# Ricci curvature of Markov chains via convexity of the entropy

Jan Maas University of Bonn

6ICSA Bedlewo 10 September 2012

Joint work with Matthias Erbar (Bonn)

# Starting point: Displacement convexity of the entropy

Connection between:

• Boltzmann-Shannon entropy:

$$\operatorname{Ent}(\mu) = \int_{\mathbf{R}^n} \rho(x) \log \rho(x) \, \mathrm{d}x; \qquad \frac{d\mu}{dx} = \rho$$

# Starting point: Displacement convexity of the entropy

Connection between:

• Boltzmann-Shannon entropy:

Ent
$$(\mu) = \int_{\mathbf{R}^n} \rho(x) \log \rho(x) \, \mathrm{d}x; \qquad \frac{d\mu}{dx} = \rho$$

•  $L^2$ -Wasserstein metric:

$$egin{aligned} W_2(\mu_0,\mu_1)^2 &= \inf \left\{ \, \int_{\mathbf{R}^n imes \mathbf{R}^n} |x-y|^2 \, \mathsf{d}\gamma(x,y) \ &: \gamma \text{ with marginals } \mu_0 ext{ and } \mu_1 \end{matrix} 
ight. \end{aligned}$$

# Starting point: Displacement convexity of the entropy

#### Connection between:

• Boltzmann-Shannon entropy:

$$\operatorname{Ent}(\mu) = \int_{\mathbf{R}^n} \rho(x) \log \rho(x) \, \mathrm{d}x; \qquad \frac{d\mu}{dx} = \rho$$

• L<sup>2</sup>-Wasserstein metric:

$$\begin{split} W_2(\mu_0,\mu_1)^2 &= \inf \left\{ \int_{\mathbf{R}^n \times \mathbf{R}^n} |x-y|^2 \, \mathrm{d}\gamma(x,y) \\ &: \gamma \text{ with marginals } \mu_0 \text{ and } \mu_1 \end{split} \right.$$

#### Theorem (McCann '94)

The Boltzmann-Shannon entropy is convex along geodesics in  $(\mathcal{P}(\mathbf{R}^n), W_2).$ 

# Starting Point: Ricci curvature and optimal transport

Theorem (Otto, Villani; Cordero-Erausquin, McCann, Schmuckenschläger; von Renesse, Sturm)

For a Riemannian manifold  $\mathcal{M}$ , TFAE:

- $I Ric \geq \kappa everywhere on \mathcal{M}$
- 2 Displacement  $\kappa$ -convexity of the entropy, i.e.,

$$\operatorname{Ent}(\mu_t) \le (1-t)\operatorname{Ent}(\mu_0) + t\operatorname{Ent}(\mu_1) - \frac{\kappa}{2}t(1-t)W_2^2(\mu_0,\mu_1)$$

for all  $L^2$ -Wasserstein geodesics  $(\mu_t)_{t \in [0,1]}$  in  $\mathcal{P}(\mathcal{M})$ .

A metric measure space  $(\mathcal{X},d,m)$  satisfies  $CD(\kappa,\infty)$  if any  $\mu_0,\mu_1\in\mathcal{P}_2(\mathcal{X})$  can be connected by a constant speed  $W_2$ -geodesic  $(\mu_t)_{t\in[0,1]}$  such that

$$\operatorname{Ent}(\mu_t) \le (1-t)\operatorname{Ent}(\mu_0) + t\operatorname{Ent}(\mu_1) - \frac{\kappa}{2}t(1-t)W_2^2(\mu_0,\mu_1) .$$

A metric measure space  $(\mathcal{X},d,m)$  satisfies  $CD(\kappa,\infty)$  if any  $\mu_0,\mu_1\in\mathcal{P}_2(\mathcal{X})$  can be connected by a constant speed  $W_2$ -geodesic  $(\mu_t)_{t\in[0,1]}$  such that

$$\operatorname{Ent}(\mu_t) \le (1-t)\operatorname{Ent}(\mu_0) + t\operatorname{Ent}(\mu_1) - \frac{\kappa}{2}t(1-t)W_2^2(\mu_0,\mu_1).$$

Crucial features:

- Many geometric, analytic and probabilistic consequences

A metric measure space  $(\mathcal{X},d,m)$  satisfies  $CD(\kappa,\infty)$  if any  $\mu_0,\mu_1\in\mathcal{P}_2(\mathcal{X})$  can be connected by a constant speed  $W_2$ -geodesic  $(\mu_t)_{t\in[0,1]}$  such that

$$\operatorname{Ent}(\mu_t) \le (1-t)\operatorname{Ent}(\mu_0) + t\operatorname{Ent}(\mu_1) - \frac{\kappa}{2}t(1-t)W_2^2(\mu_0,\mu_1) .$$

Crucial features:

- Many geometric, analytic and probabilistic consequences

   — (log-)Sobolev inequalities, Talagrand inequalities, Brunn–Minkowski, etc.
- Stability under measured Gromov-Hausdorff convergence

A metric measure space  $(\mathcal{X},d,m)$  satisfies  $CD(\kappa,\infty)$  if any  $\mu_0,\mu_1\in\mathcal{P}_2(\mathcal{X})$  can be connected by a constant speed  $W_2$ -geodesic  $(\mu_t)_{t\in[0,1]}$  such that

$$\operatorname{Ent}(\mu_t) \le (1-t)\operatorname{Ent}(\mu_0) + t\operatorname{Ent}(\mu_1) - \frac{\kappa}{2}t(1-t)W_2^2(\mu_0,\mu_1)$$
.

