▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Extinction of Fleming-Viot-type particle systems with strong drift

Mariusz Bieniek

Institute of Mathematics University of Maria Curie-Skłodowska Lublin, Poland mariusz.bieniek@umcs.lublin.pl

Będlewo, September 2012

N particles with strong drift 0000000

Coauthors

- Krzysztof Burdzy (University of Washington)
- Soumik Pal (University of Washignton)

N particles with strong drift 0000000

Outline of the talk

Fleming-Viot type process

- Description of the F-V particle system
- Some earlier results

2 Two-particle F-V driven by Bessel process on $(0,\infty)$

- Main result
- Sketch of the proof

3 *N*-particle **F-V** driven by a diffusion with strong drift

- Main result
- Sketch of the proof

・ロト・日本・山田・山田・山下・

N particles with strong drift 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Outline of the talk

1 Fleming-Viot type process

- Description of the F-V particle system
- Some earlier results

2 Two-particle F-V driven by Bessel process on $(0,\infty)$

- Main result
- Sketch of the proof

8 N-particle F-V driven by a diffusion with strong drift

- Main result
- Sketch of the proof

N particles with strong drift 0000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Outline of the talk

1 Fleming-Viot type process

- Description of the F-V particle system
- Some earlier results

2 Two-particle F-V driven by Bessel process on $(0,\infty)$

- Main result
- Sketch of the proof

3 *N*-particle **F-V** driven by a diffusion with strong drift

- Main result
- Sketch of the proof

N particles with strong drift

Outline of the talk

1 Fleming-Viot type process

- **2** Two-particle F-V driven by Bessel process on $(0,\infty)$
- Interpretation of the second strength and the streng drift of the second strength and the strength and the second strengtha

・ロト ・日本・日本・日本・日本・日本

N particles with strong drift 0000000

Description of the F-V particle system

Definition of Fleming-Viot process

- Consider a diffusion X in \mathbb{R}^d and an open set $D \subset \mathbb{R}^d$.
- Fix $N \in \mathbb{N}$ and define $\mathbf{X}_t = (X_t^1, \dots, X_t^N)$, $t \ge 0$, driven by X as follows:
- $\mathbf{X}_0 = (x^1, \dots, x^N) \in D^N$
- X_t^1, \ldots, X_t^N move as N independent copies of X until time τ_1 , where

$$\tau_1 = \inf\left\{t > 0 : \exists_{1 \le j \le N} X_t^j \in \partial D\right\}.$$

N particles with strong drift 0000000

Description of the F-V particle system

Definition of Fleming-Viot process

- Consider a diffusion X in \mathbb{R}^d and an open set $D \subset \mathbb{R}^d$.
- Fix $N \in \mathbb{N}$ and define $\mathbf{X}_t = (X_t^1, \dots, X_t^N)$, $t \ge 0$, driven by X as follows:
- $\mathbf{X}_0 = (x^1, \dots, x^N) \in D^N$
- X_t^1, \ldots, X_t^N move as N independent copies of X until time τ_1 , where

$$\tau_1 = \inf \left\{ t > 0 : \exists_{1 \le j \le N} X_t^j \in \partial D \right\}.$$

N particles with strong drift 0000000

Description of the F-V particle system

Definition of Fleming-Viot process

- Consider a diffusion X in \mathbb{R}^d and an open set $D \subset \mathbb{R}^d$.
- Fix $N \in \mathbb{N}$ and define $\mathbf{X}_t = (X_t^1, \dots, X_t^N)$, $t \ge 0$, driven by X as follows:
- $\mathbf{X}_0 = (x^1, \dots, x^N) \in D^N$

• X_t^1, \ldots, X_t^N move as N independent copies of X until time τ_1 , where

$$\tau_1 = \inf \left\{ t > 0 : \exists_{1 \le j \le N} X_t^j \in \partial D \right\}.$$

N particles with strong drift 0000000

Description of the F-V particle system

Definition of Fleming-Viot process

- Consider a diffusion X in \mathbb{R}^d and an open set $D \subset \mathbb{R}^d$.
- Fix $N \in \mathbb{N}$ and define $\mathbf{X}_t = (X_t^1, \dots, X_t^N)$, $t \ge 0$, driven by X as follows:
- $\mathbf{X}_0 = (x^1, \dots, x^N) \in D^N$
- X_t^1, \ldots, X_t^N move as N independent copies of X until time τ_1 , where

$$\tau_1 = \inf\left\{t > 0 : \exists_{1 \le j \le N} X_t^j \in \partial D\right\}.$$

