φ(α) = 1 and φ′(α) ≤ 0

If φ(α) = 1 and φ′(α) < 0 for α < 1, P[X > t] ∼ t−α

If φ(α) = 1 and φ′(α) = 0 for α < 1, P[X > t] ∼ log t t−α
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III. X =d

∑N
i=1 AiXi + B. φ(s) = E[

∑N
i=1 A

s
i ].

Existence of solutions. Alsmeyer and Meiners (2011) proved that III
has a solution if and only if the random variable

R =
∑
γ∈T

ΠγBγ

is finite a.s.

Notice that if Y solves equation II, then R+Y is also a solution of III.

Alsmeyer and Meiners proved that if φ(s) < 1 for some s < 1 then R is
finite a.s. hence III has a solution.

Theorem (Jelenkovic, Olvera-Cravioto, 2011) Assume that the
equation φ(s) = 1 has two solutions α < β (then φ′(α) < 0 and
φ′(β) > 0). If R is a solution of III defined above, then

P[R > t] ∼ C

tβ

Positivity of C was proved recently by Damek, Zienkiewicz and B.
Summarizing: there is a family of solutions of equation III:

one is the minimal one R and P[R > t] ∼ t−β

all the others are of the form R + Y and P[R + Y > t] ∼ t−α
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III. X =d

∑N
i=1 AiXi + B. φ(s) = E[

∑N
i=1 A

s
i ].

The critical case: we assume that the equation φ(s) = 1 has exactly
one solution α. Then φ′(α) = 0

Theorem (Kolesko, B.) Assume

there exists α ∈ (0, 1) such that φ(α) = 1 and φ′(α) = 0;

E[N1+δ + Bα+δ +
∑N

i=1(A−δi + Aα+δ
i )] <∞;

...

then R =
∑
γ∈T ΠγBγ is finite a.s. (thus is a solution of III) and

P[R > t] ∼ t−α

Summarizing: in the critical case there is a family of solutions of
equation III:

one is the minimal one R and P[R > t] ∼ 1
tα

all the others are of the form R + Y and P[R + Y > t] ∼ log t
tα

([Durrett. Liggett], [Liu])

Remark: existence of a solution was proved by Alsmeyer and Meiners for
α < 1/5.
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Sketch of the proof

Let Λ(s) = E[e−sR ] be the Laplace transform of R. In view of the
Tauberian theorem:

tαP[R > t] ∼ L(t) as t →∞ iff
1− Λ(s)

sα
∼ L(1/s) as s → 0,

it is sufficient to prove that D(x) = eαx(1− Λ(e−x))→ C as x →∞

Define new random variable:

E[h(Y )] = E
[ N∑

i=1

h(− logAi )A
α
i

]
.

Then

EY = −E
[ N∑

i=1

Aαi · logAi

]
= −φ′(α) = 0

We consider the Poisson equation:

D(x) = E[D(x + Y )]− G (x).
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Step 1: limx→∞
D(x+y)
D(x) = 1, ∀y

D(x) = E[D(x + Y )]− G (x).

We prove limx→∞ G (x)/D(x) = 0.

We define hx(y) = D(x + y)/D(x), then the family hx is relatively
compact (in the topology of uniform convergence on compacts). We
write the Poisson equation at x + y and divide by D(x):

hx(y) = E
[
hx(y + Y )

]
− G (x + y)

D(x + y)
hx(y).

Let h be any accumulation point, then passing with x to infinity

h(y) = Eh(y + Y ).

Since h(0) = 1 and h is positive: h ≡ 1.
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We have just proved
D(x)

x
→
∫
G

σ2
= C1

We want to prove D(x)→ C2.

If
∫
G = 0, then D(x)→ 2

∫
xG(x)dx
σ2 = C2.

Next we prove that C1 + C2 > 0, thus either P[R > t] ∼ C1 log t
tα or

P[R > t] ∼ C2

tα
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Either P[R > t] ∼ C1 log t
tα or P[R > t] ∼ C2

tα

Step 3: P[R > t] ≤ C
tα .

Recall R =
∑
γ∈T ΠγBγ . Assume Bγ = 1.

Define R̃ = maxγ∈T Πγ .
Define new random variable:

E[h(Y )] = E
[ N∑

i=1

h(− logAi )A
α
i

]
.

Then Y is a centered random variable with second moment. Let Yi be a
sequence of iid copies of Y and Sn partial sums of Yi ’s. Then by
induction we prove

E[eαSn f (S1,S2, ..,Sn)] = E
[ ∑
|γ|=n

f (− log Πγ1 ,− log Πγ2 , ..,− log Πγn)

]
.
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P[R̃ > t] = P[max
γ∈T

Πγ > t]

≤
∑
n

E
[ ∑
|γ|=n

1{Πγ1
<t,..,Πγn−1

<t,Πγn>t}

]

=
∑
n

E
[ ∑
|γ|=n

1{− log Πγ1
>− log t,..,− log Πγn−1

>− log t,− log Πγn<− log t}

]

=
∑
n

E
[
eαSn1{S1>− log t,..,Sn−1>− log t,Sn<− log t}

]
≤ t−α
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E[eαSn f (S1,S2, ..,Sn)] = E
[ ∑
|γ|=n

f (− log Πγ1 ,− log Πγ2 , ..,− log Πγn)

]
.

It is sufficient to prove that P[R > t, R̃ < t] ≤ C
tα .

P[R > t, R̃ < t] = P
[∑
γ∈T

Πγ > t and max
γ∈T

Πγ < t

]

≤ P
[∑
γ∈T

Πγ1{Πγ′≤t for γ′≤γ} > t

]

≤ 1

t
E
[∑
γ∈T

Πγ1{Πγ′≤t for γ′≤γ}

]

=
1

t

∑
n

E
[
eαSne−Sn1{−Sk≤log t for k≤n}

]
=

1

t
t1−α

∑
n

E
[
e(α−1)(Sn+log t)1{Sk+log t≤0 for k≤n}

]
Finally we have to prove that for a centered random walk Sn the function

R(x) = E
[ ∞∑

n=0

e−(x+Sn)1{Sj+x≥0 for j≤n}
]

is bounded
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Finally we have to prove that for a centered random walk Sn the function

R(x) = E
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n=0

e−(x+Sn)1{Sj+x≥0 for j≤n}
]

is bounded

Let τ = inf{n : Sn < 0}. Then

R(x) = E
[ ∞∑

n=0

e−(x+Sn)1{Sj+x≥0 for j≤n}

]

= E
[ τ−1∑

n=0

e−(x+Sn)1{Sj+x≥0 for j≤n}

]
+ E

[ ∞∑
n=τ

e−(x+Sn)1{Sj+x≥0 for j≤n}

]

= E
[ τ−1∑

n=0

e−(x+Sn)

]
1{x≥0} + E

[ ∞∑
n=τ

e−(x+Sn)1{Sj+x≥0 for j≤n}

]

= E
[ τ−1∑

n=0

e−Sn

]
e−x1{x≥0} + E

[
R(x + Sτ )

]
= Ce−x1{x≥0} + E

[
R(x + Sτ )

]
Thus, R = U ∗ f , where U is the potential and f (x) = e−x1{x≥0} and by
the renewal theorem the function R is bounded.
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