Crucial features:

- Many geometric, analytic and probabilistic consequences

   — (log-)Sobolev inequalities, Talagrand inequalities, Brunn–Minkowski, etc.
- Stability under measured Gromov-Hausdorff convergence
- Applicable to a wide class of metric measure spaces

A metric measure space  $(\mathcal{X},d,m)$  satisfies  $CD(\kappa,\infty)$  if any  $\mu_0,\mu_1\in\mathcal{P}_2(\mathcal{X})$  can be connected by a constant speed  $W_2$ -geodesic  $(\mu_t)_{t\in[0,1]}$  such that

$$\operatorname{Ent}(\mu_t) \le (1-t)\operatorname{Ent}(\mu_0) + t\operatorname{Ent}(\mu_1) - \frac{\kappa}{2}t(1-t)W_2^2(\mu_0,\mu_1)$$
.

Crucial features:

- Many geometric, analytic and probabilistic consequences

   — (log-)Sobolev inequalities, Talagrand inequalities, Brunn–Minkowski, etc.
- Stability under measured Gromov-Hausdorff convergence
- Applicable to a wide class of metric measure spaces

But..... what about discrete spaces?

• Example: 2-point space  $\mathcal{X} = \{0, 1\}$ .

- Example: 2-point space  $\mathcal{X} = \{0, 1\}$ .
- Set  $\mu_{\alpha}:=(1-\alpha)\delta_{0}+\alpha\delta_{1}$  for  $\alpha\in[0,1]$ , and note that

$$W_2(\mu_{\alpha},\mu_{\beta})=\sqrt{|\alpha-\beta|}$$
.

- Example: 2-point space  $\mathcal{X} = \{0, 1\}$ .
- Set  $\mu_{\alpha}:=(1-\alpha)\delta_{0}+\alpha\delta_{1}$  for  $\alpha\in[0,1],$  and note that

$$W_2(\mu_{\alpha},\mu_{\beta})=\sqrt{|\alpha-\beta|}$$
.

• Suppose that  $(\mu_{\alpha(t)})$  is a constant speed geodesic. Then:

$$\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s| .$$

 $\longrightarrow (\alpha(t))$  is 2-Hölder, hence constant.

- Example: 2-point space  $\mathcal{X} = \{0, 1\}$ .
- Set  $\mu_{\alpha}:=(1-\alpha)\delta_{0}+\alpha\delta_{1}$  for  $\alpha\in[0,1]$ , and note that

$$W_2(\mu_{\alpha},\mu_{\beta})=\sqrt{|\alpha-\beta|}$$
.

• Suppose that  $(\mu_{\alpha(t)})$  is a constant speed geodesic. Then:

$$\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s| .$$

 $\longrightarrow (\alpha(t))$  is 2-Hölder, hence constant.

• Conclusion: there are no non-trivial  $W_2$ -geodesics.

- Example: 2-point space  $\mathcal{X} = \{0, 1\}$ .
- Set  $\mu_{\alpha}:=(1-\alpha)\delta_{0}+\alpha\delta_{1}$  for  $\alpha\in[0,1],$  and note that

$$W_2(\mu_{\alpha},\mu_{\beta})=\sqrt{|\alpha-\beta|}$$
.

• Suppose that  $(\mu_{\alpha(t)})$  is a constant speed geodesic. Then:

$$\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s| .$$

 $\longrightarrow (\alpha(t))$  is 2-Hölder, hence constant.

- Conclusion: there are no non-trivial W<sub>2</sub>-geodesics.
- In fact:

 $(\mathcal{P}_2(\mathcal{X}), W_2)$  is a geodesic space  $\Leftrightarrow (\mathcal{X}, d)$  is a geodesic space.

- Example: 2-point space  $\mathcal{X} = \{0, 1\}$ .
- Set  $\mu_{\alpha}:=(1-\alpha)\delta_{0}+\alpha\delta_{1}$  for  $\alpha\in[0,1],$  and note that

$$W_2(\mu_{\alpha},\mu_{\beta})=\sqrt{|\alpha-\beta|}$$
.

• Suppose that  $(\mu_{\alpha(t)})$  is a constant speed geodesic. Then:

$$\sqrt{|\alpha(t) - \alpha(s)|} = W_2(\mu_{\alpha(t)}, \mu_{\alpha(s)}) = c|t - s| .$$

 $\longrightarrow (\alpha(t))$  is 2-Hölder, hence constant.

- Conclusion: there are no non-trivial  $W_2$ -geodesics.
- In fact:  $(\mathcal{P}_2(\mathcal{X}), W_2)$  is a geodesic space  $\Leftrightarrow (\mathcal{X}, d)$  is a geodesic space.

LSV-definition does not apply to discrete spaces.

Why Wasserstein?

Why Wasserstein?

Theorem (Jordan, Kinderlehrer, Otto '98)

The heat flow is the gradient flow of the entropy w.r.t  $W_2$ 

Why Wasserstein?

Theorem (Jordan, Kinderlehrer, Otto '98)

The heat flow is the gradient flow of the entropy w.r.t  $W_2$ 

How to make sense of gradient flows in metric spaces?

Let  $\varphi: \mathbf{R}^n \to \mathbf{R}$  smooth and convex. For  $u: \mathbf{R}_+ \to \mathbf{R}^n$  TFAE:

- $\label{eq:user_solution} \mathbf{0} \ u \ \text{solves the gradient flow equation} \ u'(t) = -\nabla \varphi(u(t)) \ .$
- ${f 2}$  u solves the evolution variational inequality

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|u(t)-y|^2 \leq \varphi(y) - \varphi(u(t)) \qquad \forall y \; .$$

### Why Wasserstein?

#### Theorem (Jordan, Kinderlehrer, Otto '98)

The heat flow is the gradient flow of the entropy w.r.t  $W_2$  , i.e.,

$$\partial_t \mu = \Delta \mu \quad \iff \quad \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} W_2(\mu_t, \nu)^2 \leq \mathrm{Ent}(\nu) - \mathrm{Ent}(\mu_t) \qquad \forall \nu$$

