Existence of an Invariant Measure for the Kick-Forced Primitive Equations

Lawrence Christopher Evans*, Robert Gastler

University of Missouri, Columbia

6th International Conference on Stochastic Analysis and its Applications, September 13th, 2012

Outline

I will present some results for the primitive equations with physical boundary conditions. This is a joint result with Robert Gastler.

1. Explanation of the primitive equations.
2. Our initial goal and the obstacles we faced.
3. Statement of results.
4. Sketch of proof of results.

The Setup

The 3D Primitive Equations

Let $G=G_{2} \times[-h, 0] \subset \mathbb{R}^{3}$ be a "lake". The velocity-components $u_{k}: G \rightarrow \mathbb{R}, k=1,2,3$ and pressure $p: G \rightarrow \mathbb{R}$ satisfy the PDE

$$
\left\{\begin{array}{l}
\partial_{t} u_{k}-\nu \Delta u_{k}+\sum_{j=1}^{3} u_{j} \partial_{j} u_{k}+\partial_{k} p=\text { Forcing, } k=1,2 \tag{1}\\
\operatorname{div} u=\partial_{1} u_{1}+\partial_{2} u_{2}+\partial_{3} u_{3}=0
\end{array} .\right.
$$

where we also require that $p=p(x, y)$.

The 3D Primitive Equations

Let $G=G_{2} \times[-h, 0] \subset \mathbb{R}^{3}$ be a "lake". The velocity-components $u_{k}: G \rightarrow \mathbb{R}, k=1,2,3$ and pressure $p: G \rightarrow \mathbb{R}$ satisfy the PDE

$$
\left\{\begin{array}{l}
\partial_{t} u_{k}-\nu \Delta u_{k}+\sum_{j=1}^{3} u_{j} \partial_{j} u_{k}+\partial_{k} p=\text { Forcing, } \quad k=1,2 \tag{1}\\
\operatorname{div} u=\partial_{1} u_{1}+\partial_{2} u_{2}+\partial_{3} u_{3}=0
\end{array}\right.
$$

where we also require that $p=p(x, y)$.
Modification of the NS-equations where

- We drop the equation for u_{3}. (Relaxation)
- We demand that the pressure $p=p(x, y, z)$ be independent of z. (Restriction)

Let $u=\left(v, u_{3}\right)$ i.e. $v=$ horizontal velocity, $u_{3}=$ vertical velocity. We consider the physical boundary conditions

$$
G=G_{2} \times[-h, 0]
$$

Alternate Form of the Primitive Equations

From the divergence free condition we get

$$
u_{3}(x, t)=-\int_{-h}^{z} \operatorname{div}_{2} v\left(x, y, z^{\prime}, t\right) d z^{\prime}
$$

so we have the PDE for v,

$$
\left\{\begin{array}{l}
\partial_{t} v-\nu \Delta v+\left(v \cdot \nabla_{2}\right) v-\left(\int_{-h}^{z} \operatorname{div}_{2} v\left(x, y, z^{\prime}, t\right) d z^{\prime}\right) \partial_{z} v+\nabla_{2} p=f \tag{2}\\
v(x, 0)=v_{0}
\end{array}\right.
$$

Alternate Form of the Primitive Equations

From the divergence free condition we get

$$
u_{3}(x, t)=-\int_{-h}^{z} \operatorname{div}_{2} v\left(x, y, z^{\prime}, t\right) d z^{\prime}
$$

so we have the PDE for v,

$$
\left\{\begin{array}{l}
\partial_{t} v-\nu \Delta v+\left(v \cdot \nabla_{2}\right) v-\left(\int_{-h}^{z} \operatorname{div}_{2} v\left(x, y, z^{\prime}, t\right) d z^{\prime}\right) \partial_{z} v+\nabla_{2} p=f \tag{2}\\
v(x, 0)=v_{0}
\end{array}\right.
$$

Note that the bilinear term is nastier than that of the NS-equations. This is the source of great trouble...

