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1. Doléans-Dade measure
and semimartingale measure.

(Ω,F , F, P ) – a complete probability space with
a filtration F = (Ft)t∈[0,T ] satisfying the usual
hypothesis.

DOLÉANS-DADE MEASURE

M – a square-integrable martingale,

s, t ∈ [0, T ], s ≤ t;
B ⊂ Ω – an Fs-measurable set

[0, T ]× Ω −→ (s, t]×B

µM((s, t]×B) = E(1IB(Mt −Ms)
2)

(s, t]×B;
↓
P



L2
M = {f ∈ P : E(

∫ T
0 |fτ |

2d[M,M ]τ ) <∞}

with ‖f‖L2
M

= (
∫
[0,T ]×Ω |f |

2dµM)1/2

G : [0, T ] × Ω → 2R
n
, G = (Gt)t∈[0,T ] – a

predictable set-valued process

SM(G) := {f ∈ L2
M : f(t, ω) ∈ G(t, ω),

µM– a.e.}.

Let G be M-integrably bounded:
that exists process m ∈ L2

M such that
HRn(G, 0) ≤ m µM – a.e.

A set-valued stochastic integral of G with re-
spect to M is defined as a set∫ t

s
GτdMτ = {

∫ t

s
gτdMτ : g ∈ SM(G)},

for 0 ≤ s < t ≤ T and∫
GτdMτ = (

∫ t

0
GτdMτ )t∈[0,T ].



Theorem 1 (J.Motyl, J.S., [5] 2006)
LetM be a square-integrable martingale,M0 =

0, and let G be an M-integrably bounded and
predictable set-valued process. Then

distL2(Ω)(

∫ t

0
fτdMτ ,

∫ t

0
GτdMτ )

= (E

∫ t

0
dist2Rn(fτ , Gτ )d[M,M ]τ )1/2

for f ∈ L2
M and t ≥ 0.

Theorem 2 (J.Motyl, J.S., [5] 2006)
LetM be a square-integrable martingale,M0 =

0, and let F,G be M-integrably bounded and
predictable set-valued processes. Then

HL2(Ω)(

∫ t

0
GτdMτ ,

∫ t

0
FτdMτ )

≤ (E

∫ t

0
H2

Rn(Gτ , Fτ )d[M,M ]τ )1/2

each t ≥ 0.



Hp, 1 ≤ p ≤ ∞ – a space of one-dimensional
semimartingales Z : [0, T ]× Ω→ R,
Z = (Zt)t∈[0,T ], with a canonical decomposi-
tion Z = N +A, and a norm

‖Z‖Hp = ‖[N,N ]
1/2
T +

∫ T

0
|dAτ|‖Lp(Ω).

Hpn, 1 ≤ p ≤ ∞ – a space of n-dimensional
semimartingales Z = (Z1, . . . , Zn), Zi ∈ Hp,
i = 1, . . . , n, with a norm

‖Z‖Hpn = (
∑n
i=1 ‖Zi‖2Hp)

1/2.



SEMIMARTINGALE MEASURE

Z – an H2-semimartingale, Z = N +A.

For a local martingale N ∈ H2 we define a
Doléans-Dade measure µN ,
(applying Cor. II.6.4 of P.Protter [6], 2005).

For an FV-process A ∈ H2 we define a me-
asure νA on P:

D ⊂ [0, T ]× Ω – a predictable set

νA(D) =

∫
Ω

∫ T

0
1ID(ω, t)α(ω, dt)P (dω)

α(ω, dt) = |dAt(ω)| ·
∫ T

0
|dAt(ω)|

For a semimartingale Z ∈ H2 with a canonical
decomposition Z = N+A we define a measure
µZ as:

µZ = µN + νA



Z ∈ H2, Z = N +A

L2
Z = {f ∈ P :

∫
[0,T ]×Ω

|f |2dµZ <∞}.

with ‖f‖L2
Z

= (
∫
[0,T ]×Ω |f |

2dµZ)1/2

Theorem 3 (J.S., [7], 2012)
For Z ∈ H2 and f ∈ L2

Z we have

‖
∫
fτdZτ‖2H2

n
≤ 2‖f‖2

L2
Z
.