#### How to make sense of gradient flows in metric spaces?

Let  $\varphi: \mathbf{R}^n \to \mathbf{R}$  smooth and convex. For  $u: \mathbf{R}_+ \to \mathbf{R}^n$  TFAE:

- $\label{eq:user_solution} \mathbf{0} \ u \ \text{solves the gradient flow equation} \ u'(t) = -\nabla \varphi(u(t)) \ .$
- ${f 2}$  u solves the evolution variational inequality

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}|u(t)-y|^2 \leq \varphi(y)-\varphi(u(t)) \qquad \forall y \; .$$

Many extensions have been proved:

- $\mathbf{R}^n$
- Riemannian manifolds
- Hilbert spaces
- Finsler spaces
- Wiener space
- Heisenberg group
- Alexandrov spaces
- Metric measures spaces

Jordan–Kinderlehrer–Otto Villani, Erbar Ambrosio–Savaré–Zambotti Ohta–Sturm Fang–Shao–Sturm Juillet Gigli–Kuwada–Ohta Ambrosio–Gigli–Savaré Many extensions have been proved:

- $\mathbf{R}^n$
- Riemannian manifolds
- Hilbert spaces
- Finsler spaces
- Wiener space
- Heisenberg group
- Alexandrov spaces
- Metric measures spaces

Jordan–Kinderlehrer–Otto Villani, Erbar Ambrosio–Savaré–Zambotti Ohta–Sturm Fang–Shao–Sturm Juillet Gigli–Kuwada–Ohta Ambrosio–Gigli–Savaré

# Question

Is there a version of the JKO-Theorem for *discrete* spaces?

### Setting

- $\bullet \ \mathcal{X} : \ \text{finite set}$
- $K: \mathcal{X} \times \mathcal{X} \to \mathbf{R}_+$  Markov kernel, i.e.,  $\forall x : \sum_y K(x, y) = 1$

### Setting

- $\mathcal{X}$  : finite set
- $K: \mathcal{X} \times \mathcal{X} \to \mathbf{R}_+$  Markov kernel, i.e.,  $\forall x : \sum_{y} K(x, y) = 1$

### Assumptions

- *K* is irreducible  $\longrightarrow \exists!$  inv. measure  $\pi$
- $\pi$  is reversible i.e.,  $\forall x, y$  :  $K(x, y)\pi(x) = K(y, x)\pi(y)$

### Setting

- $\mathcal{X}$  : finite set
- $K: \mathcal{X} \times \mathcal{X} \to \mathbf{R}_+$  Markov kernel, i.e.,  $\forall x : \sum_{y} K(x, y) = 1$

### Assumptions

- K is irreducible  $\longrightarrow \exists!$  inv. measure  $\pi$
- $\pi$  is reversible i.e.,  $\forall x, y$  :  $K(x, y)\pi(x) = K(y, x)\pi(y)$

Heat flow

 $\bullet \ H(t) = e^{t(K-I)}$  is the continuous time Markov semigroup

### Setting

- $\mathcal{X}$  : finite set
- $K: \mathcal{X} \times \mathcal{X} \to \mathbf{R}_+$  Markov kernel, i.e.,  $\forall x : \sum_{y} K(x, y) = 1$

### Assumptions

- K is irreducible  $\longrightarrow \exists!$  inv. measure  $\pi$
- $\pi$  is reversible i.e.,  $\forall x, y$  :  $K(x, y)\pi(x) = K(y, x)\pi(y)$

Heat flow

•  $H(t) = e^{t(K-I)}$  is the continuous time Markov semigroup

Relative Entropy

• For 
$$\rho \in \mathcal{P}(\mathcal{X}) := \left\{ \rho : \mathcal{X} \to \mathbf{R}_+ \mid \sum_{x \in \mathcal{X}} \rho(x) \pi(x) = 1 \right\}$$
,  

$$\operatorname{Ent}(\rho) = \sum_{x \in \mathcal{X}} \rho(x) \log \rho(x) \pi(x) .$$

$$\begin{aligned} \mathcal{X} &= \{-1,1\} \\ K(-1,1) &= K(1,-1) = 1 \\ \pi(-1) &= \pi(1) = \frac{1}{2} \end{aligned}$$



$$\begin{aligned} \mathcal{X} &= \{-1,1\}\\ K(-1,1) &= K(1,-1) = 1\\ \pi(-1) &= \pi(1) = \frac{1}{2}\\ &\rightsquigarrow \text{Every } \rho \in \mathcal{P}(\mathcal{X}) \text{ is of the form } \rho_{\alpha},\\ \alpha \in [-1,1]. \end{aligned}$$



$$\begin{split} \mathcal{X} &= \{-1,1\}\\ K(-1,1) &= K(1,-1) = 1\\ \pi(-1) &= \pi(1) = \frac{1}{2}\\ &\rightsquigarrow \text{Every } \rho \in \mathcal{P}(\mathcal{X}) \text{ is of the form } \rho_{\alpha},\\ \alpha &\in [-1,1]. \end{split}$$



#### Question

Is the heat flow the gradient flow of  ${\rm Ent}$  w.r.t the  $L^2\mbox{-Wasserstein metric?}$ 

$$\begin{split} \mathcal{X} &= \{-1,1\}\\ K(-1,1) &= K(1,-1) = 1\\ \pi(-1) &= \pi(1) = \frac{1}{2}\\ &\rightsquigarrow \text{Every } \rho \in \mathcal{P}(\mathcal{X}) \text{ is of the form } \rho_{\alpha},\\ \alpha \in [-1,1]. \end{split}$$

#### Question

Is the heat flow the gradient flow of Ent w.r.t the  $L^2$ -Wasserstein metric?