Functional Analytic Form of the Primitive Equations

Define the spaces

$$
\begin{aligned}
& H=" L^{2} \& \text { Divergence Free \& Boundary conditions" } \\
& V=" H^{1} \& \text { Divergence Free \& Boundary conditions" }
\end{aligned}
$$

Then we can consider the evolution equation

$$
\left\{\begin{array}{l}
\partial_{t} v+\nu A v+B(v, v)=\Pi_{H} \text { (Forcing) } \tag{3}\\
v(x, 0)=v_{0}
\end{array}\right.
$$

where Π_{H} denotes projection onto $H, A:=-\Pi_{H} \Delta$, and $B(u, v):=\Pi_{H}\left[\left(u \cdot \nabla_{2}\right) v-\left(\int_{-h}^{z} \operatorname{div}_{2} u d z^{\prime}\right) \partial_{z} v\right]$.

Types of Solution

v is a weak solution if

$$
v \in L^{\infty}([0, T] ; H) \cap L^{2}([0, T] ; V), \partial_{t} v \in L^{2}\left([0, T] ; V^{-3}\right)
$$

(V^{-3} denotes the dual space to $V^{3}:=H^{3} \cap V$) and the equalities in (2) hold in V^{-3}, i.e if $\forall w \in V^{3}$

$$
\begin{array}{r}
\left\langle\partial_{t} v+\left(v \cdot \nabla_{2}\right) v-\left(\int_{-h}^{z} \operatorname{div}_{2} v\left(x^{\prime}, z^{\prime}, t\right) d z^{\prime}\right) \partial_{z} v, w\right\rangle+\langle\nu \nabla v, \nabla w\rangle=\langle f, w\rangle \\
\langle v(x, 0), w\rangle=\left\langle v_{0}, w\right\rangle .
\end{array}
$$

Types of Solution

v is a weak solution if

$$
v \in L^{\infty}([0, T] ; H) \cap L^{2}([0, T] ; V), \partial_{t} v \in L^{2}\left([0, T] ; V^{-3}\right)
$$

(V^{-3} denotes the dual space to $V^{3}:=H^{3} \cap V$) and the equalities in (2) hold in V^{-3}, i.e if $\forall w \in V^{3}$

$$
\begin{gathered}
\left\langle\partial_{t} v+\left(v \cdot \nabla_{2}\right) v-\left(\int_{-h}^{z} \operatorname{div}_{2} v\left(x^{\prime}, z^{\prime}, t\right) d z^{\prime}\right) \partial_{z} v, w\right\rangle+\langle\nu \nabla v, \nabla w\rangle=\langle f, w\rangle \\
\langle v(x, 0), w\rangle=\left\langle v_{0}, w\right\rangle .
\end{gathered}
$$

v is a strong solution if

$$
v \in L^{\infty}([0, T] ; V) \cap L^{2}([0, T] ; \mathcal{D}(A)), \partial_{t} v \in L^{2}([0, T] ; H)
$$

and the equalities in (2) hold in H, i.e.

$$
\begin{array}{r}
\partial_{t} v+\nu \Delta v+\left(v \cdot \nabla_{2}\right) v-\left(\int_{-h}^{z} \operatorname{div}_{2} v\left(x^{\prime}, z^{\prime}, t\right) d z^{\prime}\right) \partial_{z} v+\nabla_{2} p=f \\
v(x, 0)=v_{0}
\end{array}
$$

Known Results

Non-Physical Boundary Conditions:

- (2005) Cao and Titi: Showed there exists a unique global strong solution for any $v_{0} \in V$. (Not known for 3DNS!!!)
- (2007) Ning Ju: Showed the existence of a global attractor.
- (2009) Guo and Huang: Global well posedness for additive noise. Random attractors.

Physical Boundary Conditions:

- (2007) Kukavica and Ziane: Showed there exists a unique global strong solution for any $v_{0} \in V$.
- (2008) Kukavica and Ziane: Uniform gradient bounds.

Our Goal

Show the existence (and then uniqueness?) of an invariant measure for the 3D primitive equations (with physical boundary conditions) under random forcing.

