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Description of the F-V particle system

Definition of Fleming-Viot process

Consider a diffusion X in Rd and an open set D ⊂ Rd .
Fix N ∈ N and define Xt = (X 1

t , . . . ,XN
t ), t ≥ 0, driven by X as follows:

X0 = (x1, . . . , xN) ∈ DN

X 1
t , . . . ,XN

t move as N independent copies of X until time τ1, where

τ1 = inf
{

t > 0 : ∃1≤j≤N X j
t ∈ ∂D

}
.

At τ1 the particle X j which hit the boundary, jumps onto one of the remaining
particles, uniformly chosen at random.
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Description of the F-V particle system

Definition (cntd.)

Then after time τ1 all particles move as N independent copies of X until the time

τ2 = inf
{

t > τ1 : ∃1≤j≤N X j
t ∈ ∂D

}
.

The subsequent evolution of X proceeds in the same way.
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Some earlier results

Extinction or non-extinction of F-V process

Let τk denote the time of the k-th jump of the process Xt

τk+1 = inf
{

t > τk : ∃1≤j≤N X j
t ∈ ∂D

}
.

Define τ∞ = lim
k→∞

τk — ’the time of extinction of Xt ’

Problem
Is the process Xt well defined for all t > 0?
Is it true that almost surely τ∞ =∞?

In other words, is it possible that all N particles hit ∂D at the same finite time?
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Some earlier results

Solution - first attempt

Theorem (Burdzy, March, Ho lyst (2000))
If X is a Brownian motion then for any D ⊂ Rd open

lim
k→∞

τk =∞, a.s.

Proof
Incorrect. If it was correct, it would apply to a very wide class of Markov processes.
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Some earlier results

Partial solution — Lipschitz domains

Let X = (X 1, . . . ,XN) be Fleming-Viot particle system driven by a Brownian motion in
Rd .

Theorem (B, Burdzy, Finch (2012))
There exists the constant c(N, d) such that if D ⊂ Rd is a bounded Lipschitz domain
with the Lipschitz constant L(D) < c(N, d), then the N-particle process
X = (X 1, . . . ,XN) in D is well defined.

Example
The square in the plane has too sharp angles!!!
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Some earlier results

Two examples of B, Burdzy and Finch

Example 1 - Theorem
If D is arbitrary polyhedral domain in Rd , then the two-particle F-V process
Xt = (X 1

t ,X 2
t ) driven by Brownian motion, is well defined for all t (i.e. τ∞ =∞).
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Some earlier results

Two examples of B, Burdzy and Finch - cntd

Example 1 - Theorem
If D is arbitrary polyhedral domain in Rd , then the two-particle F-V process
Xt = (X 1

t ,X 2
t ) driven by Brownian motion, is well defined for all t (i.e. τ∞ =∞).

Example 2
If D = (0,∞) then for two particle F-V process driven by a diffusion

dXt = dWt −
5

2Xt
dt, X0 = 1,

we have τ∞ <∞.
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Main result

F-V driven by Bessel processes

Theorem
Let X be a Fleming-Viot process with N particles on (0,∞) driven by Bessel process of
dimension ν ∈ R.

(i) If N = 2 then τ∞ <∞, a.s., if and only if ν < 0.
(ii) If Nν ≥ 2 then τ∞ =∞, a.s.
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Sketch of the proof

Sketch of the proof of (i)

For ν ∈ R and x > 0 let X ∼ Besν(x) denote ν-dimensional Bessel process on
(0,∞) killed at 0, i.e. the solution to SDE

dXt = dWt +
ν − 1
2Xt

dt,

where W is the standard Brownian motion.
Let T0 denote the hitting time of 0.
Scaling of Bessel processes: If X ∼ Besν(x) is a Bessel process on [0,T0), then for
all c > 0,

cXc−2t ∼ Besν(cx) on [0, c2T0]
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Sketch of the proof

Alternative construction of FV

Let Yt = (Y 1
t ,Y 2

t ), where Y 1 and Y 2 are independent copies of X ∼ Besν(1)
Let Yi

t =
(
Y i ,1

t ,Y i ,2
t
)

, i = 1, 2, . . . , be a sequence of independent copies of Y.
For i = 1, 2, . . . we set

σi = inf
{

t > 0 : Y i ,1
t ∧ Y i ,2

t = 0
}
, αi = Y i ,1

σi ∨ Y i ,2
σi .