Description of the F-V particle system

Definition of Fleming-Viot process

- Consider a diffusion X in \mathbb{R}^d and an open set $D \subset \mathbb{R}^d$.
- Fix $N \in \mathbb{N}$ and define $\mathbf{X}_t = (X_t^1, \dots, X_t^N)$, $t \ge 0$, driven by X as follows:
- $X_0 = (x^1, ..., x^N) \in D^N$
- X_t^1, \ldots, X_t^N move as N independent copies of X until time τ_1 , where

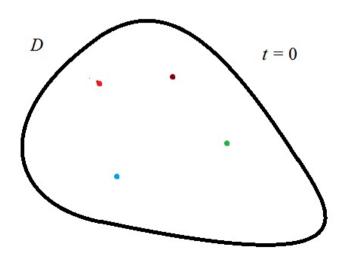
$$\tau_1 = \inf\left\{t > 0 : \exists_{1 \le j \le N} X_t^j \in \partial D\right\}.$$

 At τ₁ the particle X^j which hit the boundary, jumps onto one of the remaining particles, uniformly chosen at random. F-V type process ○●○○○○○○○ Two Bessel particles

N particles with strong drift 0000000

Description of the F-V particle system

An example: $D \subset \mathbb{R}^2$, N = 4



→ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → � � �

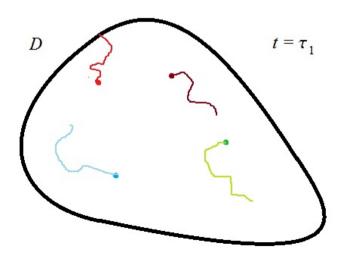
F-V type process ○●○○○○○○○ Two Bessel particles

N particles with strong drift 0000000

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● � � � �

Description of the F-V particle system

An example: $D \subset \mathbb{R}^2$, N = 4



• Then after time au_1 all particles move as N independent copies of X until the time

$$\tau_2 = \inf\left\{t > \tau_1 : \exists_{1 \le j \le N} X_t^j \in \partial D\right\}.$$

(ロ) (国) (E) (E) (E) (O)(C)

• The subsequent evolution of **X** proceeds in the same way.

• Then after time τ_1 all particles move as N independent copies of X until the time

$$\tau_2 = \inf\left\{t > \tau_1 : \exists_{1 \le j \le N} X_t^j \in \partial D\right\}.$$

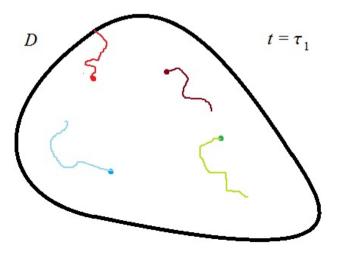
• The subsequent evolution of **X** proceeds in the same way.

Two Bessel particles

N particles with strong drift

Description of the F-V particle system

An example cntd: $D \subset \mathbb{R}^2$, N = 4



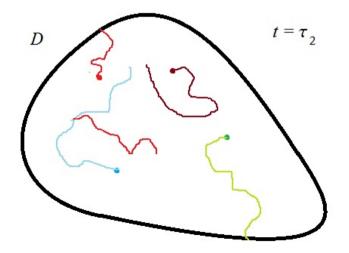
- ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ • の � @

Two Bessel particles

N particles with strong drift

Description of the F-V particle system

An example cntd: $D \subset \mathbb{R}^2$, N = 4



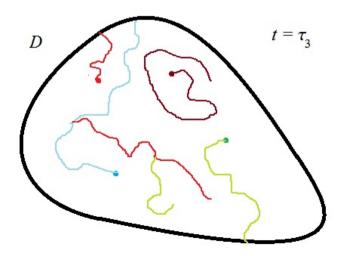
→ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● � � � �

Two Bessel particles

N particles with strong drift

Description of the F-V particle system

An example cntd: $D \subset \mathbb{R}^2$, N = 4



→ ▲ 臣 ▶ ▲ 臣 ▶ ■ ● ● ● ●

Two Bessel particles

N particles with strong drift 0000000

Some earlier results

Extinction or non-extinction of F-V process

• Let τ_k denote the time of the *k*-th jump of the process X_t

$$\tau_{k+1} = \inf \left\{ t > \tau_k : \exists_{1 \le j \le N} X_t^j \in \partial D \right\}.$$

• Define
$$\tau_{\infty} = \lim_{k \to \infty} \tau_k$$
 — 'the time of extinction of \mathbf{X}_t '

Problem

Is the process X_t well defined for all t > 0? Is it true that almost surely $\tau_{\infty} = \infty$?

