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Clark’s robustness problem
» only discrete observations 0 < t; < --- < t, < t of Z availabe

» BV path Z" which approximates Z 3
» BUT 6f : C ([0,t],R?") — R not unique, every 6f

st 0f () =0 () Po(Z|pg) " —a.s fulfills
Tt (f) = é{ (Z|[01t]) P-—as

» Z only close in law to “real-world observation”

Problem. No guarantee that P-a.s.
9{ (Zn|[0’t]) — 9{ (Z|[O,t]) as n — oo

Solution. If B and B independent (Clark78, ClarkCrisan05, Davies
80/81,...) then

3 of . (c ([0, t],RdZ> ,Hoo) SR

continuous in supremums norm.
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Correlated noise

dX: = p(Xe)dt+ V (X;)odB:+ o (X;)odB; (signal)
dZ; = h(X;)dt+ dB; (observation)

Bad news!
#0f: € (10,4, R%) > R
s.t.
» 7 (F) = 6f (Z|[0,t]) P-a.s.
» 0 is continuous in uniform norm
Our main result. 310 : C ([0,¢], G? (R%)) — R
» continuous in a rough path metric
> 9{(1+Z+fZ®dZ) =m () P-ass



[I. ROBUSTNESS OF THE ZAKAI SPDE
(joint with P. Friz)
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Work in unnormalized form

me (f) = Z(i)

)

—~~
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>

pt () solution of (measure-valued) SDE (Zakai equation)
Assume density p; (f) = [pay £ (x) ug (x) dx
Described via a linear, parabolic SPDE (dual Zakai equation)

du = G udt+ Z NfudZ'

* 1 § : * § : * i
= (G —§ : N,’N,‘) Udt+ : NI'UOdZt
with

G ... generator of X

NJ-*u = o0j-Du+ hju.



General SPDE

Find v : [0, T] x R®* — R which solves

d
du+ L (t,x, u, Du, D2u) dt = Z/\,— (t,x,u,Du)o dZ{, (0, T) x R®
i=1
u(0,.) = wup(.) onR®

where

L:[0,T]xR*xRxR*xS® — R
N[0, TIxRExRxRE — R

are (affine) linear.
Question: Regularity of
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Heuristic explanation

Take L = 0, only gradient noise (corresponds to correlation in the
filtering set-up!!!), i.e.

du = (Du,oy(x))odZ} + (Du,o(x)) o dZ?
u (07 ) = lo ()
If »¢ denotes the SDE flow of
dY; = o1 (Yy) 0 dZ} + 02 (Yy) 0 dZ?

then (formally) v (t,x) = ug (¢% (t,x)) .
Question: Robustness of SDE solutions,

7 ¢%.

Answer: Poor robustness in uniform norm (except for degenerate
situations where vectorfields 1,00 commute). Not even
continuous!



INTERMEZZO: ROUGH PATH THEORY
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Theorem
(Wong—Zakai). Let B" be the piecewise linear approximation to B
along the dyadics of [0, T]. Then the ODE solutions (Y") of

Y=V (Y )dBl,Yy =y
converge uniformly to Y, the solution of the Stratonovich SDE

dYt = V(Yt) @) dBt, Yo =Y.

BUT there are approximations (B")
|Bn — B‘OO,[O,T] —n 0 s.t. }Yn — 7{ —n 0

where

dy V( )OdBt+C(7t)dt

and ¢ is any linear combination of

Vi, [V .- [Vi

IN—1

vl 0.
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Lyons '98. Let (z") C C! ([0, T],R?) be Cauchy in rough
path metric with limit z. Assume

(ODE) y" =V (y")2", y"(0) = yo € R

then y” converges uniformly to some y = y# € C ([0, T],RR¢)
which is independent of the approximating sequence.

Interpretation: y is the solution of a rough differential
equation driven by the rough path z. Write

dy =V(y)dz, y(0) =y € R®

What are rough path metrics and rough paths?

