On Exceptional times of Fleming-Viot processes with mutation

Lorenzo Zambotti (Univ. Paris 6) (joint work with J. Berestycki, L. Döring, L. Mytnik)

> 14th September 2012 Bedlewo

The Feller diffusion

Let us start from the SDE in \mathbb{R}

$$Z_t = x + \int_0^t \sqrt{Z_s} dB_s, \qquad t \ge 0,$$

where x > 0 and B is a BM. By Yamada-Watanabe we have pathwise uniqueness and existence of strong solutions. In particular, 0 is a trap for Z.

This process is a CSBP: $Z_t^x + \hat{Z}_t^y \stackrel{(d)}{=} Z_t^{x+y}$, with Z and \hat{Z} independent, since

$$d\left(Z_t^{x} + \hat{Z}_t^{y}\right)^2 = dm_t + \left(Z_t^{x} + \hat{Z}_t^{y}\right) dt$$
$$d\left(Z_t^{x} + \hat{Z}_t^{y}\right) = \sqrt{Z_t^{x} + \hat{Z}_t^{y}} dW$$

Z is the scaling limit of the dynamics of a population with critical (e.g. binary) branching.

Galton-Watson processes

Let $(\xi_i^n)_{i,n}$ i.i.d. in $\{0,1,\ldots\}$ with $\mathbb{E}((\xi_i^n)^2)<+\infty$ and $\mathbb{E}(\xi_i^n)=1$ $(\mathsf{Var}(\xi_i^n)=1)$

$$GW_{n+1}^z = \sum_{i=1}^{GW_n^z} \xi_i^{n+1}, \qquad GW_0^z = z \in \mathbb{N}.$$

Note that $(GW_n^j - GW_n^{j-1}, n \ge 0)_{j \ge 1}$ is an i.i.d. sequence of processes, a discrete version of the CSBP property.

Then we have for $x \in \mathbb{R}_+$ and $N \to +\infty$

$$\left(\frac{1}{N}GW_{\lfloor Nt\rfloor}^{\lfloor Nx\rfloor}, t \geq 0\right) \Longrightarrow \left(Z_t^{\mathsf{x}}, t \geq 0\right).$$

We assign to each $j \in \mathbb{N}$ a genetic type u_j uniform in [0,1] with $(u_j)_j$ i.i.d. and we define the measure-valued process $(X_n^N, n \ge 0)$

$$X_n^N := \sum_{j=1}^N (GW_n^j - GW_n^{j-1}) \, \delta_{u_j}.$$

The measure-valued process

$$\left(rac{1}{N}X_{[Nt]}^N, t\geq 0
ight) \Longrightarrow (X_t, t\geq 0)$$

where $(X_t, t \ge 0)$ is a measure-valued Markov process s.t.

$$X_t(x) := X_t([0,x]) = x + \int_{[0,t] \times \mathbb{R}_+} \mathbb{1}_{\{u \le X_s(x)\}} W(ds, du)$$

and W is a Brownian sheet. Then for all $x \geq 0$,

$$(X_t(x))_{t\geq 0}\stackrel{(d)}{=} (Z_t^x)_{t\geq 0}.$$

Pathwise uniqueness of the SDE has been proved by Dawson-Li [AOP 2012]. Then $(X_t(x))_{t>0,x\in[0,1]} \stackrel{(d)}{=} (Y_t(x))_{t>0,x\in[0,1]}$

$$Y_t = \sum_i e_t^i \delta_{u_i}, \qquad Y_t(x) = \sum_{u \le x} e_t^i, \qquad t > 0,$$

where (u_i, e^i) is a PPP with intensity measure $du \otimes n(de)$,

Measure-valued branching process with immigration

We consider now a population with critical branching plus constant immigration-rate $\theta > 0$. The measure-valued process is

$$X_t(x,\theta) = x + \int_{[0,t]\times\mathbb{R}_+} \mathbb{1}_{\{u \leq X_s(x,\theta)\}} W(ds,du) + x \theta t.$$

and $(X_t(x,\theta), t \ge 0)$ has the same law as the solution of

$$Z_t = x + \int_0^t \sqrt{Z_s} \, dB_s + x \, \theta \, t$$

i.e. of a squared-Bessel process.

Following Pitman-Yor (1982) one can prove the following representation: if (s_i, u_i, e^i) is a Poisson point process with intensity measure $(\delta_0(ds) + ds) \otimes du \otimes n(de)$ and we set

$$Y_t(x,\theta) := \sum_{s_i = 0, u_i \le x} e_t^i + \sum_{0 < s_i \le t, u_i \le \theta} e_{t-s_i}^i$$

then
$$(X_t(x,\theta))_{x,t\geq 0} \stackrel{(d)}{=} (Y_t(x,x\theta))_{x,t\geq 0}$$
.

