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Poincaré inequality on fractals

Classical Poincaré inequality

• Classical Poincaré inequality:

when X is an Rn−valued random
variable on (Ω,F ,P), with distribution µ, then we say that the
Poincaré inequality holds for µ if for sufficiently good functions
f : Rn → R,

E(f (X )− Ef (X ))2 ¬ CE|∇f (X )|2.

Examples:
• Gaussian measure on Rn,
• distributions of exponential type on R: µ(dx) = e−|x |

α
dx , α ­ 1.
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Poincaré inequality on fractals

Classical Poincaré inequality
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Poincaré inequality on fractals

Poincaré inequality in analysis

• local Poincaré inequality for balls in Rn, analytic version:
lat p ­ 1. for B = B(x0, r) one has∫

B
|u(x)− uB |dx ¬ Cr

(∫
B
|∇u(x)|pdx

)1/p

, (1)

where u ∈W 1,2(Rn), uB = 1
|B|
∫
B u(x)dx is the mean of u over

the ball B.

Piotr Hajłasz, Sobolev spaces on metric-measure spaces,
Contemp. Math. 338 (2003).

Rewrite the probabilistic version in analytic language:∫
Rn

(
f (x)−

∫
Rn

f dµ
)2

dµ(x) ¬ C
∫

Rn
|∇f (x)|2dµ(x)

(recall: µ denotes the distribution of the random variable X ).
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Poincaré inequality in analysis
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Poincaré inequality on fractals
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Poincaré inequality on fractals

Two-weight Poincaré inequalities

• Two-weight Poincaré:
µ, ν−two measures on a measure metric space (X , ρ).

We say that a pair of real measurable functions (f , g) on X
satisfies the (q, p)-Poincaré inequality with measures µ, ν,
when there exist constants C , σ (σ ­ 1) such that for any ball
B = B(a, r)(

1
µ(B)

∫
B
|f − fB |qdµ

)1/q

¬ Cr
(

1
ν(σB)

∫
σB
|g |pdν

)1/p

(fB is the mean of f over B).
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Poincaré inequality on fractals

What do we want to prove?

(
1

µ(B)

∫
B
|f − fB |qdµ

)1/q

¬ Cr
(

1
ν(σB)

∫
σB
|g |pdν

)1/p

Goal: to obtain Poincaré-type inequalities on nested fractals, with
• p = q = 2,
• µ−the Hausdorff measure,
• another measure ν on the right-hand side,
• ‘nice’ functions f ,
• g−the gradient of f .
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Goal: to obtain Poincaré-type inequalities on nested fractals, with
• p = q = 2,
• µ−the Hausdorff measure,

• another measure ν on the right-hand side,
• ‘nice’ functions f ,
• g−the gradient of f .
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Nested fractals

Embedded in Rn,
Satisfying the Open Set Condition,

With lots of symmetries,

Finitely ramified.
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The Brownian Dirichlet form

Let p(t, x , y) be the transition density of the Brownian motion on
the nested fractal K.

1 Markovian definition: the limit as t → 0

lim
t→0

1
2t

∫
K

∫
K

(f (x)− f (y))2p(t, x , y)dµ(x)dµ(y) =: E(f , f )

(expressions make sense for any f ∈ L2(K, µ) and increase
when t decreases),
p(t, x , y) – the transition density of the Brownian semigroup on K
µ–the Hausdorff measure in dimension d on K,
d−the Hausdorff dimension of the fractal K,
• its domain D(E) : those L2-functions for which the limit is
finite. Known: D(E) = Lip (dw2 , 2,∞)(K),
dw–the walk dimension of K.

2 Another definition (equivalent): as a limit of discrete forms.
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Some notation

• The fractal: K.

• The vertices of K : V (0).

• The vertices of all the ‘small copies’ of K obtained after m steps
of the construction: V (m).

• m−simplex: any ‘small copy’ of K, scaled down m times.

• For a nonvertex x , ∆m(x): the ‘small copy’ of K that contains x .

• Points x , y ∈ V (m) are called m−neighbours (denoted: x m∼ y) if
they are vertices of a common ‘small copy’ of K, scaled down m
times (scale L−m)
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The first estimate

Theorem (Barlow 1996)

Suppose x , y ∈ V (m) are m−neighbours i.e. x m∼ y . Take f ∈ D(E).
Then

|f (x)− f (y)|2 ¬ Cρ−mE(f , f ),

where the constant ρ equals to Ldw−d (L−the length scaling factor of
K, d−the Hausdorff dimension of K, dw−the walk dimension od K).