Our Goal

Show the existence (and then uniqueness?) of an invariant measure for the 3D primitive equations (with physical boundary conditions) under random forcing.

Issues:

- Krylov-Bugolybov method (the standard technique) requires a Feller Markov process and compactness.

Our Goal

Show the existence (and then uniqueness?) of an invariant measure for the 3D primitive equations (with physical boundary conditions) under random forcing.

Issues:

- Krylov-Bugolybov method (the standard technique) requires a Feller Markov process and compactness.
- Only have global well posedness for strong solutions, not weak solutions.
- Can only define a solution operator $S(t): V \rightarrow V$.
- So can only define a Markov process on V (but it is Feller at least!)

Our Goal

Show the existence (and then uniqueness?) of an invariant measure for the 3D primitive equations (with physical boundary conditions) under random forcing.

Issues:

- Krylov-Bugolybov method (the standard technique) requires a Feller Markov process and compactness.
- Only have global well posedness for strong solutions, not weak solutions.
- Can only define a solution operator $S(t): V \rightarrow V$.
- So can only define a Markov process on V (but it is Feller at least!)
- But how to get compactness in V ? Hard to get estimates on $\|A v\| \ldots$

Ning Ju (2007) proves the following result (for non-physical BCs):
The solution operator $S(t): V \rightarrow V$ is compact.
We take advantage of this to show the existence of an invariant measure for kick forcing!

Kick Forcing

Idea: Run primitive equations with no forcing and give a random kick every T seconds.
Defn: Given $v_{0} \in V$, let $X_{n}: \Omega \rightarrow V$ be the random variables

$$
\begin{equation*}
X_{0} \equiv v_{0} \text { and } X_{n}(\omega)=S(T)\left[X_{n-1}(\omega)\right]+\xi_{n}(\omega), \text { for } n=1,2, \ldots, \tag{4}
\end{equation*}
$$

where the $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ are i.i.d. V-valued random variables (the "kicks").

Our Results

Let $v(t)$ be the strong solution with $v_{0} \in V$ and forcing f.
Theorem 1 (Bounded absorbing set in V under constant forcing). Suppose $\left\|v_{0}\right\|_{V}^{2} \leq R$ and $f \in H$ is constant. Then there exists $K_{V}>0, T_{V}>0$ depending only on $R,\|f\|_{H}$ such that

$$
\|v(t)\|_{V}^{2}<K_{V}, \quad \forall t>T_{V}
$$

(Note: This result is also proven in Kukavica-Ziane (2008))

Our Results

Let $v(t)$ be the strong solution with $v_{0} \in V$ and forcing f.
Theorem 1 (Bounded absorbing set in V under constant forcing). Suppose $\left\|v_{0}\right\|_{V}^{2} \leq R$ and $f \in H$ is constant. Then there exists $K_{V}>0, T_{V}>0$ depending only on $R,\|f\|_{H}$ such that

$$
\|v(t)\|_{V}^{2}<K_{V}, \quad \forall t>T_{V}
$$

(Note: This result is also proven in Kukavica-Ziane (2008)) Theorem 2 (Decay in V-norm under no forcing). Suppose $\left\|v_{0}\right\|_{V}^{2} \leq R$ and $f \equiv 0$. Then $\forall \varepsilon>0, \exists T_{V}=T_{V}(R, \varepsilon)$ such that

$$
\|v(t)\|_{V}^{2}<\varepsilon, \quad \forall t>T_{V}
$$

Our Results

Let $v(t)$ be the strong solution with $v_{0} \in V$ and forcing f.
Theorem 1 (Bounded absorbing set in V under constant forcing). Suppose $\left\|v_{0}\right\|_{V}^{2} \leq R$ and $f \in H$ is constant. Then there exists $K_{V}>0, T_{V}>0$ depending only on $R,\|f\|_{H}$ such that

$$
\|v(t)\|_{V}^{2}<K_{V}, \quad \forall t>T_{V}
$$

(Note: This result is also proven in Kukavica-Ziane (2008)) Theorem 2 (Decay in V-norm under no forcing). Suppose $\left\|v_{0}\right\|_{V}^{2} \leq R$ and $f \equiv 0$. Then $\forall \varepsilon>0, \exists T_{V}=T_{V}(R, \varepsilon)$ such that

$$
\|v(t)\|_{V}^{2}<\varepsilon, \quad \forall t>T_{V}
$$

Theorem 3 (Invariant measure for kick-forcing). Suppose the kicks are bounded in H^{2}-norm, i.e.