Fleming-Viot processes

Setting

$$T(t) := \int_0^t X_s(1)^{-1} ds, \qquad FV_t := \frac{X_{T^{-1}(t)}}{X_{T^{-1}(t)}(1)}, \qquad t \ge 0,$$

then $(FV_t, t \geq 0)$ is a Markov process in the space of probability measures on [0,1], describing the evolution of a population under the effect of genetic drift and constant-rate mutation. The invariant measure is the Poisson-Dirichlet(θ) distribution. Since a.s. X_t is atomic for all t>0, so is FV_t .

- for $\theta = 0$ a.s. FV_t has finitely many atoms for all t > 0
- for $\theta > 0$ and t > 0 a.s. FV_t has infinitely many atoms.

Schmuland ['91] proved using capacities and Dirichlet forms that

- ▶ for $0 < \theta < 1$ a.s. there exist exceptional times when FV_t has finitely many atoms.
- for $\theta \ge 1$ a.s. FV_t has infinitely many atoms for all t > 0.

Continuous-state branching processes

The Feller diffusion is only an example of a class of Markov processes with the branching property $Z_t^x + \hat{Z}_t^y \stackrel{(d)}{=} Z_t^{x+y}$, see Lamperti ['60]. An important subclass is given by CSBPs with stable branching mechanism

$$Z_t = x + \int_0^t Z_{s-}^{1/\alpha} dL_s$$

where $\alpha \in (1,2)$ and L is a spectrally positive α -stable Lévy process with Laplace exponent for $\lambda \geq 0$

$$\log \mathbb{E}[e^{-\lambda L_1}] = \lambda^{\alpha} = \int_0^{\infty} \left(e^{-\lambda x} - 1 + \lambda x\right) c_{\alpha} x^{-1-\alpha} dx.$$

Z is the scaling limit of a Galton-Watson process with critical branching in the domain of attraction of a α -stable law.

Measure-valued processes

For $x \in [0,1]$ and Lipschitz $g: \mathbb{R}_+ \mapsto \mathbb{R}_+$

$$X_{t}(x) = x + \int_{[0,t] \times \mathbb{R}_{+} \times \mathbb{R}_{+}} \mathbb{1}_{\{u \leq X_{s-}(x)\}} y \, N(dy, ds, du)$$

$$+ x \int_{0}^{t} g(X_{s}(1)) \, ds$$
(1)

where $N := M - \tilde{M}$, $\tilde{M}(dy, ds, du) := c_{\alpha}y^{-1-\alpha}dy ds du$ and M is a Poisson point process with intensity \tilde{M} .

Then the measure defined by $X_t(]a,b]):=X_t(b)-X_t(a)$, $b\geq a\geq 0$ is a measure-valued branching process with α -stable branching mechanism and immigration rate $g(X_s(1))$.

Pitman-Yor representation

Now the immigration rate is not constant anymore. We consider again a PPP (s_i, u_i, e^i) with intensity measure $(\delta_0(ds) + ds) \otimes du \otimes n(de)$ and we look for a process such that

$$Z_t(x) := \sum_{s_i = 0, u_i \le x} e_t^i + \sum_{0 < s_i \le t} e_{t-s_i}^i \, \mathbb{1}_{(u_i \le xg(Z_{s_i} - (1)))}$$
(2)

Theorem

The equations (1) and (2) have unique solutions, and

$$(X_t(x), t \geq 0, x \in [0,1]) \stackrel{(d)}{=} (Z_t(x), t \geq 0, x \in [0,1]).$$

More general results can be found in a recent book by Zenghu Li.

Fleming-Viot processes

Let $g(z) := \theta z^{2-\alpha}$. We define the Fleming-Viot process

$$T_t := \int_0^t (X_s(1))^{1-\alpha} ds, \qquad Y_t := rac{X_{T_t^{-1}}}{X_{T_t^{-1}}(1)},$$

then Y is Markovian with values in the space of probability measures on [0,1] (this would not be true for different immigration-rates). Y solves an infinite-dimensional SDE.

One can see that Y_t is a.s. an atomic measure for all t > 0 and if $\theta = 0$ then a.s. there are only finitely many atoms.

Using the Pitman-Yor representation, we obtain

Theorem

For α < 2, the Schmuland dichotomy does not arise, i.e. for all θ > 0 a.s. Y_t has infinitely many atoms for all t > 0.

