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Theorem (McCann '94)

The Boltzmann-Shannon entropy is convex along geodesics in
(P(R™), Wa).




Starting Point: Ricci curvature and optimal transport

Theorem (Otto, Villani; Cordero-Erausquin, McCann, Schmucken-

schlager; von Renesse, Sturm)
For a Riemannian manifold M, TFAE:
@ Ric > k everywhere on M

@ Displacement k-convexity of the entropy, i.e.,

Ent(p:) < (1= 6)Ent(po) + tEnt(p1) — 541 = )W (j10, 1)

for all L2-Wasserstein geodesics (1t)tefo,) in P(M).
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What about discrete spaces?

e Example: 2-point space X = {0,1}.
@ Set po := (1 — a)dp + ady for a € [0,1], and note that

Wa(pa, ps) = Vo — Bl .
@ Suppose that (,ua(t)) is a constant speed geodesic. Then:

Via(t) = a(s)| = Walpia) Has)) = clt — s| .

— (a(t)) is 2-Holder, hence constant.
@ Conclusion: there are no non-trivial Ws-geodesics.

@ In fact:
(P2(X), Wa) is a geodesic space < (X, d) is a geodesic space.

LSV-definition does not apply to discrete spaces. J
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Heat flow is gradient flows of the entropy
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e Wiener space Fang—Shao—-Sturm

e Heisenberg group Juillet

e Alexandrov spaces Gigli-Kuwada—Ohta

e Metric measures spaces  Ambrosio—Gigli-Savaré

Question

Is there a version of the JKO-Theorem for discrete
spaces?
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Discrete setting

Setting
o X : finite set
o K:X x X — Ry Markov kernel, ie., Vo : > K(z,y) =1

Assumptions
@ K is irreducible — 3! inv. measure 7

@ 7 is reversible e, Vryy @ K(z,y)r(z) = K(y,z)m(y)

Heat flow

o H(t) = e"5=1) is the continuous time Markov semigroup

Relative Entropy
e Forpe P(X) := {p:X—>R+ | D pex pl@)m(z) = 1} ,

Ent(p) = Y p(x)log p(x) 7(x) .

reX



Simplest non-trivial example: 2-point space

X ={-1,1}
K(-1,1) = K(1,-1) =1
(1) =7(1) = 3
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K(1,-1) = Cu
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Question

Is the heat flow the gradient flow of Ent w.r.t  Answer
the L2-Wasserstein metric? NO! Reason:

Wa(pas ps) — /2B —al.
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Simplest non-trivial example: 2-point space

K(1,-1) = Qu

|- I+

Question

Is the heat flow the gradient flow of Ent w.r.t

some other metric on P({—1,1})? Answer J

YES!




Simplest non-trivial example: 2-point space

X ={-1,1}
K(-1,1) = K(1,-1) = Cu
m(—1)=m(l) = 1

" l-ox |+
~ Every p € P(X) is of the form pg,
(A S [—1, 1]. -1 +]
Question
Is the heat flow the gradient flow of Ent w.r.t A
some other metric on P({—1,1})? nswer

YES!

Proposition [M. 2011]

The heat flow is the gradient flow of Ent w.r.t. the metric W, where

1 B [arctanhr
W(pas pg) 1= —= S Ay, —1<a<pB<l.
(o) = 5 [ =5 5




How to define WV in the general discrete case?

In R™ there is a dynamical characterisation of Wa:
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How to define WV in the general discrete case?

In R™ there is a dynamical characterisation of Wa:

Benamou-Brenier formula in R™

Wa(fo, p1)2 =mf{// IVape()? () dz dlt -

op+V-(pV)) =0, po=po, p1=p1

One may restrict to gradients: ¥, = V)

@ Otto’s interpretation: Riemannian distance formula

(]

Idea: define a metric in the discrete case using this formula.

Obstruction: how to multiply probability densities and discrete
gradients?

10/19
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Definition of W

Benamou-Brenier formula in R™

3o, 1) = int { / 19 ) e

s.t. hp+ V- (pVy)=0.

Definition in the discrete case (M. 2011)

W pOapl
= 1nf{ / Z K(z,y)m(x) dt}
z,yeX
s.t.
PO=P0, PL=P1-
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Definition of W

Benamou-Brenier formula in R™

W2(po,p1) = 1nf {/ /n |Vipi(z )dxdt}

s.t. hp+ V- (pVy)=0.