By scaling of Bessel processes

τn =
n∑

j=1
ξ2

j−1σj , with ξj =
j∏

i=1
αi

To check when τn →∞ we use the following result
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Sketch of the proof

Theorem (e.g. Diaconis, Freedman)
Let {(An,Bn), n ≥ 1} be a sequence of independent and identically distributed random
variables such that An,Bn ∈ R and

E
(
log+ |A1|

)
<∞, E

(
log+ |B1|

)
<∞.

Then the infinite random series
∞∑

n=1

(n−1∏
j=1

Aj
)
Bn

converges a.s. to a finite limit if and only if E log |A1| < 0.



F-V type process Two Bessel particles N particles with strong drift

Sketch of the proof

Theorem (e.g. Diaconis, Freedman)
Let {(An,Bn), n ≥ 1} be a sequence of independent and identically distributed random
variables such that An,Bn ∈ R and

E
(
log+ |A1|

)
<∞, E

(
log+ |B1|

)
<∞.

Then the infinite random series
∞∑

n=1

(n−1∏
j=1

Aj
)
Bn

converges a.s. to a finite limit if and only if E log |A1| < 0.



F-V type process Two Bessel particles N particles with strong drift

Sketch of the proof

The case ν ≥ 2 is very simple: then Besν(x) never hits 0, so σ1 =∞, a.s., so
τ∞ =∞, a.s.
For ν < 2 we apply the above Theorem with An = α2

n and Bn = σn.
After some calculations we conclude that E log+ |B1| = E log+ σ1 <∞ and

E(log |A1|) = E log(α2
1) =

1
2E log 2 |X |√

2− ν

where X is a random variable with t-distribution with (2− ν)-degrees of freedom
Therefore

E(log A1) =
1
4

(
ψ(1)− ψ

(2− ν
2

))
,

where ψ is the digamma function
Therefore E(log A1) < 0 iff 2−ν

2 > 1 iff ν < 0.
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Main result

N particles with “strong” drift

Intuitively it may seem that τ∞ =∞ for sufficiently large N.
Our next result shows that this claim is false: once the drift of the diffusion is
slightly stronger than the drift of any Bessel process, then τ∞ <∞ for the
Fleming-Viot process driven by this diffusion and every N.
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Main result

N particles with “strong” drift

Consider the following SDE for a diffusion on (0, 2],

Xt = x0 + Wt −
∫ t

0

1
βXβ−1

t
ds − Lt , t ≤ T0, (1)

where x0 ∈ (0, 2], β > 2, W is Brownian motion, T0 is the first hitting time of 0
by X , and Lt is the local time of X at 2
We consider a Fleming-Viot process on D = (0, 2] driven by this diffusion. The
role of the boundary is played only by the point 0, since X is reflected at 2.
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Main result

Theorem

Theorem
Fix any β > 2. For every N ≥ 2, the N-particle Fleming-Viot process on (0, 2] driven
by diffusion X has the property that τ∞ <∞, a.s. Moreover,

Px(τ∞ > t) ≤ c1e−c2t , t ≥ 0, x ∈ (0, 2]N ,

where c1 and c2 depend only on N and β, and satisfy 0 < c1, c2 <∞.
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Sketch of the proof

Freidlin-Wentzell inequality

Consider a diffusion Xt , t ∈ [s, u], satisfying SDE

dXt = dWt + b (Xt) dt, Xs = a.

Let yt be the solution to the ordinary differential equation

d
dt yt = b(yt), ys = a.

If b is a Lipschitz function on [s, u] then for every δ > 0

P
(

sup
s≤t≤u

|Xt − yt | > δ

)
≤ c0 exp

(
− δ2

2(u − s) e−2L(u−s)
)

where L is a Lipschitz constant of b and c0 is an absolute costant.
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Sketch of the proof

In our case
b(x) = − 1

βxβ−1 , x > 0.

with β > 2.
If y ′ = b(y), ys = a, then

y(t) :=
(
aβ + s − t

)1/β
, s ≤ t ≤ s + aβ,

So b is not Lipschitz on [s, s + aβ]
This causes a lot of complicated and tedious calculations and considerations
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Relation to original Fleming-Viot superprocess

Consider N independent Brownian motions in Rd (all starting from a fixed point)
Every ε units of time, two particles are chosen uniformly
The first particle jumps to the location of the second one
Between the jumps the particles are independent Brownian motions
Now assume that N →∞ and ε→ 0 (at some rate related to N)
Then for each t ≥ 0, the empirical distributions of the particles converge to a
random measure (carried by a set of fractal nature)
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