Z ∈ H2, Z0 = 0; G : [0, T ]× Ω→ 2R
n
,

G = (Gt)t∈[0,T ] – a predictable set-valued
process

SZ(G) := {f ∈ L2
Z : f(t, ω) ∈ G(t, ω),

µZ– a.e.}.

Definition 1 Let Z = (Zt)t∈[0,T ] be an H2–
semimartingale, Z0 = 0.
Let G = (Gt)t∈[0,T ] be a predictable Z-integrably
bounded set-valued process.
We define set-valued integrals∫ t

s
GτdZτ = {

∫ t

s
gτdZτ : g ∈ SZ(G)},

for 0 ≤ s < t ≤ T and∫
GτdZτ = (

∫ t

0
GτdZτ )t∈[0,T ].

Remark 1 A set-valued process G is Z-integrably
bounded, if there exists a process m ∈ L2

Z
such that

HRn(G, 0) ≤ m µZ – a.e.



Theorem 4 (J.Motyl, J.S., [5], 2006)
Let Z = (Zt)t∈[0,T ] be an H2–semimartingale.
Let F = (Ft)t∈[0,T ], G = (Gt)t∈[0,T ]

be predictable Z-integrably bounded set-valued
processes.
Then there exists a constant K ≥ 0 such that

H2
H2
n
(

∫
GτdZτ ,

∫
FτdZτ )

≤ K · ‖
∫
H2

Rn(Gτ , Fτ )dZτ‖H2,

where
K = 2 ·max{‖

∫ T
0 |dAt(ω)|‖L2(Ω), E[N,N ]

1/2
T }



2. Itô inclusion.

S2 – a space of adapted single-valued càdlàg
processes
x : [0, T ]× Ω→ Rn, x = (xt)t∈[0,T ] with

‖x‖S2 = ‖ supt∈[0,T ] |xt|‖L2(Ω).

Let Z = (Zt)t∈[0,T ] be one-dimensional H2–
semimartingale, Z0 = 0,
F : [0, T ]× Rn→ Cl Conv(Rn).

For 0 ≤ s < t ≤ T we consider a stochastic
inclusion:

xt − xs ∈ clL2(Ω)(
∫ t
s F (τ, xτ )dZτ )

(SI)
x0 = ξ ∈ L2(Ω,F0, P ;Rn)



Definition 2 A process x ∈ S2 is a solution of
the stochastic inclusion (SI), if x0 = ξ and for
any 0 ≤ s < t ≤ T a random variable xt − xs
belongs to the set

clL2(Ω)(
∫ t
s F (τ, xτ )dZτ ).

Assumption 1 Let F : [0, T ]×Rn→ ClConv(Rn)
be a multifunction satisfying:

(1) F : [0, T ]×Rn→ ClConv(Rn) is a (β,F)-
measurable multifunction;

(2) F : [0, T ] × Rn → Cl Conv(Rn) is a Lip-
schitz multifunction:
i.e. there exists a constant D such that for all
t ∈ [0, T ] and u, v ∈ Rn

H(F (t, u), F (t, v)) ≤ D|u− v|;

(3) For any x ∈ S2 a process (F (t, xt−))t∈[0,T ]
is Z-integrably bounded.



Theorem 5 (J.S., [7], 2012)
Let Z = (Zt)t∈[0,T ] be anH∞–semimartingale,
Z0 = 0,
F : [0, T ] × Rn → Cl Conv(Rn) satisfies the
Assumption 1.

Then for any ξ ∈ L2(Ω,F0, P ;Rn)

there exists a solution of the inclusion (SI).