First example (not applicable to Brownian motion): take

oy |7se — Zs 1
Pa—Hol (2,2) = ﬁ for a € > 1

and rough paths are just a-Hdlder paths, RDEs are “Young”
ODEs.
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take
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2
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Better example (applicable to Brownian paths): for o € (%, %}
take

‘zs,t - zs,t} ‘zs,t - zs,t|
2
|t —s|™

Pa—Hoel (Z z) = sup

where we introduced the generalized increments of z € C! as

®2
Zgy 1= (zst, = (/ dz / / dz,, ®dz,2> eRé% (]Rd)

The abstract completion of C'—paths wrt to p,_ el leads to
a rough path space which can be identified as a subset of

{z cc(ommre (2)7) e (t‘ig’st)‘m ) OO}

From d (zizj) = z'dzl + Zidz' it follows Sym (22) = %zl ® z!
and

(zl 'zit) “ (z;t,a&t) with as; := Anti (zit)

s,t
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Advantages to a Probabilist

>

RDE solution of dy = V (y) dB (w) is solved for fixed w;
depends continuosly on B = (B, [Bo dB) and coincides with
(Stratonovich) solution of dY = V (Y) o dB.

Can solve ALL differential equations simultaneously

dy =V (y)dB, y(0) = yo.

Construction of flows gets trivial (no nullset trouble)

» Consider the flow ¢ of

dy =V (y)dz

For e.g. V € Lip3*€ can see that ¢, Do, D?¢ exist and depend
continuously on z, also =1, D¢, D?¢~1. Limit theorems on
the level of stochastic flows!

No restriction to semimartingales as noise (as long as we can
construct the higher levels)

Continuity of solution map z — y makes it easier to prove
large deviations, Freidlin-Wentzell estimates, support theorems
etc.



BACK TO ZAKAI SPDE



Viscosity solutions

Theorem (Friz-Caruana-O,Friz-O)

Let the coefficients in L and N fulfill (TC). Let
(z") € C* ([0, T],RY) and consider the viscosity solutions (u") of

du” +L(t,x, u",Du",Dzu") dt = A(t,x,u",Du")dz"
u"(0,.) = u (.)€ BUC(R®)
If (z") converges to a geometric rough path z then 3!

u? € BUC ([0, T] x R¢,R) such that u™ — u* (loc. uniformly on
compacts). Further,

1. u” independent of the choice of (z"),
2. (z,up) — u? is continuous,

3|07 = v o, e < €T 0 = Volog en

Remark
Motivated by Lions-Souganidis theory of viscosity SPDEs



Conditions (TC):

L(t,x,r,p,M) = —Tr a(t,x)-aT(t,x)M}+b(t,x)-p+c(t,x,r)
AN = (M,...,N\g)
/\k (t,X7I’,,D) = <p70k (t7X)> +revg (t7X)+gk (t7X)

» a, b bounded, continuous in t, Lipschitz in x (uniformly in t)

» ¢ continuous and bounded for bounded r with a lower
Lipschitz constant

» All coefficients in A are Lip? for v > é +2



v

L can be semilinear and degenerate elliptic (i.e. first order case
no problem)

If z= (B,f Bo dB) get approximations theorems, support
results, large deviations for SPDEs

SPDEs with non-Brownian or non-semimartingale (e.g. fBM)
noise

etc.



L2 solutions
Apply with z = B (w) = (B (w), [ Bo dB (w)) .
Proposition (Friz-O)
If L is uniformly elliptic, (TC) and L* exists, then uB is “the”
unique L2 (R")-solution: Yo € C° (R™)

t

t ~
(e, P12 — (o, 2) 1 :/ (. T 2dr+/ (r, Ny 9) 2 dBX
0 L 0

with ng = (L + % Zzzl /\k/\,*(> ®.



L2 solutions
Apply with z = B (w) = (B (w), [ Bo dB (w)) .
Proposition (Friz-O)
If L is uniformly elliptic, (TC) and L* exists, then uB is “the”
unique L2 (R")-solution: Yo € C° (R™)

t

t ~
(uesehis — (e = [ (un Do) ot [ Gur Moo oBE
0 0

with ng = (L + % Zzzl /\k/\7(> ®.