In other words, is it possible that all N particles hit ∂D at the same finite time?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Two Bessel particles

N particles with strong drift 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Some earlier results

Extinction or non-extinction of F-V process

• Let τ_k denote the time of the *k*-th jump of the process X_t

$$\tau_{k+1} = \inf \left\{ t > \tau_k : \exists_{1 \le j \le N} \, X_t^j \in \partial D \right\}.$$

• Define
$$au_{\infty} = \lim_{k \to \infty} au_k$$
 — 'the time of extinction of \mathbf{X}_t '

Problem

Is the process X_t well defined for all t > 0? Is it true that almost surely $\tau_{\infty} = \infty$?

In other words, is it possible that all N particles hit ∂D at the same finite time?

Two Bessel particles

N particles with strong drift 0000000

Some earlier results

Extinction or non-extinction of F-V process

• Let τ_k denote the time of the k-th jump of the process X_t

$$\tau_{k+1} = \inf \left\{ t > \tau_k : \exists_{1 \le j \le N} \, X_t^j \in \partial D \right\}.$$

• Define
$$au_{\infty} = \lim_{k \to \infty} au_k$$
 — 'the time of extinction of \mathbf{X}_t '

Problem

Is the process \mathbf{X}_t well defined for all t > 0? Is it true that almost surely $\tau_{\infty} = \infty$?

In other words, is it possible that all N particles hit ∂D at the same finite time?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ○○○

Two Bessel particles

N particles with strong drift 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Some earlier results

Extinction or non-extinction of F-V process

• Let τ_k denote the time of the k-th jump of the process X_t

$$\tau_{k+1} = \inf \left\{ t > \tau_k : \exists_{1 \le j \le N} \, X_t^j \in \partial D \right\}.$$

• Define
$$au_{\infty} = \lim_{k \to \infty} au_k$$
 — 'the time of extinction of \mathbf{X}_t '

Problem

Is the process \mathbf{X}_t well defined for all t > 0? Is it true that almost surely $\tau_{\infty} = \infty$?

In other words, is it possible that all N particles hit ∂D at the same finite time?

Two Bessel particles

N particles with strong drift 0000000

Solution - first attempt

Theorem (Burdzy, March, Hołyst (2000))

If X is a Brownian motion then for any $D \subset \mathbb{R}^d$ open

$$\lim_{k\to\infty}\tau_k=\infty,\quad a.s.$$

Proof

Incorrect. If it was correct, it would apply to a very wide class of Markov processes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Two Bessel particles

N particles with strong drift 0000000

Solution - first attempt

Theorem (Burdzy, March, Hołyst (2000))

If X is a Brownian motion then for any $D \subset \mathbb{R}^d$ open

$$\lim_{k\to\infty}\tau_k=\infty,\quad a.s.$$

Proof

Incorrect. If it was correct, it would apply to a very wide class of Markov processes.

Some earlier results

N particles with strong drift 0000000

・ロト・日本・日本・日本・日本・日本・○○への

Partial solution — Lipschitz domains

Let $\mathbf{X} = (X^1, \dots, X^N)$ be Fleming-Viot particle system driven by a Brownian motion in \mathbb{R}^d .

Theorem (B, Burdzy, Finch (2012))

There exists the constant c(N, d) such that if $D \subset \mathbb{R}^d$ is a bounded Lipschitz domain with the Lipschitz constant L(D) < c(N, d), then the *N*-particle process $\mathbf{X} = (X^1, \ldots, X^N)$ in *D* is well defined.

Example

The square in the plane has too sharp angles!!!

Some earlier results

Partial solution — Lipschitz domains

Let $\mathbf{X} = (X^1, \dots, X^N)$ be Fleming-Viot particle system driven by a Brownian motion in \mathbb{R}^d .