Want: to get an expression with a local version of E on the
right-hand side.
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The Poincaré inequality

Theorem (Barlow-Bass-Kumagai 2006)

On several ‘regular’ fractals, one has∫
B
|f − fB |2dµ ¬ cΨ(R)

∫
B

dΓ(f , f ),

for f ∈ D(E), where B = B(x0,R) is a ball, and Ψ(R) = Rσ,
σ = dw/2.

Recall that Γ(·, ·) is the energy measure of E :
for u, v ∈ D(E), Γ(u, v) is a signed measure such that for all test
functions φ,∫

X
φdΓ(u, v) =

1
2

[E(u, φv) + E(v , φu)− E(uv , φ)].

Goals: (1) replace dΓ(f , f ) with an explicit expression,
(2) obtain a pointwise estimate, not an integral one.
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Poincaré inequality on fractals

Representation of the Dirichlet form

For f ∈ D(E) one has (Kusuoka 1989, Teplyaev 2000):

E(f , f ) =

∫
K
〈∇f ,Z∇f 〉dν,

where: ν is the so-called Kusuoka measure on K
(typically: singular with respect to µ),
∇f is the gradient on K,
having the property – if it exists – that ∇f (x) is a harmonic
function on K
(harmonic: annihilated by the generator of the Brownian
semigroup),
Z is a mapping in the space of harmonic functions.
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Poincaré inequality on fractals

Recall: one can write, for x , y–neighbouring points in V (m) and
f ∈ D(E):

|f (x)− f (y)|2 ¬ Cρ−m
∫
K
〈∇f ,Z∇f 〉 dν, [ρ = Ldw−d ]. (2)

How to get a local version of (2)?



Poincaré inequality on fractals

Sketch of the definition of the Kusuoka gradient

f : K → R – a nice function, x ∈ K – a nonlattice point (i.e.
x ∈ K \ V (∞)).
Want to get some meaning for ∇f (x), ∇f .

• Let ∆m := ∆m(x) – the small copy of K that contains x .

• Consider g̃m : ∆m → R: harmonic inside ∆m, coinciding with f on
V (∆m).

• Blow it up: gm : K → R is such a harmonic function on K that
gm(x) = g̃m(φ∆m(x)).

• Substract the values at the vertices:
∇mf (x) = gm(x)−

∑
a∈V (0) gm(a).

And define
∇f (x) = lim

m→∞
∇mf (x),

if the limit exists in the space of harmonic functions on K,
in the Hilbert norm induced by 〈u, v〉 = E(u, v).———————————————————— in some weak sense.
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Poincaré inequality on fractals

Sketch of the definition of the Kusuoka gradient

f : K → R – a nice function, x ∈ K – a nonlattice point (i.e.
x ∈ K \ V (∞)).
Want to get some meaning for ∇f (x), ∇f .

• Let ∆m := ∆m(x) – the small copy of K that contains x .

• Consider g̃m : ∆m → R: harmonic inside ∆m, coinciding with f on
V (∆m).

• Blow it up: gm : K → R is such a harmonic function on K that
gm(x) = g̃m(φ∆m(x)).

• Substract the values at the vertices:
∇mf (x) = gm(x)−

∑
a∈V (0) gm(a).

And define
∇f (x) = lim

m→∞
∇mf (x),

if the limit exists in the space of harmonic functions on K,
in the Hilbert norm induced by 〈u, v〉 = E(u, v).———————————————————— in some weak sense.
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Poincaré inequality on fractals

Sketch of the definition of the Kusuoka gradient

f : K → R – a nice function, x ∈ K – a nonlattice point (i.e.
x ∈ K \ V (∞)).
Want to get some meaning for ∇f (x), ∇f .

• Let ∆m := ∆m(x) – the small copy of K that contains x .

• Consider g̃m : ∆m → R: harmonic inside ∆m, coinciding with f on
V (∆m).

• Blow it up: gm : K → R is such a harmonic function on K that
gm(x) = g̃m(φ∆m(x)).

• Substract the values at the vertices:
∇mf (x) = gm(x)−

∑
a∈V (0) gm(a).

And define
∇f (x) = lim

m→∞
∇mf (x),

if the limit exists in the space of harmonic functions on K,
in the Hilbert norm induced by 〈u, v〉 = E(u, v).———————————————————— in some weak sense.