Definition in the discrete case (M. 2011)

How should we define p?
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Definition of W

Definition in the discrete case

W(po, p1)*
::;5{ / PO ERC )ﬁt@,y)K(x,y)w(x)dt}
s.t. —,Ot +Z Yi(z Y)pe(z, y)K(z,y) =0.
yeX
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Definition of W

Definition in the discrete case

W(po, p1)?
:,35{ /WZEX Vi) — e(y)” pela, y) K ( )()dt}
s.t. —pt +Z th Pt(-T y)K( ):0
yeX

How should we define p? ——  logarithmic mean

A o ! T 11—« o o= p(:l:)—p(y)
p(z,y) -—/0 p(z) " “p(y)* da = — ;

12 /19



Theorem (M. 2011)
@ W defines metric on P(X).
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Theorem (M. 2011)
@ W defines metric on P(X).

@ The space {p € P(X) : p(x) >0 Vz} is a Riemannian
manifold with metric W.

© The tangent space at p is the set of discrete gradients with

IVlZ =5 3 (@) — b)) e 1)K @, y)n()

z,yeX

@ The heat flow is the gradient flow of the entropy.

Remark

Related independent work by
@ Chow, Huang, Li, and Zhou
o Mielke

13 /19



Why the logarithmic mean?

Formal proof of the JKO-Theorem
@ If (pt, 1) satisfy the cont. eq. dip+ V - (pV1)) = 0, then
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Why the logarithmic mean?

Formal proof of the JKO-Theorem
@ If (pt, 1) satisfy the cont. eq. dip+ V - (pV1)) = 0, then

d
aEnt(pt) = —(log pt, V - (p: Vb)) = (Viog pr, Vi) p, -

— grady, Ent(p) = Vlogp
@ If p; solves the heat equation in R", then

dp=V-(Vp)==V-(pVy).

provided ¢ = —log p.
— Tangent vector along the heat flow is —V log p.

Logarithmic mean compensates for the lack of a discrete chain rule:

p(z) — p(y) = plx, y) (log p(x) — log p(y))

14 /19



Ricci curvature of Markov chains

The discrete analogue of Lott—Sturm—Villani becomes:

Definition (Erbar, M. 2011)

We say that (X, K, ) has Ricci curvature bounded from below by
k € R if the entropy is k-convex along geodesics in (P(X), W).

Ent

Q() 15/19



Consequences: Sharp functional inequalities

Theorem (Erbar, M.)
Let (X, K, 7) be a reversible Markov chain. Let x > 0.
Q 3 la Bakry—Emery: Ric(K) > k = modified log-Sobolev, i.e.

1
E < —&(p,logp) .
nt(p) < 5-€(p,logp)

This implies Ent(H;p) < e~ 2" Ent(p).
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Q 3 la Bakry—Emery: Ric(K) > k = modified log-Sobolev, i.e.

1
E < —&(p,logp) .
nt(p) < 5-€(p,logp)

This implies Ent(H;p) < e~ 2" Ent(p).
@ a la Otto—Villani: mod. log-Sobolev = mod. Talagrand, i.e.

2
W(p,1)* < —Ent(p)

© mod. Talagrand = [spectral gap and T7]:

1 1
lelZem < ~E(p, @) and Wi(p,1)* < — Ent(p)

16 /19
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Theorem (Erbar, M. 2012)

Let (X;, K;, m;) be reversible finite Markov chains and let (X, K, )
be the product chain. Then:

1
RiC(Xi,Ki,ﬂ'i) > K — RiC(X,K,T[') > —m_inni
mn

@ Dimension-independent bounds

@ Sharp bounds for the discrete hypercube {—1,1}"
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Gromov-Hausdorff convergence

o Let T4 = (Z/NZ)? be the discrete torus.

o Let Wy be the renormalised transportation metric for simple
random walk on T%.
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Gromov-Hausdorff convergence

o Let T4, = (Z/NZ)? be the discrete torus.

o Let Wy be the renormalised transportation metric for simple
random walk on T%.

Theorem (Gigli, M. 2012)

(P(T4),Wn) — (P(T%),Ws) in the sense of Gromov—Hausdorff.

o Compatibility between W5 and W.

@ Main ingredient for proving convergence of gradient flows.

18/19



Further developments

@ Systems of reaction-diffusion equations (Mielke)
e Fractional heat equations (Erbar)

o Dissipative quantum mechanics (Carlen, M.; Mielke)
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Further developments

@ Systems of reaction-diffusion equations (Mielke)
e Fractional heat equations (Erbar)

o Dissipative quantum mechanics (Carlen, M.; Mielke)

Thank you!
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