Theorem (B, Burdzy, Finch (2012))

There exists the constant c(N, d) such that if $D \subset \mathbb{R}^d$ is a bounded Lipschitz domain with the Lipschitz constant L(D) < c(N, d), then the *N*-particle process $\mathbf{X} = (X^1, \ldots, X^N)$ in *D* is well defined.

Example

The square in the plane has too sharp angles!!!

Some earlier results

Partial solution — Lipschitz domains

Let $\mathbf{X} = (X^1, \dots, X^N)$ be Fleming-Viot particle system driven by a Brownian motion in \mathbb{R}^d .

Theorem (B, Burdzy, Finch (2012))

There exists the constant c(N, d) such that if $D \subset \mathbb{R}^d$ is a bounded Lipschitz domain with the Lipschitz constant L(D) < c(N, d), then the *N*-particle process $\mathbf{X} = (X^1, \ldots, X^N)$ in *D* is well defined.

Example

The square in the plane has too sharp angles!!!

Two Bessel particles

N particles with strong drift 0000000

Some earlier results

Two examples of B, Burdzy and Finch

Example 1 - Theorem

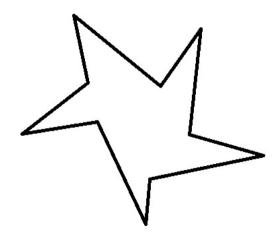
If *D* is arbitrary polyhedral domain in \mathbb{R}^d , then the two-particle F-V process $\mathbf{X}_t = (X_t^1, X_t^2)$ driven by Brownian motion, is well defined for all *t* (i.e. $\tau_{\infty} = \infty$).

F-V type process ○○○○○○○●○ Two Bessel particles

N particles with strong drift 0000000

Some earlier results

Example of polyhedral domain in \mathbb{R}^2



N particles with strong drift $_{\odot\odot\odot\odot\odot\odot\odot}$

Some earlier results

Two examples of B, Burdzy and Finch - cntd

Example 1 - Theorem

If *D* is arbitrary polyhedral domain in \mathbb{R}^d , then the two-particle F-V process $\mathbf{X}_t = (X_t^1, X_t^2)$ driven by Brownian motion, is well defined for all *t* (i.e. $\tau_{\infty} = \infty$).

Example 2

If $D = (0,\infty)$ then for two particle F-V process driven by a diffusion

$$dX_t = dW_t - \frac{5}{2X_t} dt, \quad X_0 = 1,$$

we have $\tau_{\infty} < \infty$.

・ロト・「四ト・山田ト・山田ト・山下

N particles with strong drift 0000000

Outline of the talk

Fleming-Viot type process

2 Two-particle F-V driven by Bessel process on $(0,\infty)$

Interpretation of the second strengthetic of the second streng strengthetic of the second strengthe

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Main result

Two Bessel particles

N particles with strong drift 0000000

F-V driven by Bessel processes

Theorem

Let **X** be a Fleming-Viot process with N particles on $(0, \infty)$ driven by Bessel process of dimension $\nu \in \mathbb{R}$.

```
(i) If N=2 then 	au_{\infty}<\infty, a.s., if and only if 
u<0.
```

```
(ii) If N
u \ge 2 then 	au_{\infty} = \infty, a.s.
```

・ロト・日本・日本・ 日本・ シュー

Main result

Two Bessel particles

N particles with strong drift 0000000

F-V driven by Bessel processes

Theorem

Let **X** be a Fleming-Viot process with N particles on $(0, \infty)$ driven by Bessel process of dimension $\nu \in \mathbb{R}$.

(i) If
$$N=2$$
 then $au_{\infty}<\infty$, a.s., if and only if $u<0$.

(ii) If $N\nu \ge 2$ then $\tau_{\infty} = \infty$, a.s.

・ロト・日本・日本・ 日本・ シュー

Main result

N particles with strong drift 0000000

F-V driven by Bessel processes

Theorem

Let **X** be a Fleming-Viot process with N particles on $(0, \infty)$ driven by Bessel process of dimension $\nu \in \mathbb{R}$.

(i) If
$$N = 2$$
 then $\tau_{\infty} < \infty$, a.s., if and only if $\nu < 0$.

(ii) If $N\nu \ge 2$ then $\tau_{\infty} = \infty$, a.s.

