Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra

APPLICATION OF SEMIMARTINGALE MEASURE TO THE INVESTIGATION OF STOCHASTIC INCLUSIONS

Joachim Syga

6th International Conference on Stochastic Analysis and Its Applications

Będlewo, 10 – 14 September 2012

CONTENT:

- Doléans-Dade measure and semimartingale measure.
- 2. Itô inclusion.
- 3. Stratonovich inclusion.

$$\dot{x}(t) = f(x(t))$$
 \swarrow $\dot{x}(t) \in F(x(t))$ $dx_t = .$

 $dx_t = f(x_t)dt + g(x_t)dW_t$

$$dx_t = h(x_t) dZ_t$$

- K. Kuratowski,
- C. Ryll-Nardzewski (1965)
- C. Castaing (1967)
- J.P.Aubin,
- A. Cellina (1984)

K. Itô (1946)
P.A.Meyer (1967)
I.I. Gihman,
A.V. Skorohod (1972)
P. Protter (1977)

 $dx_t \in F(x_t)dZ_t$

M. Kisielewicz (1993)
N.U. Ahmed (1994)
M. Michta (1995)
M. Motyl (1995)
J.P. Aubin, G. Da Prato (1998)

1. Doléans-Dade measure and semimartingale measure.

 $(\Omega, \mathcal{F}, \mathbb{F}, P)$ – a complete probability space with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ satisfying the usual hypothesis.

DOLÉANS-DADE MEASURE

M – a square-integrable martingale,

$$s,t\in [0,T], \qquad s\leq t;$$

 $B\subset \Omega$ – an \mathcal{F}_s -measurable set $[0,T] imes \Omega \longrightarrow (s,t] imes B$

$$egin{aligned} \mu_M((s,t] imes B) &= E(\mathbbm{1}_B(M_t-M_s)^2)\ (s,t] imes B;\ &\downarrow\ &\mathcal{P} \end{aligned}$$

$$egin{aligned} &L_M^2 = \{f \in \mathcal{P} : E(\int_0^T |f_{ au}|^2 d[M,M]_{ au}) < \infty \} \ & ext{with } \|f\|_{L_M^2} = (\int_{[0,T] imes \Omega} |f|^2 d\mu_M)^{1/2} \ &G : \ &[0,T] imes \Omega \ o \ 2^{\mathbb{R}^n}, \ G = \ &(G_t)_{t \in [0,T]} \ - \ & ext{a} \ & ext{predictable set-valued process} \ &\mathcal{S}_M(G) := \{f \in L_M^2: \ f(t,\omega) \in G(t,\omega), \ &\mu_M - \ & ext{a.e.}\}. \end{aligned}$$

Let G be M-integrably bounded: that exists process $m \in L^2_M$ such that $H_{\mathbb{R}^n}(G,0) \leq m \ \mu_M$ – a.e.

A set-valued stochastic integral of G with respect to M is defined as a set

$$\int_s^t G_{ au} dM_{ au} = \{\int_s^t g_{ au} dM_{ au} \, : g \in \mathcal{S}_M(G)\},$$
 for $0 \leq s < t \leq T$ and

$$\int G_ au dM_ au = (\int_0^t G_ au dM_ au)_{t\in [0,T]}.$$

Theorem 1 (J.Motyl, J.S., [5] 2006) Let M be a square-integrable martingale, $M_0 = 0$, and let G be an M-integrably bounded and predictable set-valued process. Then

$$egin{aligned} ext{dist}_{L^2(\Omega)}(\int_0^t f_ au dM_ au, \int_0^t G_ au dM_ au) \ &= (E\int_0^t ext{dist}_{\mathbb{R}^n}^2(f_ au, G_ au) d[M, M]_ au)^{1/2} \end{aligned}$$

for $f\in L^2_M$ and $t\geq 0$.