$$\begin{split} \mathcal{X} &= \{-1,1\}\\ K(-1,1) &= K(1,-1) = 1\\ \pi(-1) &= \pi(1) = \frac{1}{2}\\ &\rightsquigarrow \text{Every } \rho \in \mathcal{P}(\mathcal{X}) \text{ is of the form } \rho_{\alpha},\\ \alpha \in [-1,1]. \end{split}$$



#### Question

Is the heat flow the gradient flow of Ent w.r.t some other metric on  $\mathcal{P}(\{-1,1\})?$ 

$$\begin{split} \mathcal{X} &= \{-1,1\}\\ K(-1,1) &= K(1,-1) = 1\\ \pi(-1) &= \pi(1) = \frac{1}{2}\\ &\rightsquigarrow \text{Every } \rho \in \mathcal{P}(\mathcal{X}) \text{ is of the form } \rho_{\alpha},\\ \alpha \in [-1,1]. \end{split}$$



Is the heat flow the gradient flow of Ent w.r.t some other metric on  $\mathcal{P}(\{-1,1\})$ ?





$$\begin{split} \mathcal{X} &= \{-1,1\}\\ K(-1,1) &= K(1,-1) = 1\\ \pi(-1) &= \pi(1) = \frac{1}{2}\\ &\rightsquigarrow \text{Every } \rho \in \mathcal{P}(\mathcal{X}) \text{ is of the form } \rho_{\alpha},\\ \alpha \in [-1,1]. \end{split}$$

$$1-\alpha$$
  $1+\alpha$   $1+\alpha$ 

#### Question

Is the heat flow the gradient flow of Ent w.r.t some other metric on  $\mathcal{P}(\{-1,1\})$ ?



#### Proposition [M. 2011]

The heat flow is the gradient flow of  $\operatorname{Ent}$  w.r.t. the metric  $\mathcal W,$  where

$$\mathcal{W}(\rho_{\alpha},\rho_{\beta}) := \frac{1}{\sqrt{2}} \int_{\alpha}^{\beta} \sqrt{\frac{\operatorname{arctanh} r}{r}} \, \mathrm{d}r, \qquad -1 \le \alpha \le \beta \le 1.$$

In  $\mathbf{R}^n$  there is a dynamical characterisation of  $W_2$ :

$$W_2(\bar{\rho}_0, \bar{\rho}_1)^2 = \inf_{\rho_{\cdot}, \Psi_{\cdot}} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\Psi_t(x)|^2 \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t : \\ \partial_t \rho + \nabla \cdot (\rho \Psi) = 0 , \quad \rho_0 = \bar{\rho}_0 , \quad \rho_1 = \bar{\rho}_1 \right\}.$$

In  $\mathbf{R}^n$  there is a dynamical characterisation of  $W_2$ :

Benamou-Brenier formula in  $\mathbf{R}^n$ 

$$W_2(\bar{\rho}_0, \bar{\rho}_1)^2 = \inf_{\rho_{\cdot}, \Psi_{\cdot}} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\Psi_t(x)|^2 \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t : \\ \partial_t \rho + \nabla \cdot (\rho \Psi) = 0 , \quad \rho_0 = \bar{\rho}_0 , \quad \rho_1 = \bar{\rho}_1 \right\}.$$

• One may restrict to gradients:  $\Psi_t = \nabla \psi_t$ 

### In $\mathbf{R}^n$ there is a dynamical characterisation of $W_2$ :

Benamou-Brenier formula in  $\mathbf{R}^n$ 

$$W_{2}(\bar{\rho}_{0},\bar{\rho}_{1})^{2} = \inf_{\rho_{\cdot},\psi_{\cdot}} \left\{ \int_{0}^{1} \int_{\mathbf{R}^{n}} |\nabla\psi_{t}(x)|^{2} \rho_{t}(x) \, \mathrm{d}x \, \mathrm{d}t : \\ \partial_{t}\rho + \nabla \cdot (\rho\nabla\psi) = 0 , \quad \rho_{0} = \bar{\rho}_{0} , \quad \rho_{1} = \bar{\rho}_{1} \right\}.$$

• One may restrict to gradients:  $\Psi_t = \nabla \psi_t$ 

### In $\mathbf{R}^n$ there is a dynamical characterisation of $W_2$ :

$$W_{2}(\bar{\rho}_{0},\bar{\rho}_{1})^{2} = \inf_{\rho_{\cdot},\psi_{\cdot}} \left\{ \int_{0}^{1} \int_{\mathbf{R}^{n}} |\nabla\psi_{t}(x)|^{2} \rho_{t}(x) \, \mathrm{d}x \, \mathrm{d}t : \\ \partial_{t}\rho + \nabla \cdot (\rho\nabla\psi) = 0 , \quad \rho_{0} = \bar{\rho}_{0} , \quad \rho_{1} = \bar{\rho}_{1} \right\}.$$

- One may restrict to gradients:  $\Psi_t = \nabla \psi_t$
- Otto's interpretation: Riemannian distance formula

### In $\mathbf{R}^n$ there is a dynamical characterisation of $W_2$ :

$$W_{2}(\bar{\rho}_{0},\bar{\rho}_{1})^{2} = \inf_{\rho_{\cdot},\psi_{\cdot}} \left\{ \int_{0}^{1} \int_{\mathbf{R}^{n}} |\nabla\psi_{t}(x)|^{2} \rho_{t}(x) \, \mathrm{d}x \, \mathrm{d}t : \\ \partial_{t}\rho + \nabla \cdot (\rho\nabla\psi) = 0 , \quad \rho_{0} = \bar{\rho}_{0} , \quad \rho_{1} = \bar{\rho}_{1} \right\}.$$

- One may restrict to gradients:  $\Psi_t = \nabla \psi_t$
- Otto's interpretation: Riemannian distance formula
- Idea: *define* a metric in the discrete case using this formula.