Poincaré inequality on fractals

Sketch of the definition of the Kusuoka gradient

f : K → R – a nice function, x ∈ K – a nonlattice point (i.e.
x ∈ K \ V (∞)).
Want to get some meaning for ∇f (x), ∇f .

• Let ∆m := ∆m(x) – the small copy of K that contains x .

• Consider g̃m : ∆m → R: harmonic inside ∆m, coinciding with f on
V (∆m).

• Blow it up: gm : K → R is such a harmonic function on K that
gm(x) = g̃m(φ∆m(x)).

• Substract the values at the vertices:
∇mf (x) = gm(x)−

∑
a∈V (0) gm(a).

And define
∇f (x) = lim

m→∞
∇mf (x),

if the limit exists in the space of harmonic functions on K,
in the Hilbert norm induced by 〈u, v〉 = E(u, v).———————————————————— in some weak sense.
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Poincaré inequality on fractals

A pointwise estimate

Proposition (A. Stos, KPP 2011)

Suppose f ∈ D(E), and let x m∼ y .Let ∆m(x , y) be the m-simplex
that contains both points x , y . Then

|f (x)− f (y)|2 ¬ C (diam∆m(x , y))dw−d
∫

∆m(x ,y)
〈∇f ,Z∇f 〉dν.

Easy to get a statement with expressions that approximate E , ∇,
Z , ν (these notions are designed so that everything works fine), a
statement with limiting object – delicate.
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The scaling relation

As a tool, we use the following scaling relation:

Lemma

Let f ∈ D(E), and let ∆ be an m-simplex. Let φ : Rn → Rn be a
similitude that maps K onto ∆. Then∫

K
〈∇(f ◦ φ),Z ∇(f ◦ φ)〉dν = L−m(dw−d)

∫
∆
〈∇f ,Z ∇f 〉dν
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Poincaré inequality – fractal version

We then use the Proposition to obtain:

Theorem (KPP+AS, 2011)
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where ∆∗ denotes the union of ∆ and all m-simplices adjacent to
∆.
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Poincaré inequality – Euclidean version

Under some additional geometrical assumptions (P) (satisfied by
all ‘decent’ fractals) we have Euclidean versions of the inequalities.

When one defines the fractal as the fixed point of an iterated
function system (consisting of similitudes of Rn), then (P) is
satisfied e.g. when all the similitudes share their unitary part.

Sierpiński gaskets, snowflakes, Vicsek set...
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Euclidean version cont’d

(index between two points)

For x , y /∈ V (∞), let
ind(x , y) = min{m ­ 1 : ∆m(x) ∩∆m(y) = ∅}.

When ind(x , y) = n, we set S(x , y) = ∆n−1(x) ∪∆n−1(y).

Theorem (pointwise)

Suppose that K satisfies property (P). Let f ∈ D(E) and
x , y ∈ K \ V (∞). Then

|f (x)− f (y)|2 ¬ C |x − y |dw 1
µ(S(x , y))

∫
S(x ,y)

〈∇f ,Z∇f 〉dν,

where S(x , y) was introduced above.
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Poincaré inequality on fractals

Euclidean version cont’d

Theorem (integral)

Suppose that K satisfies property (P). Let f ∈ D(E). Let
x0 ∈ K \ V (∞) be a nonvertex point and let r > 0 be given.

Denote B = B(x0, r) = {y ∈ K : |y − x0| ¬ r}. Then there exist
C > 0 and A ­ 1 (independent of x0 and r) such that∫

B
|f − fB |dµ ¬

(∫
B
|f − fB |2 dµ

)1/2

¬ Cr
dw
2

(
1
rd

∫
B(x0,Ar)

〈∇f ,Z∇f 〉dν
)1/2

.
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Sobolev spaces on fractals

Let p ­ 1, f ∈ Lp(K, µ). Then f belongs to:

the Hajłasz-Sobolev space M1,p
σ (K, µ), when there exists a

nonnegative function g ∈ Lp(K, µ) such that for µ-a.e.
x , y ∈ K,

|f (x)− f (y)| ¬ ρ(x , y)σ(g(x) + g(y));

Such a function g is called an upper gradient of f .
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Sobolev spaces on fractals cont.

f ∈ Lp(K, µ) belongs to:

the Korevaar-Schoen Sobolev space KS1,p
σ (K), when

lim sup
ε→0

∫
K

∫
B(x ,ε)

|f (x)− f (y)|p

εpσ
dµ(x)dµ(y) <∞,

They coincide with the Besov-Lipschitz spaces Lip(σ, p,∞)(K),

and in particular D(E) = KS1,2
dw/2(K).
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Sobolev spaces on fractals cont.