Theorem 2 (J.Motyl, J.S., [5] 2006) Let M be a square-integrable martingale, $M_0 = 0$, and let F, G be M-integrably bounded and predictable set-valued processes. Then

$$egin{aligned} H_{L^2(\Omega)}(\int_0^t G_ au dM_ au, \int_0^t F_ au dM_ au) \ &\leq (E\int_0^t H^2_{\mathbb{R}^n}(G_ au, F_ au) d[M,M]_ au)^{1/2} \end{aligned}$$

each $t \geq 0$.

 \mathcal{H}^p , $1 \leq p \leq \infty$ – a space of one-dimensional semimartingales $Z : [0,T] \times \Omega \rightarrow \mathbb{R}$, $Z = (Z_t)_{t \in [0,T]}$, with a canonical decomposition Z = N + A, and a norm

$$\|Z\|_{\mathcal{H}^p} = \|[N,N]_T^{1/2} + \int_0^T |\, dA_ au|\, \|_{L^p(\Omega)}.$$

 \mathcal{H}^p_n , $1 \leq p \leq \infty$ – a space of n-dimensional semimartingales $Z=(Z^1,\ldots,Z^n)$, $Z^i\in\mathcal{H}^p$, $i=1,\ldots,n$, with a norm

$$||Z||_{\mathcal{H}_{n}^{p}} = (\sum_{i=1}^{n} ||Z^{i}||_{\mathcal{H}^{p}}^{2})^{1/2}.$$

SEMIMARTINGALE MEASURE

Z – an \mathcal{H}^2 -semimartingale, Z=N+A.

For a local martingale $N \in \mathcal{H}^2$ we define a Doléans-Dade measure μ_N , (applying Cor. II.6.4 of P.Protter [6], 2005).

For an FV-process $A \in \mathcal{H}^2$ we define a measure ν_A on \mathcal{P} :

 $D \subset [0,T] imes \Omega$ – a predictable set

$$u_A(D) = \int_\Omega \int_0^T \mathbb{1}_D(\omega, t) \alpha(\omega, dt) P(d\omega)$$

$$lpha(\omega,dt) = |dA_t(\omega)| \cdot \int_0^T |dA_t(\omega)|$$

For a semimartingale $Z \in \mathcal{H}^2$ with a canonical decomposition Z = N + A we define a measure μ_Z as:

$$\mu_Z = \mu_N + \nu_A$$

$$Z\in \mathcal{H}^2$$
, $Z=N+A$
 $L^2_Z=\{f\in \mathcal{P}: \int_{[0,T] imes\Omega} |f|^2 d\mu_Z <\infty\}.$
with $\|f\|_{L^2_Z}=(\int_{[0,T] imes\Omega} |f|^2 d\mu_Z)^{1/2}$

Theorem 3 (J.S., [7], 2012)
For
$$Z \in \mathcal{H}^2$$
 and $f \in L_Z^2$ we have
 $\|\int f_{ au} dZ_{ au}\|_{\mathcal{H}^2_n}^2 \leq 2 \|f\|_{L_Z^2}^2.$

 $Z\in \mathcal{H}^2$, $Z_0=0;~G:[0,T] imes\Omega o 2^{\mathbb{R}^n}$, $G=(G_t)_{t\in[0,T]}$ – a predictable set-valued process

$$egin{aligned} \mathcal{S}_Z(G) &:= \{f \in L^2_Z: \ f(t,\omega) \in G(t,\omega), \ &\ \mu_Z^- ext{ a.e.} \}. \end{aligned}$$

Definition 1 Let $Z = (Z_t)_{t \in [0,T]}$ be an \mathcal{H}^2 semimartingale, $Z_0 = 0$. Let $G = (G_t)_{t \in [0,T]}$ be a predictable Z-integrably bounded set-valued process. We define set-valued integrals

$$\int_s^t G_ au dZ_ au = \{\int_s^t g_ au dZ_ au \ : g \in \mathcal{S}_Z(G)\},$$

for $0 \leq s < t \leq T$ and

$$\int G_{ au} dZ_{ au} = (\int_0^t G_{ au} dZ_{ au})_{t\in [0,T]}.$$

Remark 1 A set-valued process G is Z-integrably bounded, if there exists a process $m \in L^2_Z$ such that

$$H_{\mathbb{R}^n}(G,0) \leq m \; \mu_Z$$
 – a.e.