Remark

» Connects RPDEs to classic L°-theory

» uB is a robust version (in the equivalence class) of unique

[2-solution

» no Sobolev embedding needed



[1l. ROBUSTNESS VIA THE KALLIANPUR-STRIEBEL
FUNCTIONAL
(joint with Crisan,Diehl,Friz)
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Pathwise filtering

dXe = p(Xe)dt+ V(X¢)o dB; (signal)
dZ; = h(X:)dt+ dB; (observation)

standard BM

» B = (B");j:1 and B = (Bf)e
> <Bi,éj> = pjjt

Goal: Find a robust version of

J=1

7 (F) = E[f (X,) |o (Zs, s € [0, £])] .
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(For simplicity of presentation X, Z, B, B 1-dimensional)

» Define Py via
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> Set vi := ph(X;) + By and wy :=v — pZ;



Transformation

For simplicity of presentation X, Z, B, B 1-dimensional
y

» Define Py via

dPO—exp( / h(X B—/OT]h(X,)|2dr>

> Set vi := ph(X;) + By and wy :=v — pZ;
Then under Py,
1. Z and v are standard BM and (v, Z;) = pt
2. W, = \/17—7% is standard BM, independent of Z



Transformation

Using this, the signal X becomes

dXe = Lo (Xe) dt + L (X¢) 0 dZ; + M (X;) o dW;

» W, Z independent BM under Py
> M=+/1—-p2V, Log=pu—phV, L=pV



Transformation

Using this, the signal X becomes

dXe = Lo (Xe) dt + L (X¢) 0 dZ; + M (X;) o dW;

» W, Z independent BM under Py
> M=+/1—-p2V, Log=pu—phV, L=pV

» This is the key formula to robust filtering
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Kallianpur-Striebel

KS-formula

with

p6) = o, |f0e ([ b0z - [ )12
(i)

(if)
Express (i) and (ii) as functionals of Z and show regularity of

Z — (i) and Z — (ii)



A rough path result

Theorem (Crisan,Diehl,Friz,0)

Let (z") c C1 ([0, T],RY) and z" — z in rough path metric. If W
is a standard BM, then for a.s. the solutions of the SDE

dX[ = Lo (X{) dt + L(X[) dz{! + M (X]) o dW;.
converge uniformly to a continuous path X (w). We write formally
dXt = LO (Xt) dt + L(Xt) dZt + M(Xt) o th

. . /q
Further, z — X is continuous wrt |X|gq := E |sup.cpo 7] ]Xt\q]
any g > 1.



Proof (sketch)

Two possible approaches:
1. Use a “Kunita flow decomposition”

2. Construct a joint rough path of
z= (21,22) and W = (W,/dW@dW)

use rough path continuity



1. Flow decomposition

Lemma
Take z € C* ([0, T],R®), W a standard d-dimensional BM. Let X
be the unique SDE solution of

dXe = Lo (X¢) dt + L (X) dz + M (X,) o dW.

Consider the transformation

6 (£ %) :x—i—/OtL(qﬁ(t,x))dz.

Then X; := ¢~ (t, X;) solves the SDE

dX; = Lo (X¢) dt + M (X) o dW,

with M == 3", 9k (t, e (¢, %)) My (t, ¢ (t,x)), Lo := ...

Proof.
[to! ]



1. Flow decomposition

» Construct the “rough path flow”

% (t,x) —x+/0tL(¢z(t,x))dz
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metric
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1. Flow decomposition

» Construct the “rough path flow”

t
¢% (t,x) =x+ / L(¢* (t,x))dz
0

Note: stable under smooth approximations to z in rough

metric
» Solve the ordinary SDE

and set B

X7 = ¢7 (t,xf)

» By construction

1/q

z + X% is continuous wrt |X|sq :=FE | sup [X¢|?
tel0,7T]



A Rough&Stochastic DE

Theorem
Let (z") € C* ([0, T],RY) and z" — z in rough path metric. If W
is a standard BM, then for a.e. w the solutions of the SDE

dX[" = Lo (X{) dt + L(X[) dz] + M (X]) o dW;
converge uniformly to a continuous path X (w). We write formally
dXt = L() (Xt) dt +L (Xt) CIZlL + M (Xt) o th

1/q
Further, z — X is continuous wrt |X|sq := E |sup.cpo |Xt\q]
any g > 1.
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Executive summary

dX; = p(Xe)dt+ V(X¢)o dB; (signal)
dZ; = h(X;)dt+ dB; (observation)

Fact: If B and B are correlated then
3 ef . c([o,t],G*(R®)) - R
s.t.
> ¢ (f) = 0f (Z|jp,q) P-a.s. with

Z:1+/dZ+/dZ®dZ:exp(Z,Area(Z))

» 07 is continuous in rough path norm (even locally Lipschitz!)
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