### In $\mathbf{R}^n$ there is a dynamical characterisation of $W_2$ :

$$W_{2}(\bar{\rho}_{0},\bar{\rho}_{1})^{2} = \inf_{\rho_{\cdot},\psi_{\cdot}} \left\{ \int_{0}^{1} \int_{\mathbf{R}^{n}} |\nabla\psi_{t}(x)|^{2} \rho_{t}(x) \, \mathrm{d}x \, \mathrm{d}t : \\ \partial_{t}\rho + \nabla \cdot (\rho\nabla\psi) = 0 , \quad \rho_{0} = \bar{\rho}_{0} , \quad \rho_{1} = \bar{\rho}_{1} \right\}.$$

- One may restrict to gradients:  $\Psi_t = \nabla \psi_t$
- Otto's interpretation: Riemannian distance formula
- Idea: *define* a metric in the discrete case using this formula.
- Obstruction: how to multiply probability densities and discrete gradients?

$$\begin{split} W_2^2(\bar{\rho}_0,\bar{\rho}_1) &= \inf_{\rho_{\cdot},\psi_{\cdot}} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \, \rho_t(x) \, \mathrm{d}x \, \mathrm{d}t \right\} \\ \mathrm{s.t.} \qquad \partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0 \; . \end{split}$$

Benamou-Brenier formula in  $\mathbf{R}^n$ 

$$\begin{split} W_2^2(\bar{\rho}_0,\bar{\rho}_1) &= \inf_{\rho_\cdot,\psi_\cdot} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \mathrm{s.t.} \qquad \partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0 \;. \end{split}$$

#### Definition in the discrete case (M. 2011)

 $\mathcal{W}(\bar{\rho}_0,\bar{\rho}_1)^2 \\ := \inf_{\rho,\psi} \bigg\{$ 

$$\rho_0 = \bar{\rho}_0 , \quad \rho_1 = \bar{\rho}_1 .$$

Benamou-Brenier formula in  $\mathbf{R}^n$ 

$$\begin{split} W_2^2(\bar{\rho}_0,\bar{\rho}_1) &= \inf_{\rho_\cdot,\psi_\cdot} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla\psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \text{s.t.} \qquad \partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0 \;. \end{split}$$

#### Definition in the discrete case (M. 2011)

$$\mathcal{W}(\bar{\rho}_0, \bar{\rho}_1)^2 := \inf_{\rho, \psi} \left\{ \int_0^{\tau} \int_0^{\tau} \right\}$$

dt

$$\rho_0 = \bar{\rho}_0 , \quad \rho_1 = \bar{\rho}_1 .$$

Benamou-Brenier formula in  $\mathbf{R}^n$ 

$$\begin{split} W_2^2(\bar{\rho}_0,\bar{\rho}_1) &= \inf_{\rho_\cdot,\psi_\cdot} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \mathrm{s.t.} \qquad \partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0 \;. \end{split}$$

#### Definition in the discrete case (M. 2011)

$$\mathcal{W}(\bar{\rho}_0, \bar{\rho}_1)^2 \\ := \inf_{\rho, \psi} \left\{ \frac{1}{2} \int_0^1 \sum_{x, y \in \mathcal{X}} \right\}$$

$$K(x,y)\pi(x)\,\mathrm{d}t\bigg\}$$

$$\rho_0 = \bar{\rho}_0 , \quad \rho_1 = \bar{\rho}_1 .$$

Benamou-Brenier formula in  $\mathbf{R}^n$ 

$$\begin{split} W_2^2(\bar{\rho}_0,\bar{\rho}_1) &= \inf_{\rho_{\cdot},\psi_{\cdot}} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \mathrm{s.t.} \qquad \partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0 \;. \end{split}$$

#### Definition in the discrete case (M. 2011)

$$\mathcal{W}(\bar{\rho}_0,\bar{\rho}_1)^2 := \inf_{\rho,\psi} \left\{ \frac{1}{2} \int_0^1 \sum_{x,y \in \mathcal{X}} \left( \psi_t(x) - \psi_t(y) \right)^2 \qquad K(x,y)\pi(x) \, \mathrm{d}t \right\}$$

$$\rho_0 = \bar{\rho}_0 , \quad \rho_1 = \bar{\rho}_1 .$$

Benamou-Brenier formula in  $\mathbf{R}^n$ 

$$\begin{split} W_2^2(\bar{\rho}_0,\bar{\rho}_1) &= \inf_{\rho_{\cdot},\psi_{\cdot}} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \mathrm{s.t.} \qquad \partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0 \;. \end{split}$$

#### Definition in the discrete case (M. 2011)

$$\mathcal{W}(\bar{\rho}_0,\bar{\rho}_1)^2 := \inf_{\rho,\psi} \left\{ \frac{1}{2} \int_0^1 \sum_{x,y\in\mathcal{X}} (\psi_t(x) - \psi_t(y))^2 \hat{\rho}_t(x,y) K(x,y) \pi(x) \, \mathrm{d}t \right\}$$

$$\rho_0 = \bar{\rho}_0, \quad \rho_1 = \bar{\rho}_1.$$

Benamou-Brenier formula in  $\mathbf{R}^n$ 

$$\begin{split} W_2^2(\bar{\rho}_0,\bar{\rho}_1) &= \inf_{\rho_{\cdot},\psi_{\cdot}} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \mathrm{s.t.} \qquad \partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0 \;. \end{split}$$