Theorem 4 (J.Motyl, J.S., [5], 2006) Let $Z = (Z_t)_{t \in [0,T]}$ be an \mathcal{H}^2 -semimartingale. Let $F = (F_t)_{t \in [0,T]}, G = (G_t)_{t \in [0,T]}$ be predictable Z-integrably bounded set-valued processes.

Then there exists a constant $K \geq 0$ such that

$$egin{aligned} &H^2_{\mathcal{H}^2_n}(\int G_ au dZ_ au,\int F_ au dZ_ au)\ &\leq K\cdot \|\int H^2_{\mathbb{R}^n}(G_ au,F_ au) dZ_ au\|_{\mathcal{H}^2}, \end{aligned}$$

where

 $K = 2 \cdot \max\{\|\int_0^T |dA_t(\omega)|\|_{L^2(\Omega)}, E[N,N]_T^{1/2}\}$

2. Itô inclusion.

 S^2 – a space of adapted single-valued càdlàg processes $r: [0, T] \times \Omega \rightarrow \mathbb{R}^n$ $r = (r_i)_{i \in [0, T]}$ with

 $x:[0,T] imes \Omega o \mathbb{R}^n$, $x=(x_t)_{t\in [0,T]}$ with

$$\|x\|_{S^2} = \|\sup_{t\in[0,T]} |x_t|\|_{L^2(\Omega)}.$$

Let $Z = (Z_t)_{t \in [0,T]}$ be one-dimensional \mathcal{H}^2 -semimartingale, $Z_0 = 0$, $F: [0,T] \times \mathbb{R}^n \to Cl \ Conv(\mathbb{R}^n)$.

For $0 \leq s < t \leq T$ we consider a stochastic inclusion:

$$egin{aligned} x_t - x_s \in cl_{L^2(\Omega)}(\int_s^t F(au, x_ au) dZ_ au) \ x_0 = \xi \in L^2(\Omega, \mathcal{F}_0, P; \mathbb{R}^n) \end{aligned}$$
 (SI)

Definition 2 A process $x \in S^2$ is a solution of the stochastic inclusion (SI), if $x_0 = \xi$ and for any $0 \leq s < t \leq T$ a random variable $x_t - x_s$ belongs to the set

$$cl_{L^2(\Omega)}(\int_s^t F(au,x_ au) dZ_ au).$$

Assumption 1 Let $F : [0,T] \times \mathbb{R}^n \to ClConv(\mathbb{R}^n)$ be a multifunction satisfying:

(1) $F: [0,T] \times \mathbb{R}^n \to Cl Conv(\mathbb{R}^n)$ is a (β, \mathcal{F}) -measurable multifunction;

(2) $F: [0,T] \times \mathbb{R}^n \to Cl \ Conv(\mathbb{R}^n)$ is a Lipschitz multifunction:

i.e. there exists a constant D such that for all $t \in [0,T]$ and $u,v \in \mathbb{R}^n$

$$H(F(t,u),F(t,v))\leq D|u-v|;$$

(3) For any $x \in S^2$ a process $(F(t, x_{t-}))_{t \in [0,T]}$ is Z-integrably bounded.

Theorem 5 (J.S., [7], 2012) Let $Z = (Z_t)_{t \in [0,T]}$ be an \mathcal{H}^{∞} -semimartingale, $Z_0 = 0$, $F : [0,T] \times \mathbb{R}^n \to Cl \ Conv(\mathbb{R}^n)$ satisfies the Assumption 1.

Then for any $\xi \in L^2(\Omega, \mathcal{F}_0, P; \mathbb{R}^n)$ there exists a solution of the inclusion (SI).

