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Starting point: Displacement convexity of the entropy

Connection between:

Boltzmann-Shannon entropy:

Ent(µ) =
∫
Rn

ρ(x) log ρ(x) dx;
dµ

dx
= ρ

L2-Wasserstein metric:

W2(µ0, µ1)2 = inf
{∫

Rn×Rn

|x− y|2 dγ(x, y)

: γ with marginals µ0 and µ1

}
Theorem (McCann ’94)

The Boltzmann-Shannon entropy is convex along geodesics in
(P(Rn),W2).
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Starting Point: Ricci curvature and optimal transport

Theorem (Otto, Villani; Cordero-Erausquin, McCann, Schmucken-
schläger; von Renesse, Sturm)

For a Riemannian manifold M, TFAE:

1 Ric ≥ κ everywhere on M
2 Displacement κ-convexity of the entropy, i.e.,

Ent(µt) ≤ (1− t)Ent(µ0) + tEnt(µ1)− κ

2
t(1− t)W 2

2 (µ0, µ1)

for all L2-Wasserstein geodesics (µt)t∈[0,1] in P(M).
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Synthetic Ricci curvature of metric measure spaces

Definition (Lott, Villani; Sturm)

A metric measure space (X , d,m) satisfies CD(κ,∞) if
any µ0, µ1 ∈ P2(X ) can be connected by a constant speed W2-
geodesic (µt)t∈[0,1] such that

Ent(µt) ≤ (1− t)Ent(µ0) + tEnt(µ1)− κ

2
t(1− t)W 2

2 (µ0, µ1) .

Crucial features:
Many geometric, analytic and probabilistic consequences
−→ (log-)Sobolev inequalities, Talagrand inequalities,

Brunn–Minkowski, etc.

Stability under measured Gromov–Hausdorff convergence

Applicable to a wide class of metric measure spaces

But..... what about discrete spaces?
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What about discrete spaces?

Example: 2-point space X = {0, 1}.

Set µα := (1− α)δ0 + αδ1 for α ∈ [0, 1], and note that

W2(µα, µβ) =
√
|α− β| .

Suppose that
(
µα(t)

)
is a constant speed geodesic. Then:√

|α(t)− α(s)| = W2(µα(t), µα(s)) = c|t− s| .

−→ (α(t)) is 2-Hölder, hence constant.

Conclusion: there are no non-trivial W2-geodesics.

In fact:
(P2(X ),W2) is a geodesic space ⇔ (X , d) is a geodesic space.

LSV-definition does not apply to discrete spaces.
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Can we adapt LSV to the discrete case?

Why Wasserstein?

Theorem (Jordan, Kinderlehrer, Otto ’98)

The heat flow is the gradient flow of the entropy w.r.t W2

, i.e.,

∂tµ = ∆µ ⇐⇒ 1
2

d
dt
W2(µt, ν)2 ≤ Ent(ν)− Ent(µt) ∀ν

How to make sense of gradient flows in metric spaces?

Let ϕ : Rn → R smooth and convex. For u : R+ → Rn TFAE:

1 u solves the gradient flow equation u′(t) = −∇ϕ(u(t)) .

2 u solves the evolution variational inequality

1
2

d
dt |u(t)− y|2 ≤ ϕ(y)− ϕ(u(t)) ∀y .
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Heat flow is gradient flows of the entropy

Many extensions have been proved:

• Rn Jordan–Kinderlehrer–Otto
• Riemannian manifolds Villani, Erbar
• Hilbert spaces Ambrosio–Savaré–Zambotti
• Finsler spaces Ohta–Sturm
• Wiener space Fang–Shao–Sturm
• Heisenberg group Juillet
• Alexandrov spaces Gigli–Kuwada–Ohta
• Metric measures spaces Ambrosio–Gigli–Savaré

Question

Is there a version of the JKO-Theorem for discrete
spaces?
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Discrete setting

Setting

X : finite set

K : X × X → R+ Markov kernel, i.e., ∀x :
∑

yK(x, y) = 1

Assumptions

K is irreducible −→ ∃! inv. measure π

π is reversible i.e., ∀x, y : K(x, y)π(x) = K(y, x)π(y)

Heat flow

H(t) = et(K−I) is the continuous time Markov semigroup

Relative Entropy

For ρ ∈ P(X ) :=
{
ρ : X → R+ |

∑
x∈X ρ(x)π(x) = 1

}
,

Ent(ρ) =
∑
x∈X

ρ(x) log ρ(x)π(x) .

Typical example

Random walk on a (weighted) graph.
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Simplest non-trivial example: 2-point space

X = {−1, 1}
K(−1, 1) = K(1,−1) = 1
π(−1) = π(1) = 1

2

 Every ρ ∈ P(X ) is of the form ρα,
α ∈ [−1, 1].

Proposition [M. 2011]

The heat flow is the gradient flow of Ent w.r.t. the metricW, where

W(ρα, ρβ) :=
1√
2

∫ β

α

√
arctanh r

r
dr, −1 ≤ α ≤ β ≤ 1.
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How to define W in the general discrete case?