$$
\exists R>0 \text { s.t }\left\|A \xi_{n}\right\|_{H}^{2} \leq R \forall n
$$

Then there exists a time $T=T(R)$ for which there exists an invariant measure for kick-forcing at interval T.

Proof of Theorem 3

By Theorem 2, if we take $T=T_{V}(4 R, R)$, then $\left\|X_{n}(\omega)\right\|_{V}^{2} \leq 4 R$ implies

$$
\begin{aligned}
\left\|X_{n+1}(\omega)\right\|_{V}^{2} & =\left\|S(T)\left[X_{n}(\omega)\right]+\eta_{n+1}\right\|_{V}^{2} \\
& \leq 2\left\|S(T)\left[X_{n}(\omega)\right]\right\|_{V}^{2}+2\left\|\eta_{n+1}\right\|_{V}^{2} \leq 2 R+2 R=4 R
\end{aligned}
$$

as well. Hence $\left\|X_{n}(\omega)\right\|_{V}^{2} \leq 4 R$ for all n.

Recall that Ning Ju (2007) shows that $S(t): V \rightarrow V$ is compact.

Recall that Ning Ju (2007) shows that $S(t): V \rightarrow V$ is compact.
Let μ_{n} be the distribution of X_{n}. Then each μ_{n} is supported on the set $S(T)\left[B_{V}(2 \sqrt{R})\right]+B_{\mathcal{D}(A)}(\sqrt{R})$ which is compact in V.

Recall that Ning Ju (2007) shows that $S(t): V \rightarrow V$ is compact.
Let μ_{n} be the distribution of X_{n}. Then each μ_{n} is supported on the set $S(T)\left[B_{V}(2 \sqrt{R})\right]+B_{\mathcal{D}(A)}(\sqrt{R})$ which is compact in V.
\Longrightarrow The measures μ_{n} are tight.

Recall that Ning Ju (2007) shows that $S(t): V \rightarrow V$ is compact.
Let μ_{n} be the distribution of X_{n}. Then each μ_{n} is supported on the set $S(T)\left[B_{V}(2 \sqrt{R})\right]+B_{\mathcal{D}(A)}(\sqrt{R})$ which is compact in V.
\Longrightarrow The measures μ_{n} are tight.
\Longrightarrow By Krylov-Bugolybov there exists an invariant measure. Q.E.D.

Proof of Theorem 1

From careful (and messy) analysis of the argument in Kukavica and Ziane (2007) we deduce

Lemma

(Growth Control Lemma) There is an $\eta>0$ s.t. if $0 \leq \tau_{1} \leq \tau_{3}$ are close in that

$$
\begin{equation*}
\left|\tau_{3}-\tau_{1}\right| \leq 1 \text { and } \int_{\tau_{1}}^{\tau_{3}}\|v(\tau)\|_{V}^{2} d \tau \leq \eta \tag{5}
\end{equation*}
$$

then

$$
\left\|v\left(\tau_{2}\right)\right\|_{V}^{2} \leq e^{C\left(1+\left\|v\left(\tau_{1}\right)\right\|_{V}^{2}\right)^{4}}\left[\left\|v\left(\tau_{1}\right)\right\|_{V}^{2}+\|f\|_{H}^{2}\right]=: \Gamma\left(\left\|v\left(\tau_{1}\right)\right\|_{V}^{2}\right)
$$

for any $\tau_{2} \in\left[\tau_{1}, \tau_{3}\right]$, where $C=C\left(\nu, \eta,\|f\|_{H}\right)$.
So provided τ_{1} and τ_{3} are close enough, V-norm only grows so much.