Theorem 6 (J.S., [7], 2012) Let $Z = (Z_t)_{t \in [0,T]}$ be an \mathcal{H}^{∞} -semimartingale, $Z_0 = 0$ decomposed into a sum Z = N + A, where N is a local martingale and A is a deterministic FV-process.

Let $F : [0,T] \times \mathbb{R}^n \to Cl \ Conv(\mathbb{R}^n)$ satisfies the Assumption 1.

Then for any $\xi \in L^2(\Omega, \mathcal{F}_0, P; \mathbb{R}^n)$ the set of solutions of the inclusion (SI) is closed in S^2 .

Assumption 2 Let $F : [0,T] \times \mathbb{R}^n \to ClConv(\mathbb{R}^n)$ be a multifunction satisfying:

(1) $F: [0,T] \times \mathbb{R}^n \to Cl \ Conv(\mathbb{R}^n)$ is a Carathéodory-type multifunction;

(2) For any $x \in S^2$ a set-valued process $(F(t, x_{t-}))_{t \in [0,T]}$ is Z-integrably bounded.

Assumption 3 Let $Z = (Z_t)_{t \in [0,T]}$ be an \mathcal{H}^2 semimartingale such that the measure μ_Z is absolutely continuous with respect to $\lambda \otimes P$ on \mathcal{P} , where λ – a Lebesgue measure on [0,T].

Theorem 7 (J.S., [7], 2012) Let $Z = (Z_t)_{t \in [0,T]}$ be an \mathcal{H}^2 -semimartingale, $Z_0 = 0$ satisfying Assumption 3. Let $F : [0,T] \times \mathbb{R}^n \to Cl \ Conv(\mathbb{R}^n)$ satisfies Assumption 2.

Then for any $\xi \in L^2(\Omega, \mathcal{F}_0, P; \mathbb{R}^n)$ the set of solutions of the inclusion (SI) is closed in S^2 .

3. Stratonovich inclusion

 $(\Omega, \mathcal{F}, \mathbb{F}, P)$ – a complete probability space with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,1]}$ satisfying the usual hypothesis.

Definition 3 (M.Errami, F.Russo, P.Vallois, [9], 2002) For a stochastic càdlàg process g we set $\tilde{g}_t = (g_t)^{\sim} = g_{(1-t)-},$ which is called a time-reversed process.

Definition 4 Let (Ω, \mathcal{F}, P) be a probability space. Consider on Ω two filtrations $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq 1}$ and $\mathbb{H} = (\mathcal{H}_t)_{0 \leq t \leq 1}$ satisfying usual hypothesis.

A càdlàg process x is (\mathbb{F}, \mathbb{H}) -reversible if x is an \mathbb{F} -adapted process on [0, 1] and \tilde{x} is an \mathbb{H} adapted process on [0, 1].

A càdlàg process Z is an (\mathbb{F}, \mathbb{H}) -reversible semimartingale, if Z is an \mathbb{F} -semimartingale on [0,1] and \tilde{Z} is an \mathbb{H} -semimartingale on [0,1)(P.Protter [6], 2005). **Definition 5** (M.Errami, F.Russo, P.Vallois, [9], 2002) Let $\{\tau_n\}$ denote a subdivision of [0, 1], $\tau_n = \{0 = t_0 < t_1 < \cdots < t_n = 1\}.$ We set $|\tau_n| = \sup_i (t_{i+1} - t_i).$ Let g and Z be càdlàg processes continuous for t = 0 and t = 1. We define

$$egin{aligned} &I^{-}_{ au_n}(g,dZ)(a)\ &=\sum_i g(t_i\wedge a)(Z(t_{i+1}\wedge a)-Z(t_i\wedge a)),\ &I^{+}_{ au_n}(g,dZ)(a)\ &=\sum_i g(t_{i+1}\wedge a)(Z(t_{i+1}\wedge a)-Z(t_i\wedge a)),\ &I^{o}_{ au_n}(g,dZ)(a)\ &=1/2\,(I^{+}_{ au_n}(g,dZ)(a)+I^{-}_{ au_n}(g,dZ)(a)). \end{aligned}$$

The corresponding limits of above sums are called forward, backward and Stratonovich integrals, respectively, and they are denoted by

 $\int_{(0,a]} gd^-Z$, $\int_{(0,a]} gd^+Z$, $\int_{(0,a]} g\circ dZ$.