In Rn there is a dynamical characterisation of W2:

Benamou-Brenier formula in Rn

W2(ρ̄0, ρ̄1)2 = inf
ρ·,Ψ·

{∫ 1

0

∫
Rn

|Ψt(x)|2 ρt(x) dx dt :

∂tρ+∇· (ρΨ) = 0 , ρ0 = ρ̄0 , ρ1 = ρ̄1

}
.

One may restrict to gradients: Ψt = ∇ψt
Otto’s interpretation: Riemannian distance formula

Idea: define a metric in the discrete case using this formula.

Obstruction: how to multiply probability densities and discrete
gradients?
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Definition of W

Benamou-Brenier formula in Rn

W 2
2 (ρ̄0, ρ̄1) = inf

ρ·,ψ·

{∫ 1

0

∫
Rn

|∇ψt(x)|2 ρt(x) dx dt
}

s.t. ∂tρ+∇ · (ρ∇ψ) = 0 .

Definition in the discrete case (M. 2011)

W(ρ̄0, ρ̄1)2

:=

inf
ρ,ψ

{
1
2

∫ 1

0

∑
x,y∈X

(ψt(x)− ψt(y))2ρ̂t(x, y)K(x, y)π(x) dt
}

s.t.
d
dt
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Results

Theorem (M. 2011)

1 W defines metric on P(X ).

2 The space {ρ ∈ P(X ) : ρ(x) > 0 ∀x} is a Riemannian
manifold with metric W.

3 The tangent space at ρ is the set of discrete gradients with

‖∇ψ‖2ρ =
1
2

∑
x,y∈X

(
ψ(x)− ψ(y)

)2
ρ̂(x, y)K(x, y)π(x) .

4 The heat flow is the gradient flow of the entropy.

Remark

Related independent work by

Chow, Huang, Li, and Zhou

Mielke
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Why the logarithmic mean?

Formal proof of the JKO-Theorem

1 If (ρt, ψt) satisfy the cont. eq. ∂tρ+∇ · (ρ∇ψ) = 0, then

d
dt

Ent(ρt) = −〈log ρt,∇ · (ρt∇ψt)〉 = 〈∇ log ρt,∇ψt〉ρt .

−→ gradW2
Ent(ρ) = ∇ log ρ

2 If ρt solves the heat equation in Rn, then

∂tρ = ∇ · (∇ρ) = −∇ · (ρ∇ψ) .

provided ψ = − log ρ.
−→ Tangent vector along the heat flow is −∇ log ρ.

Logarithmic mean compensates for the lack of a discrete chain rule:

ρ(x)− ρ(y) = ρ̂(x, y)
(

log ρ(x)− log ρ(y)
)
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Ricci curvature of Markov chains

The discrete analogue of Lott–Sturm–Villani becomes:

Definition (Erbar, M. 2011)

We say that (X ,K, π) has Ricci curvature bounded from below by
κ ∈ R if the entropy is κ-convex along geodesics in (P(X ),W).

Ent

ϱ0

ϱ1/2

ϱ1

P(X)

Different approaches to Ricci curvature of discrete spaces: Ollivier,
Bonciocat, Sturm; Li, S.-T. Yau
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Consequences: Sharp functional inequalities

Theorem (Erbar, M.)

Let (X ,K, π) be a reversible Markov chain. Let κ > 0.

1 à la Bakry–Émery: Ric(K) ≥ κ =⇒ modified log-Sobolev, i.e.

Ent(ρ) ≤ 1
2κ
E(ρ, log ρ) .

This implies Ent(Htρ) ≤ e−2κt Ent(ρ).

2 à la Otto–Villani: mod. log-Sobolev =⇒ mod. Talagrand, i.e.

W(ρ,1)2 ≤ 2
κ

Ent(ρ) .

3 mod. Talagrand =⇒ [spectral gap and T1]:

‖ϕ‖2L2(X ,π) ≤
1
κ
E(ϕ,ϕ) and W1(ρ,1)2 ≤ 1

κ
Ent(ρ) .
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Ricci bounds: examples

(Mielke 2012) For every finite reversible Markov chain:
∃κ ∈ R such that Ric(K) ≥ κ.

(Mielke 2012) Finite volume discretisations of Fokker-Planck
equations in 1D

Theorem (Erbar, M. 2012)

Let (Xi,Ki, πi) be reversible finite Markov chains and let (X ,K, π)
be the product chain. Then:

Ric(Xi,Ki, πi) ≥ κi =⇒ Ric(X ,K, π) ≥ 1
n

min
i
κi

Dimension-independent bounds

Sharp bounds for the discrete hypercube {−1, 1}n
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Gromov-Hausdorff convergence

Let Td
N = (Z/NZ)d be the discrete torus.

Let WN be the renormalised transportation metric for simple
random walk on Td

N .

Theorem (Gigli, M. 2012)

(P(Td
N ),WN )→ (P(Td),W2) in the sense of Gromov–Hausdorff.

Compatibility between W2 and W.

Main ingredient for proving convergence of gradient flows.
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Further developments

Systems of reaction-diffusion equations (Mielke)

Fractional heat equations (Erbar)

Dissipative quantum mechanics (Carlen, M.; Mielke)

Thank you!
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