Now take the PDE $\partial_{t} v+A v+B(v, v)=\Pi_{H} f$, multiply by v and integrate.

Now take the PDE $\partial_{t} v+A v+B(v, v)=\Pi_{H} f$, multiply by v and integrate.
(Note: $\left.(B(v, v), v)_{L^{2}}=0\right)$

Now take the PDE $\partial_{t} v+A v+B(v, v)=\Pi_{H} f$, multiply by v and integrate.
(Note: $\left.(B(v, v), v)_{L^{2}}=0\right)$
$\Longrightarrow \frac{1}{2} \partial_{t}\|v\|_{H}^{2}+\|v\|_{V}^{2} \leq\left(\Pi_{H} f, v\right)_{H} \leq \frac{\lambda_{1}}{2}\|v\|_{H}^{2}+\frac{C}{2}\|f\|_{H}^{2} \leq \frac{1}{2}\|v\|_{V}^{2}+\frac{C}{2}\|f\|_{H}^{2}$
where λ_{1} is the first eigenvalue of A (Poincaré inequality).

Now take the PDE $\partial_{t} v+A v+B(v, v)=\Pi_{H} f$, multiply by v and integrate.
(Note: $\left.(B(v, v), v)_{L^{2}}=0\right)$
$\Longrightarrow \frac{1}{2} \partial_{t}\|v\|_{H}^{2}+\|v\|_{V}^{2} \leq\left(\Pi_{H} f, v\right)_{H} \leq \frac{\lambda_{1}}{2}\|v\|_{H}^{2}+\frac{C}{2}\|f\|_{H}^{2} \leq \frac{1}{2}\|v\|_{V}^{2}+\frac{C}{2}\|f\|_{H}^{2}$
where λ_{1} is the first eigenvalue of A (Poincaré inequality).
Therefore

$$
\begin{equation*}
\partial_{t}\|v\|_{H}^{2}+\|v\|_{V}^{2} \leq C\|f\|_{H}^{2}, \tag{6}
\end{equation*}
$$

Now take the PDE $\partial_{t} v+A v+B(v, v)=\Pi_{H} f$, multiply by v and integrate.
(Note: $\left.(B(v, v), v)_{L^{2}}=0\right)$
$\Longrightarrow \frac{1}{2} \partial_{t}\|v\|_{H}^{2}+\|v\|_{V}^{2} \leq\left(\Pi_{H} f, v\right)_{H} \leq \frac{\lambda_{1}}{2}\|v\|_{H}^{2}+\frac{C}{2}\|f\|_{H}^{2} \leq \frac{1}{2}\|v\|_{V}^{2}+\frac{C}{2}\|f\|_{H}^{2}$
where λ_{1} is the first eigenvalue of A (Poincaré inequality).
Therefore

$$
\begin{equation*}
\partial_{t}\|v\|_{H}^{2}+\|v\|_{V}^{2} \leq C\|f\|_{H}^{2} \tag{6}
\end{equation*}
$$

whence,

$$
\partial_{t}\|v\|_{H}^{2} \leq-\lambda_{1}\|v\|_{H}^{2}+C\|f\|_{H}^{2}
$$

Now take the PDE $\partial_{t} v+A v+B(v, v)=\Pi_{H} f$, multiply by v and integrate.
(Note: $\left.(B(v, v), v)_{L^{2}}=0\right)$
$\Longrightarrow \frac{1}{2} \partial_{t}\|v\|_{H}^{2}+\|v\|_{V}^{2} \leq\left(\Pi_{H} f, v\right)_{H} \leq \frac{\lambda_{1}}{2}\|v\|_{H}^{2}+\frac{C}{2}\|f\|_{H}^{2} \leq \frac{1}{2}\|v\|_{V}^{2}+\frac{C}{2}\|f\|_{H}^{2}$
where λ_{1} is the first eigenvalue of A (Poincaré inequality).
Therefore