Theorem 6 (J.S., [7], 2012)
Let Z = (Zt)t∈[0,T ] be anH∞–semimartingale,
Z0 = 0 decomposed into a sum Z = N + A,
where N is a local martingale and A is a de-
terministic FV-process.
Let F : [0, T ] × Rn → Cl Conv(Rn) satisfies
the Assumption 1.

Then for any ξ ∈ L2(Ω,F0, P ;Rn) the set of
solutions of the inclusion (SI) is closed in S2.



Assumption 2 Let F : [0, T ]×Rn→ ClConv(Rn)

be a multifunction satisfying:

(1) F : [0, T ]× Rn→ Cl Conv(Rn)

is a Carathéodory-type multifunction;

(2) For any x ∈ S2 a set-valued process
(F (t, xt−))t∈[0,T ] is Z-integrably bounded.

Assumption 3 Let Z = (Zt)t∈[0,T ] be an H2–
semimartingale such that the measure µZ is
absolutely continuous with respect to λ⊗P on
P, where λ – a Lebesgue measure on [0, T ].

Theorem 7 (J.S., [7], 2012)
Let Z = (Zt)t∈[0,T ] be an H2–semimartingale,
Z0 = 0 satisfying Assumption 3.
Let F : [0, T ] × Rn → Cl Conv(Rn) satisfies
Assumption 2.

Then for any ξ ∈ L2(Ω,F0, P ;Rn) the set of
solutions of the inclusion (SI) is closed in S2.



3. Stratonovich inclusion

(Ω,F , F, P ) – a complete probability space with
a filtration F = (Ft)t∈[0,1] satisfying the usual
hypothesis.

Definition 3 (M.Errami, F.Russo, P.Vallois, [9],
2002) For a stochastic càdlàg process g we set

g̃t = (gt)
∼ = g(1−t)−,

which is called a time-reversed process.

Definition 4 Let (Ω,F , P ) be a probability space.
Consider on Ω two filtrations F = (Ft)0≤t≤1

and H = (Ht)0≤t≤1 satisfying usual hypothe-
sis.
A càdlàg process x is (F,H)–reversible if x is
an F–adapted process on [0, 1] and x̃ is an H–
adapted process on [0, 1].
A càdlàg process Z is an (F,H)–reversible se-
mimartingale, if Z is an F–semimartingale on
[0, 1] and Z̃ is an H–semimartingale on [0, 1)

(P.Protter [6], 2005).



Definition 5 (M.Errami, F.Russo, P.Vallois, [9],
2002) Let {τn} denote a subdivision of [0, 1],
τn = {0 = t0 < t1 < · · · < tn = 1}.
We set |τn| = supi(ti+1 − ti).
Let g and Z be càdlàg processes continuous
for t = 0 and t = 1. We define

I−τn(g, dZ)(a)

=
∑
i

g(ti ∧ a)(Z(ti+1 ∧ a)− Z(ti ∧ a)),

I+
τn

(g, dZ)(a)

=
∑
i

g(ti+1 ∧ a)(Z(ti+1 ∧ a)− Z(ti ∧ a)),

Ioτn(g, dZ)(a)

= 1/2 (I+
τn

(g, dZ)(a) + I−τn(g, dZ)(a)).

The corresponding limits of above sums are
called forward, backward and Stratonovich in-
tegrals, respectively, and they are denoted by

∫
(0,a] gd

−Z,
∫
(0,a] gd

+Z,
∫
(0,a] g ◦ dZ.



(J.Motyl, J.S., [10] 2010)

Definition 6 A stochastic set-valued process
G is càdlàg if it has right continuous sample
paths with left limits with respect to the Haus-
dorff metric.
A stochastic set-valued process G is RV–càdlàg
if it is càdlàg and continuous for t = 1.

Definition 7 For a stochastic set-valued càdlàg
process G we set

G̃t = (Gt)
∼ = G(1−t)−,

which is called a time-reversed process.
The limit of the set-valued map is taken with
respect to the Hausdorff metric.

Definition 8 A set-valued càdlàg process G is
(F,H)–reversible if G is an F–adapted process
on [0, 1] and G̃ is an H–adapted process on
[0, 1].