#### Definition in the discrete case (M. 2011)

$$\begin{split} \mathcal{W}(\bar{\rho}_{0},\bar{\rho}_{1})^{2} &:= \inf_{\rho,\psi} \left\{ \frac{1}{2} \int_{0}^{1} \sum_{x,y \in \mathcal{X}} (\psi_{t}(x) - \psi_{t}(y))^{2} \hat{\rho}_{t}(x,y) K(x,y) \pi(x) \, \mathrm{d}t \right\} \\ \text{s.t.} \quad \frac{\mathrm{d}}{\mathrm{d}t} \rho_{t}(x) + \sum_{y \in \mathcal{X}} \hat{\rho}_{t}(x,y) (\psi_{t}(x) - \psi_{t}(y)) K(x,y) = 0 \qquad \forall x, \\ \rho_{0} = \bar{\rho}_{0} , \quad \rho_{1} = \bar{\rho}_{1} . \end{split}$$

Benamou-Brenier formula in  $\mathbf{R}^n$ 

$$\begin{split} W_2^2(\bar{\rho}_0,\bar{\rho}_1) &= \inf_{\rho_{\cdot},\psi_{\cdot}} \left\{ \int_0^1 \int_{\mathbf{R}^n} |\nabla \psi_t(x)|^2 \,\rho_t(x) \,\mathrm{d}x \,\mathrm{d}t \right\} \\ \mathrm{s.t.} \qquad \partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0 \;. \end{split}$$

#### Definition in the discrete case (M. 2011)

$$\begin{aligned} \mathcal{W}(\bar{\rho}_{0},\bar{\rho}_{1})^{2} &:= \inf_{\rho,\psi} \left\{ \frac{1}{2} \int_{0}^{1} \sum_{x,y \in \mathcal{X}} (\psi_{t}(x) - \psi_{t}(y))^{2} \hat{\rho}_{t}(x,y) K(x,y) \pi(x) \, \mathrm{d}t \right\} \\ \text{s.t.} \quad \frac{\mathrm{d}}{\mathrm{d}t} \rho_{t}(x) + \sum_{y \in \mathcal{X}} \hat{\rho}_{t}(x,y) (\psi_{t}(x) - \psi_{t}(y)) K(x,y) = 0 \qquad \forall x, \\ \rho_{0} = \bar{\rho}_{0} , \quad \rho_{1} = \bar{\rho}_{1} . \end{aligned}$$

#### How should we define $\hat{\rho}$ ?

### Definition in the discrete case

$$\begin{split} \mathcal{W}(\bar{\rho}_0,\bar{\rho}_1)^2 \\ &:= \inf_{\rho_\cdot,\psi_\cdot} \left\{ \frac{1}{2} \int_0^1 \sum_{x,y\in\mathcal{X}} \left( \psi_t(x) - \psi_t(y) \right)^2 \hat{\rho}_t(x,y) K(x,y) \pi(x) \, \mathrm{d}t \right\} \\ &\text{s.t.} \quad \frac{\mathrm{d}}{\mathrm{d}t} \rho_t(x) + \sum_{y\in\mathcal{X}} (\psi_t(x) - \psi_t(y)) \hat{\rho}_t(x,y) K(x,y) = 0 \; . \end{split}$$

### Definition in the discrete case

$$\begin{aligned} \mathcal{W}(\bar{\rho}_0,\bar{\rho}_1)^2 \\ &:= \inf_{\rho_\cdot,\psi_\cdot} \left\{ \frac{1}{2} \int_0^1 \sum_{x,y\in\mathcal{X}} \left( \psi_t(x) - \psi_t(y) \right)^2 \hat{\rho}_t(x,y) K(x,y) \pi(x) \, \mathrm{d}t \right\} \\ &\text{s.t.} \quad \frac{\mathrm{d}}{\mathrm{d}t} \rho_t(x) + \sum_{y\in\mathcal{X}} (\psi_t(x) - \psi_t(y)) \hat{\rho}_t(x,y) K(x,y) = 0 \; . \end{aligned}$$

How should we define  $\hat{\rho}? \quad \longrightarrow \quad \text{logarithmic mean}$ 

$$\hat{\rho}(x,y) := \int_0^1 \rho(x)^{1-\alpha} \rho(y)^{\alpha} \,\mathrm{d}\alpha = \frac{\rho(x) - \rho(y)}{\log \rho(x) - \log \rho(y)}$$

•  $\mathcal{W}$  defines metric on  $\mathcal{P}(\mathcal{X})$ .

- $\mathcal{W}$  defines metric on  $\mathcal{P}(\mathcal{X})$ .
- **②** The space  $\{\rho \in \mathcal{P}(\mathcal{X}) : \rho(x) > 0 \ \forall x\}$  is a Riemannian manifold with metric  $\mathcal{W}$ .

- $\mathcal{W}$  defines metric on  $\mathcal{P}(\mathcal{X})$ .
- **②** The space  $\{\rho \in \mathcal{P}(\mathcal{X}) : \rho(x) > 0 \ \forall x\}$  is a Riemannian manifold with metric  $\mathcal{W}$ .
- **③** The tangent space at  $\rho$  is the set of discrete gradients with

$$\|\nabla\psi\|_{\rho}^{2} = \frac{1}{2} \sum_{x,y \in \mathcal{X}} \left(\psi(x) - \psi(y)\right)^{2} \hat{\rho}(x,y) K(x,y) \pi(x) .$$

- $\mathcal{W}$  defines metric on  $\mathcal{P}(\mathcal{X})$ .
- **②** The space  $\{\rho \in \mathcal{P}(\mathcal{X}) : \rho(x) > 0 \ \forall x\}$  is a Riemannian manifold with metric  $\mathcal{W}$ .
- **③** The tangent space at  $\rho$  is the set of discrete gradients with

$$\|\nabla\psi\|_{\rho}^{2} = \frac{1}{2} \sum_{x,y \in \mathcal{X}} \left(\psi(x) - \psi(y)\right)^{2} \hat{\rho}(x,y) K(x,y) \pi(x) .$$

The heat flow is the gradient flow of the entropy.