$$
\begin{equation*}
\partial_{t}\|v\|_{H}^{2}+\|v\|_{V}^{2} \leq C\|f\|_{H}^{2} \tag{6}
\end{equation*}
$$

whence,

$$
\partial_{t}\|v\|_{H}^{2} \leq-\lambda_{1}\|v\|_{H}^{2}+C\|f\|_{H}^{2}
$$

By basic ODE theory,
$\Longrightarrow \exists K_{H}>0, T_{H}=T_{H}\left(R,\|f\|_{H}\right)$ such that $\|v(t)\|_{H}^{2} \leq K_{H}$ for all $t \geq T_{H}$.

Also, by integrating (6), we get

$$
\begin{equation*}
\int_{s}^{t}\|v(\tau)\|_{V}^{2} d \tau \leq\|v(s)\|_{H}^{2}+(t-s) C\|f\|_{H}^{2} \tag{7}
\end{equation*}
$$

Also, by integrating (6), we get

$$
\begin{equation*}
\int_{s}^{t}\|v(\tau)\|_{V}^{2} d \tau \leq\|v(s)\|_{H}^{2}+(t-s) C\|f\|_{H}^{2} \tag{7}
\end{equation*}
$$

Consider times $T_{H} \leq T-2<T$.

Then

$$
\int_{T-2}^{T-1}\|v(\tau)\|_{V}^{2} d \tau \leq K_{H}+C\|f\|_{H}^{2}
$$

Also, by integrating (6), we get

$$
\begin{equation*}
\int_{s}^{t}\|v(\tau)\|_{V}^{2} d \tau \leq\|v(s)\|_{H}^{2}+(t-s) C\|f\|_{H}^{2} \tag{7}
\end{equation*}
$$

Consider times $T_{H} \leq T-2<T$.

Then

$$
\int_{T-2}^{T-1}\|v(\tau)\|_{V}^{2} d \tau \leq K_{H}+C\|f\|_{H}^{2}
$$

$\Longrightarrow \exists t_{0} \in[T-2, T-1]$ such that $\left\|v\left(t_{0}\right)\right\|_{V}^{2} \leq K_{H}+C\|f\|_{H}^{2}$.

Also, by integrating (6), we get

$$
\begin{equation*}
\int_{s}^{t}\|v(\tau)\|_{V}^{2} d \tau \leq\|v(s)\|_{H}^{2}+(t-s) C\|f\|_{H}^{2} \tag{7}
\end{equation*}
$$

Consider times $T_{H} \leq T-2<T$.

Then

$$
\int_{T-2}^{T-1}\|v(\tau)\|_{V}^{2} d \tau \leq K_{H}+C\|f\|_{H}^{2}
$$

$\Longrightarrow \exists t_{0} \in[T-2, T-1]$ such that $\left\|v\left(t_{0}\right)\right\|_{V}^{2} \leq K_{H}+C\|f\|_{H}^{2}$.
And on the interval $\left[t_{0}, T\right]$,

$$
\int_{t_{0}}^{T}\|v(\tau)\|_{V}^{2} d \tau \leq K_{H}+2 C\|f\|_{H}^{2}<\infty
$$

So we can divide the interval $\left[t_{0}, T\right]$ into L intervals $\left[t_{k}, t_{k+1}\right]$ satisfying

$$
\int_{t_{k}}^{t_{k+1}}\|v(\tau)\|_{V}^{2} d \tau<\eta,\left|t_{k+1}-t_{k}\right|<1
$$

So we can divide the interval $\left[t_{0}, T\right]$ into L intervals $\left[t_{k}, t_{k+1}\right]$ satisfying

$$
\int_{t_{k}}^{t_{k+1}}\|v(\tau)\|_{V}^{2} d \tau<\eta,\left|t_{k+1}-t_{k}\right|<1
$$

\Longrightarrow by the Growth Control Lemma,

$$
\|v(T)\|_{V}^{2} \leq \Gamma^{(L)}\left(\left\|v\left(t_{0}\right)\right\|_{V}^{2}\right) \leq \Gamma^{(L)}\left(K_{H}+\|f\|_{H}^{2}\right)
$$

where $\Gamma^{(L)}(\cdot)$ denotes L-fold composition.