(J.Motyl, J.S., [10] 2010)

Definition 6 A stochastic set-valued process G is càdlàg if it has right continuous sample paths with left limits with respect to the Hausdorff metric.

A stochastic set-valued process G is RV–càdlàg if it is càdlàg and continuous for t = 1.

Definition 7 For a stochastic set-valued càdlàg process G we set

 $\tilde{G}_t = (G_t)^{\sim} = G_{(1-t)-},$

which is called a time-reversed process.

The limit of the set-valued map is taken with respect to the Hausdorff metric.

Definition 8 A set-valued càdlàg process G is (\mathbb{F}, \mathbb{H}) -reversible if G is an \mathbb{F} -adapted process on [0, 1] and \tilde{G} is an \mathbb{H} -adapted process on [0, 1].

Lemma 8 Let G be a set-valued (\mathbb{F}, \mathbb{H}) -reversible process. Then there exists a selection g of G being an (\mathbb{F}, \mathbb{H}) -reversible process.

Definition 9 Let G be a set-valued (\mathbb{F}, \mathbb{H}) -reversible RV-càdlàg process and let Z be an (\mathbb{F}, \mathbb{H}) reversible semimartingale, $Z_0 = 0$. Let S(G) denote a family of all (\mathbb{F}, \mathbb{H}) -reversible RV-càdlàg selections of G. For every $0 \le a < b \le 1$ we define

 $egin{aligned} &\int_{(a,b]}G\circ dZ\ &=\{1/2\ (\int_{(a,b]}gd^-Z+\int_{(a,b]}gd^+Z)\ :\ g\in S(G)\}\ &=\{1/2\ (\int_{(a,b]}g_{ au-}dZ_{ au}-\int_{[1-b,1-a)} ilde g_{ au-}d ilde Z_{ au})\ g\in S(G)\}. \end{aligned}$

Definition 10 Let Z be an RV-càdlàg process. Let x be a stochastic process such that for every $0 \le a < b \le 1$ there exist RV-càdlàg processes $g^{a,b}$ and $h^{a,b}$ satisfying $x_b - x_a = \int_{(a,b]} g^{a,b} d^- Z + \int_{(a,b]} h^{a,b} d^+ Z$.

A process x is called decomposable if there exist RV-càdlàg processes $u,v,\ u_0\in \mathcal{F}_0$ and $v_1\in \mathcal{H}_0$ such that

(i)
$$u_b - u_a = \int_{(a,b]} g^{a,b} d^- Z$$
,
 $v_b - v_a = \int_{(a,b]} h^{a,b} d^+ Z$,
for every $0 \le a < b \le 1$,

(ii)
$$x = u + v$$
.

(J.S., [8] 2012)

Theorem 9 Let Z be an (\mathbb{F}, \mathbb{H}) -reversible semimartingale from H^2 , $Z_0 = 0$. Let G be a set-valued (\mathbb{F}, \mathbb{H}) -reversible process left continuous for t = 1 and integrably bounded by a process m. If a decomposable RV-càdlàg process x = u + v satisfies $x_b - x_a \in \int_{(a,b]} G \circ dZ$, for every $0 \le a < b \le 1$, then there exists a pair (g, \tilde{h}) of stochastic processes such that $g \in cl_{L^2_Z}S_Z(G_-)$, $\tilde{h} \in$ $cl_{L^2_{\tilde{\sigma}}}S_{\tilde{Z}}(\tilde{G}_-)$ and for all $0 < t \le 1$

$$x_t = x_0 + 1/2 \int_{(0,t]} g_{\tau} dZ_{\tau} - 1/2 \int_{[1-t,1)} \tilde{h}_{\tau} d\tilde{Z}$$
 a.s.