- $\mathcal{W}$  defines metric on  $\mathcal{P}(\mathcal{X})$ .
- **②** The space  $\{\rho \in \mathcal{P}(\mathcal{X}) : \rho(x) > 0 \ \forall x\}$  is a Riemannian manifold with metric  $\mathcal{W}$ .
- **③** The tangent space at  $\rho$  is the set of discrete gradients with

$$\|\nabla\psi\|_{\rho}^{2} = \frac{1}{2} \sum_{x,y \in \mathcal{X}} \left(\psi(x) - \psi(y)\right)^{2} \hat{\rho}(x,y) K(x,y) \pi(x) .$$

O The heat flow is the gradient flow of the entropy.

#### Remark

Related independent work by

- Chow, Huang, Li, and Zhou
- Mielke

# Why the logarithmic mean?

### Formal proof of the JKO-Theorem

**0** If  $(\rho_t, \psi_t)$  satisfy the cont. eq.  $\partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0$ , then

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Ent}(\rho_t) = -\langle \log \rho_t, \nabla \cdot (\rho_t \nabla \psi_t) \rangle = \langle \nabla \log \rho_t, \nabla \psi_t \rangle_{\rho_t} .$$
$$\longrightarrow \operatorname{grad}_{W_2} \mathrm{Ent}(\rho) = \nabla \log \rho$$

# Why the logarithmic mean?

### Formal proof of the JKO-Theorem

**(**) If  $(\rho_t, \psi_t)$  satisfy the cont. eq.  $\partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0$ , then

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Ent}(\rho_t) = -\langle \log \rho_t, \nabla \cdot (\rho_t \nabla \psi_t) \rangle = \langle \nabla \log \rho_t, \nabla \psi_t \rangle_{\rho_t} .$$
  

$$\longrightarrow \operatorname{grad}_{W_2} \mathrm{Ent}(\rho) = \nabla \log \rho$$
  

$$\text{If } \rho_t \text{ solves the heat equation in } \mathbf{R}^n, \text{ then}$$
  

$$\partial_t \rho = \nabla \cdot (\nabla \rho) = -\nabla \cdot (\rho \nabla \psi) .$$
  
provided  $\psi = -\log \rho.$ 

 $\longrightarrow$  Tangent vector along the heat flow is  $-\nabla \log \rho$ .

# Why the logarithmic mean?

### Formal proof of the JKO-Theorem

**0** If  $(\rho_t, \psi_t)$  satisfy the cont. eq.  $\partial_t \rho + \nabla \cdot (\rho \nabla \psi) = 0$ , then

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Ent}(\rho_t) &= -\langle \log \rho_t, \nabla \cdot (\rho_t \nabla \psi_t) \rangle = \langle \nabla \log \rho_t, \nabla \psi_t \rangle_{\rho_t} \\ &\longrightarrow \operatorname{grad}_{W_2} \mathrm{Ent}(\rho) = \nabla \log \rho \\ \end{aligned}$$

$$\begin{aligned} & \bullet \quad \text{ of } \rho_t \text{ solves the heat equation in } \mathbf{R}^n, \text{ then} \\ & \quad \partial_t \rho = \nabla \cdot (\nabla \rho) = -\nabla \cdot (\rho \nabla \psi) \\ \text{ provided } \psi = -\log \rho. \\ & \quad \longrightarrow \quad \text{Tangent vector along the heat flow is } -\nabla \log \rho. \end{aligned}$$

Logarithmic mean compensates for the lack of a discrete chain rule:

$$\rho(x) - \rho(y) = \hat{\rho}(x, y) \big( \log \rho(x) - \log \rho(y) \big)$$

### Ricci curvature of Markov chains

#### The discrete analogue of Lott-Sturm-Villani becomes:

#### Definition (Erbar, M. 2011)

We say that  $(\mathcal{X}, K, \pi)$  has Ricci curvature bounded from below by  $\kappa \in \mathbf{R}$  if the entropy is  $\kappa$ -convex along geodesics in  $(\mathcal{P}(\mathcal{X}), \mathcal{W})$ .



### Consequences: Sharp functional inequalities

#### Theorem (Erbar, M.)

Let  $(\mathcal{X}, K, \pi)$  be a reversible Markov chain. Let  $\kappa > 0$ .

**(**) à la Bakry-Émery:  $\operatorname{Ric}(K) \ge \kappa \Longrightarrow$  modified log-Sobolev, i.e.

$$\operatorname{Ent}(\rho) \leq \frac{1}{2\kappa} \mathcal{E}(\rho, \log \rho) \;.$$

This implies  $\operatorname{Ent}(H_t \rho) \leq e^{-2\kappa t} \operatorname{Ent}(\rho)$ .

### Consequences: Sharp functional inequalities

#### Theorem (Erbar, M.)

Let  $(\mathcal{X}, K, \pi)$  be a reversible Markov chain. Let  $\kappa > 0$ .

**1** à la Bakry-Émery:  $\operatorname{Ric}(K) \ge \kappa \Longrightarrow \operatorname{modified} \operatorname{log-Sobolev}$ , i.e.

$$\operatorname{Ent}(\rho) \leq \frac{1}{2\kappa} \mathcal{E}(\rho, \log \rho) \;.$$

This implies  $\operatorname{Ent}(H_t \rho) \leq e^{-2\kappa t} \operatorname{Ent}(\rho)$ .

2 à la Otto-Villani: mod. log-Sobolev  $\implies$  mod. Talagrand, i.e.

$$\mathcal{W}(\rho, \mathbf{1})^2 \leq \frac{2}{\kappa} \operatorname{Ent}(\rho) \;.$$

### Consequences: Sharp functional inequalities

#### Theorem (Erbar, M.)

Let  $(\mathcal{X}, K, \pi)$  be a reversible Markov chain. Let  $\kappa > 0$ .