Lemma 8 Let G be a set-valued (F,H)–reversible
process. Then there exists a selection g of G
being an (F,H)–reversible process.



Definition 9 Let G be a set-valued (F,H)–reversible
RV–càdlàg process and let Z be an (F,H)–
reversible semimartingale, Z0 = 0.
Let S(G) denote a family of all (F,H)–reversible
RV–càdlàg selections of G.
For every 0 ≤ a < b ≤ 1 we define∫

(a,b]
G ◦ dZ

= {1/2 (

∫
(a,b]

gd−Z +

∫
(a,b]

gd+Z) : g ∈ S(G)}

= {1/2 (

∫
(a,b]

gτ−dZτ −
∫

[1−b,1−a)
g̃τ−dZ̃τ )

g ∈ S(G)}.



Definition 10 Let Z be an RV–càdlàg pro-
cess. Let x be a stochastic process such that
for every 0 ≤ a < b ≤ 1 there exist RV–càdlàg
processes ga,b and ha,b satisfying
xb − xa =

∫
(a,b] g

a,bd−Z +
∫
(a,b] h

a,bd+Z.

A process x is called decomposable if there
exist RV–càdlàg processes u, v, u0 ∈ F0 and
v1 ∈ H0 such that

(i) ub − ua =
∫
(a,b] g

a,bd−Z,

vb − va =
∫
(a,b] h

a,bd+Z,
for every 0 ≤ a < b ≤ 1,

(ii) x = u+ v.



(J.S., [8] 2012)

Theorem 9 Let Z be an (F,H)–reversible se-
mimartingale from H2, Z0 = 0. Let G be a
set-valued (F,H)–reversible process left conti-
nuous for t = 1 and integrably bounded by a
process m. If a decomposable RV–càdlàg pro-
cess x = u+v satisfies xb−xa ∈

∫
(a,b]G◦dZ,

for every 0 ≤ a < b ≤ 1,
then there exists a pair (g, h̃) of stochastic
processes such that g ∈ clL2

Z
SZ(G−), h̃ ∈

clL2
Z̃

S
Z̃

(G̃−) and for all 0 < t ≤ 1

xt = x0 + 1/2

∫
(0,t]

gτdZτ − 1/2

∫
[1−t,1)

h̃τdZ̃

a.s.



Definition 11 Let Z be an (F,H)–reversible
semimartingale from H∞, Z0 = 0.
Let F : [0, 1]× Rn→ Comp Conv(Rn).
For s, t ∈ [0, T ], s < t we consider the Stratonovich-
type stochastic inclusion

xt − xs ∈ clL2(Ω)(
∫
(s,t] F (τ, xτ ) ◦ dZ) (SSI)

with x0 = ξ ∈ L2(Ω, [F0,H1], P ;Rn).

A process x ∈ S2([0, 1]) is a solution of the
stochastic inclusion (SSI), if x0 = ξ and for
any s, t ∈ [0, 1], s < t a random variable xt−xs
belongs to the set

clL2(Ω)(
∫
(s,t] F (τ, xτ ) ◦ dZ).



Assumption 4
Let F : [0, T ] × Rn → Comp Conv(Rn) be a
multifunction satisfying:

(1) F : [0, T ] × Rn → Comp Conv(Rn) is a
(β,F)-measurable multifunction;

(2) F : [0, T ] × Rn → Comp Conv(Rn) is a
Lipschitz multifunction:

(3) For any x ∈ S2 a process (F (t, xt−))t∈[0,T ]

is integrably bounded.

Theorem 10 Let Z be an (F,H)–reversible se-
mimartingale from H∞, Z0 = 0.
Let F : [0, 1]×Rn→ CompConv(Rn) satisfies
the Assumption 4.
Then for any ξ ∈ L2(Ω, [F0,H1], P ;Rn) the set
of solutions of the inclusion (SSI) is nonempty.
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