f ∈ Lp(K, µ) belongs to:

the Poincaré-Sobolev space P1,p
σ (K), when there exists a

nonnegative function g ∈ Lp(K, ν) such that for any x ∈ K
and 0 < r < diamK,

∫
B(x ,r)

|f − fB(x ,r)|dµ ¬ rσ
(

1
µ(B(x ,Ar))

∫
B(x ,Ar)

gpdν

)1/p

.
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On some metric spaces other than fractals, with σ = 1, e.g. on
Riemannian manifolds, one typically has inclusions

M1,p(X ) ⊂ P1,p(X ) ⊂ KS1,p(X )

(the Poincaré-Sobolev spaces do not require another measure).

To reverse the inclusions, one needs e.g. stronger Poincaré
inequalities (with some q > p). See Koskela-McManus (1998),
Hajłasz (2003).
The inequalities can be reversed for example on Rn.
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Inclusions on fractals: Korevaar-Schoen vs. Hajłasz

Theorem (Hu 2003)

On nested fractals one has:
• M1,p

σ (K) ⊂ KS1,p
σ (K),

• KS1,p
σ (K) ⊂ M1,p

σ′ (K), for all 0 < σ′ < σ.
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Inclusions on fractals: Korevaar-Schoen vs. Poincaré

Theorem (A.Stos, KPP 2011)

Suppose that the fractal K satisfies property (P). Let p ­ 1 and
σ > 0 be given.

(1) If σ > d/p, then P1,p
σ (K) ⊂ KS1,p

σ (K).

(2) When σ = dw
2 , then P1,2

σ (K) = KS1,2
σ (K).

Idea of the proof of (1) – fractal version of Koskela/McManus: for
a function that satisfies the Poincaré inequality with function g ,
introduce a fractal version of Riesz potentials:

Jp(g , n, x) =
∞∑
m=0

L−(m+n)σ

(
1

µ(∆∗n+m(x))

∫
∆∗n+m(x)

gp(z)dν(z)

)1/p

,
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then obtain the estimates for x , y :

|f (x)− fB(x ,rn0 )| ¬ CJp(g , ind (x , y), x),

|f (y)− fB(y ,rn0 )| ¬ CJp(g , ind (x , y), x),

|fB(x ,rn0 ) − fB(y ,rn0 )| ¬ CJp(g , ind (x , y)− k0, x)

(n0 = ind (x , y), k0 comes from geometric properties of K).
To conclude, sum they up and estimate the Korevaar-Schoen norm.
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(n0 = ind (x , y), k0 comes from geometric properties of K).
To conclude, sum they up and estimate the Korevaar-Schoen norm.
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Inclusions on fractals: Poincaré vs. Hajłasz

Proposition (KPP, A. Stos 2011)

Suppose that the nested fractal K satisfies Property (P). Assume
p ­ 1, σ > 0. Then one has:

(1) P1,p
σ (K) ⊂ (M1,p

σ )w (K) ⊂ M1,p′
σ (K), with any 1 ¬ p′ < p (the

last inclusion requires p > 1).

(2) When p = 2, σ = dw/2, then M1,2
σ (K) ⊂ P1,2

σ (K).

Here (M1,p)w is the ‘weak’ Hajlasz-Sobolev space, i.e. the function
g from the definition belongs to the weak-L2 space (the
Marcinkiewicz space).
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How is the upper gradient constructed?

If (f , f̃ ) satisfies the (1, p, σ) Poincaré inequality,

we take

g(x) = (Mf̃ )(x)
def
= sup

m­1

(
1

µ(∆∗m(x))

∫
∆∗m(x)

f̃ pdν

)1/p

,

then:
• use the Vitali covering lemma to obtain g ∈ Lpw (K),
• and the estimates for the Riesz kernel to obtain the inequality
from the definition of the Hajłasz-Sobolev space.
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g(x) = (Mf̃ )(x)
def
= sup

m­1

(
1

µ(∆∗m(x))

∫
∆∗m(x)

f̃ pdν

)1/p

,

then:
• use the Vitali covering lemma to obtain g ∈ Lpw (K),
• and the estimates for the Riesz kernel to obtain the inequality
from the definition of the Hajłasz-Sobolev space.
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Thank You!
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