**1** à la Bakry-Émery:  $\operatorname{Ric}(K) \ge \kappa \Longrightarrow \operatorname{modified} \operatorname{log-Sobolev}$ , i.e.

$$\operatorname{Ent}(\rho) \leq \frac{1}{2\kappa} \mathcal{E}(\rho, \log \rho) \;.$$

This implies  $\operatorname{Ent}(H_t \rho) \leq e^{-2\kappa t} \operatorname{Ent}(\rho)$ .

2 à la Otto-Villani: mod. log-Sobolev  $\implies$  mod. Talagrand, i.e.

$$\mathcal{W}(\rho, \mathbf{1})^2 \leq \frac{2}{\kappa} \operatorname{Ent}(\rho)$$

 $\bigcirc$  mod. Talagrand  $\Longrightarrow$  [spectral gap and  $T_1$ ]:

$$\|\varphi\|_{L^2(\mathcal{X},\pi)}^2 \leq rac{1}{\kappa}\mathcal{E}(\varphi,\varphi) \quad ext{and} \quad W_1(\rho,\mathbf{1})^2 \leq rac{1}{\kappa}\operatorname{Ent}(
ho) \;.$$

• (Mielke 2012) For every finite reversible Markov chain:  $\exists \kappa \in \mathbf{R} \text{ such that } \operatorname{Ric}(K) \geq \kappa.$ 

- (Mielke 2012) For every finite reversible Markov chain:  $\exists \kappa \in \mathbf{R} \text{ such that } \operatorname{Ric}(K) \geq \kappa.$
- (Mielke 2012) Finite volume discretisations of Fokker-Planck equations in 1D

- (Mielke 2012) For every finite reversible Markov chain:  $\exists \kappa \in \mathbf{R} \text{ such that } \operatorname{Ric}(K) \geq \kappa.$
- (Mielke 2012) Finite volume discretisations of Fokker-Planck equations in 1D

#### Theorem (Erbar, M. 2012)

Let  $(\mathcal{X}_i, K_i, \pi_i)$  be reversible finite Markov chains and let  $(\mathcal{X}, K, \pi)$  be the product chain. Then:

$$\operatorname{Ric}(\mathcal{X}_i, K_i, \pi_i) \ge \kappa_i \implies \operatorname{Ric}(\mathcal{X}, K, \pi) \ge \frac{1}{n} \min_i \kappa_i$$

- (Mielke 2012) For every finite reversible Markov chain:  $\exists \kappa \in \mathbf{R} \text{ such that } \operatorname{Ric}(K) \geq \kappa.$
- (Mielke 2012) Finite volume discretisations of Fokker-Planck equations in 1D

#### Theorem (Erbar, M. 2012)

Let  $(\mathcal{X}_i, K_i, \pi_i)$  be reversible finite Markov chains and let  $(\mathcal{X}, K, \pi)$  be the product chain. Then:

$$\operatorname{Ric}(\mathcal{X}_i, K_i, \pi_i) \ge \kappa_i \implies \operatorname{Ric}(\mathcal{X}, K, \pi) \ge \frac{1}{n} \min_i \kappa_i$$

#### • Dimension-independent bounds

- (Mielke 2012) For every finite reversible Markov chain:  $\exists \kappa \in \mathbf{R} \text{ such that } \operatorname{Ric}(K) \geq \kappa.$
- (Mielke 2012) Finite volume discretisations of Fokker-Planck equations in 1D

#### Theorem (Erbar, M. 2012)

Let  $(\mathcal{X}_i, K_i, \pi_i)$  be reversible finite Markov chains and let  $(\mathcal{X}, K, \pi)$  be the product chain. Then:

$$\operatorname{Ric}(\mathcal{X}_i, K_i, \pi_i) \ge \kappa_i \implies \operatorname{Ric}(\mathcal{X}, K, \pi) \ge \frac{1}{n} \min_i \kappa_i$$

#### Dimension-independent bounds

• Sharp bounds for the discrete hypercube  $\{-1,1\}^n$ 

# Gromov-Hausdorff convergence

- Let  $\mathbf{T}_N^d = (\mathbf{Z}/N\mathbf{Z})^d$  be the discrete torus.
- Let  $\mathcal{W}_N$  be the renormalised transportation metric for simple random walk on  $\mathbf{T}_N^d$ .

# Gromov-Hausdorff convergence

- Let  $\mathbf{T}_N^d = (\mathbf{Z}/N\mathbf{Z})^d$  be the discrete torus.
- Let  $\mathcal{W}_N$  be the renormalised transportation metric for simple random walk on  $\mathbf{T}_N^d$ .

#### Theorem (Gigli, M. 2012)

 $(\mathcal{P}(\mathbf{T}_N^d), \mathcal{W}_N) \to (\mathcal{P}(\mathbf{T}^d), W_2)$  in the sense of Gromov–Hausdorff.

# Gromov-Hausdorff convergence

- Let  $\mathbf{T}_N^d = (\mathbf{Z}/N\mathbf{Z})^d$  be the discrete torus.
- Let  $\mathcal{W}_N$  be the renormalised transportation metric for simple random walk on  $\mathbf{T}_N^d$ .

#### Theorem (Gigli, M. 2012)

 $(\mathcal{P}(\mathbf{T}_N^d), \mathcal{W}_N) \to (\mathcal{P}(\mathbf{T}^d), W_2)$  in the sense of Gromov–Hausdorff.

- Compatibility between  $W_2$  and W.
- Main ingredient for proving convergence of gradient flows.

# Further developments

- Systems of reaction-diffusion equations (Mielke)
- Fractional heat equations (Erbar)
- Dissipative quantum mechanics (Carlen, M.; Mielke)

# Further developments

- Systems of reaction-diffusion equations (Mielke)
- Fractional heat equations (Erbar)
- Dissipative quantum mechanics (Carlen, M.; Mielke)

# Thank you!