Definition 11 Let Z be an (\mathbb{F}, \mathbb{H}) -reversible semimartingale from \mathcal{H}^{∞} , $Z_0 = 0$. Let $F : [0,1] \times \mathbb{R}^n \to Comp \ Conv(\mathbb{R}^n)$. For $s, t \in [0,T]$, s < t we consider the Stratonovichtype stochastic inclusion

$$x_t - x_s \in cl_{L^2(\Omega)}(\int_{(s,t]}F(au,x_ au) \circ dZ)$$
 (SSI)

with $x_0=\xi\in L^2(\Omega,[\mathcal{F}_0,\mathcal{H}_1],P;\mathbb{R}^n)$.

A process $x \in S^2([0,1])$ is a solution of the stochastic inclusion (SSI), if $x_0 = \xi$ and for any $s,t \in [0,1]$, s < t a random variable $x_t - x_s$ belongs to the set

$$cl_{L^2(\Omega)}(\int_{(s,t]}F(au,x_ au)\circ dZ).$$

Assumption 4

Let $F: [0,T] \times \mathbb{R}^n \to Comp \ Conv(\mathbb{R}^n)$ be a multifunction satisfying:

(1) $F : [0,T] \times \mathbb{R}^n \to Comp \ Conv(\mathbb{R}^n)$ is a (β, \mathcal{F}) -measurable multifunction;

(2) $F : [0,T] \times \mathbb{R}^n \to Comp \ Conv(\mathbb{R}^n)$ is a Lipschitz multifunction:

(3) For any $x \in S^2$ a process $(F(t, x_{t-}))_{t \in [0,T]}$ is integrably bounded.

Theorem 10 Let Z be an (\mathbb{F}, \mathbb{H}) -reversible semimartingale from \mathcal{H}^{∞} , $Z_0 = 0$. Let $F : [0,1] \times \mathbb{R}^n \to CompConv(\mathbb{R}^n)$ satisfies the Assumption 4. Then for any $\xi \in L^2(\Omega, [\mathcal{F}_0, \mathcal{H}_1], P; \mathbb{R}^n)$ the set of solutions of the inclusion (SSI) is nonempty.

References

[1] Aase K.K., Guttrup P., *Estimation in models for security prices*, Scand. Actuarial J., 3/4:211-225, 1987.

[2] Chung K.L., Williams R.J., Introduction to stochastic integration, Birkhäuser Boston - Basel - Berlin, 1990.

[3] Doléans-Dade C., *Existence du processus croisant naturel associé à un potentiel de class (D)*, Z. Wahr. verw. Geb., 9, 309-314, 1968.

[4] Kisielewicz M., Differential Inclusions and Optimal Control, Kluwer Acad. Publ. and Polish Sci. Publ., Warszawa - Dordrecht - Boston - London, 1991.

[5] Motyl J., Syga J., *Properties of set-valued stochastic integrals*, Disc. Math. Probab. Stat. 26, 83-103, 2006.

[6] Protter P., Stochastic Integration and Differential Equations, Springer-Verlag, 2nd Edition, Version 2.1, Berlin - Heideberg - New York, 2005.

[7] Syga J., Application of semimartingale measure in the investigation of stochastic inclusion, Dynamic Systems and Applications 21 (2012), 393-406.

[8] Syga J., Semimartingale measure in the investigation of Stratonovich stochastic inclusion, in preparation.

[9] M. Errami, F. Russo, P. Vallois, *Itô's formula for* $C^{1,\lambda}$ -functions of a càdlàg process and related calculus, Probab. Theory Relat. Fields, 122 (2002), 191-221.

[10] Motyl J., Syga J., *Selection property of Stratonovich set-valued integral*, Dynamic of Continuous, Discrete and Impulsive Systems 17 3, 431-443, 2010.