So we can divide the interval $\left[t_{0}, T\right]$ into L intervals $\left[t_{k}, t_{k+1}\right]$ satisfying

$$
\int_{t_{k}}^{t_{k+1}}\|v(\tau)\|_{V}^{2} d \tau<\eta,\left|t_{k+1}-t_{k}\right|<1
$$

\Longrightarrow by the Growth Control Lemma,

$$
\|v(T)\|_{V}^{2} \leq \Gamma^{(L)}\left(\left\|v\left(t_{0}\right)\right\|_{V}^{2}\right) \leq \Gamma^{(L)}\left(K_{H}+\|f\|_{H}^{2}\right)
$$

where $\Gamma^{(L)}(\cdot)$ denotes L-fold composition.
So Theorem 1 is proven with $T_{V}=T_{H}+2$ and $K_{V}=\Gamma^{(L)}\left(K_{H}+\|f\|_{H}^{2}\right)$.

Proof of Theorem 2

As before, take the PDE $\partial_{t} v+A v+B(v, v)=\Pi_{H} f$, multiply by v and integrate to get

$$
\partial_{t}\|v\|_{H}^{2} \leq-\lambda_{1}\|v\|_{H}^{2}
$$

Proof of Theorem 2

As before, take the PDE $\partial_{t} v+A v+B(v, v)=\Pi_{H} f$, multiply by v and integrate to get

$$
\partial_{t}\|v\|_{H}^{2} \leq-\lambda_{1}\|v\|_{H}^{2}
$$

ODE theory $\Longrightarrow \exists T_{H}=T_{H}(R, \varepsilon)$ s.t. for $t>T_{H},\|v(t)\|_{H}^{2} \leq \varepsilon$.

Proof of Theorem 2

As before, take the PDE $\partial_{t} v+A v+B(v, v)=\Pi_{H} f$, multiply by v and integrate to get

$$
\partial_{t}\|v\|_{H}^{2} \leq-\lambda_{1}\|v\|_{H}^{2}
$$

ODE theory $\Longrightarrow \exists T_{H}=T_{H}(R, \varepsilon)$ s.t. for $t>T_{H},\|v(t)\|_{H}^{2} \leq \varepsilon$. Arguing as before (with $f \equiv 0$ now), to get

$$
T_{H} \leq T-2 \leq t_{0} \leq T-1<T
$$

and then

$$
\|v(T)\|_{V}^{2} \leq \Gamma^{(L)}\left(\left\|v\left(t_{0}\right)\right\|_{V}^{2}\right) \leq \Gamma^{(L)}(\varepsilon)
$$

Proof of Theorem 2

As before, take the PDE $\partial_{t} v+A v+B(v, v)=\Pi_{H} f$, multiply by v and integrate to get

$$
\partial_{t}\|v\|_{H}^{2} \leq-\lambda_{1}\|v\|_{H}^{2}
$$

ODE theory $\Longrightarrow \exists T_{H}=T_{H}(R, \varepsilon)$ s.t. for $t>T_{H},\|v(t)\|_{H}^{2} \leq \varepsilon$. Arguing as before (with $f \equiv 0$ now), to get

$$
T_{H} \leq T-2 \leq t_{0} \leq T-1<T
$$

and then

$$
\|v(T)\|_{V}^{2} \leq \Gamma^{(L)}\left(\left\|v\left(t_{0}\right)\right\|_{V}^{2}\right) \leq \Gamma^{(L)}(\varepsilon)
$$

So Theorem 2 holds with $T_{V}\left(R, \Gamma^{(L)}(\varepsilon)\right)=T_{H}(R, \varepsilon)+2$. (Sufficient as $\Gamma^{(L)}(\varepsilon) \rightarrow 0$ as $\left.\varepsilon \rightarrow 0\right)$.

Rough Picture

The End