Sketch of the proof

Sketch of the proof of (i)

For ν ∈ ℝ and x > 0 let X ~ Bes^ν(x) denote ν-dimensional Bessel process on (0,∞) killed at 0, i.e. the solution to SDE

$$dX_t = dW_t + \frac{\nu - 1}{2X_t} dt,$$

where W is the standard Brownian motion.

- Let T_0 denote the hitting time of 0.
- Scaling of Bessel processes: If $X \sim \text{Bes}^{\nu}(x)$ is a Bessel process on $[0, T_0)$, then for all c > 0,

 $cX_{c^{-2}t} \sim \operatorname{Bes}^{\nu}(cx)$ on $[0, c^2T_0]$

Sketch of the proof

Sketch of the proof of (i)

For *ν* ∈ ℝ and *x* > 0 let *X* ~ Bes^ν(*x*) denote *ν*-dimensional Bessel process on (0,∞) killed at 0, i.e. the solution to SDE

$$dX_t = dW_t + \frac{\nu - 1}{2X_t} dt,$$

where W is the standard Brownian motion.

- Let T_0 denote the hitting time of 0.
- Scaling of Bessel processes: If $X \sim \text{Bes}^{\nu}(x)$ is a Bessel process on $[0, T_0)$, then for all c > 0,

 $cX_{c^{-2}t} \sim \operatorname{Bes}^{\nu}(cx)$ on $[0, c^2T_0]$

Sketch of the proof of (i)

For *ν* ∈ ℝ and *x* > 0 let *X* ~ Bes^ν(*x*) denote *ν*-dimensional Bessel process on (0,∞) killed at 0, i.e. the solution to SDE

$$dX_t = dW_t + rac{
u - 1}{2X_t}dt,$$

where W is the standard Brownian motion.

- Let T_0 denote the hitting time of 0.
- Scaling of Bessel processes: If X ~ Bes^ν(x) is a Bessel process on [0, T₀), then for all c > 0,

$$cX_{c^{-2}t} \sim \operatorname{Bes}^{\nu}(cx)$$
 on $[0, c^2T_0]$

Alternative construction of FV

Let Y_t = (Y_t¹, Y_t²), where Y¹ and Y² are independent copies of X ~ Bes^ν(1)
Let Y_tⁱ = (Y_t^{i,1}, Y_t^{i,2}), i = 1, 2, ..., be a sequence of independent copies of Y.
For i = 1, 2, ... we set

$$\sigma_{i} = \inf \left\{ t > 0 : Y_{t}^{i,1} \land Y_{t}^{i,2} = 0 \right\}, \qquad \alpha_{i} = Y_{\sigma_{i}}^{i,1} \lor Y_{\sigma_{i}}^{i,2}.$$

• By scaling of Bessel processes

$$au_n = \sum_{j=1}^n \xi_{j-1}^2 \sigma_j, \quad \text{with} \quad \xi_j = \prod_{i=1}^j \alpha_i$$

• To check when $\tau_n \rightarrow \infty$ we use the following result

Alternative construction of FV

Let Y_t = (Y¹_t, Y²_t), where Y¹ and Y² are independent copies of X ~ Bes^v(1)
Let Yⁱ_t = (Y^{i,1}_t, Y^{i,2}_t), i = 1, 2, ..., be a sequence of independent copies of Y.
For i = 1, 2, ... we set

$$\sigma_i = \inf\left\{t > 0 : Y_t^{i,1} \land Y_t^{i,2} = 0\right\}, \qquad \alpha_i = Y_{\sigma_i}^{i,1} \lor Y_{\sigma_i}^{i,2}.$$

• By scaling of Bessel processes

$$au_n = \sum_{j=1}^n \xi_{j-1}^2 \sigma_j, \quad \text{with} \quad \xi_j = \prod_{i=1}^j \alpha_i$$

• To check when $au_n o \infty$ we use the following result

Alternative construction of FV

Let Y_t = (Y¹_t, Y²_t), where Y¹ and Y² are independent copies of X ~ Bes^v(1)
Let Yⁱ_t = (Y^{i,1}_t, Y^{i,2}_t), i = 1, 2, ..., be a sequence of independent copies of Y.
For i = 1, 2, ... we set

$$\sigma_i = \inf \left\{ t > 0 : Y_t^{i,1} \land Y_t^{i,2} = 0 \right\}, \qquad \alpha_i = Y_{\sigma_i}^{i,1} \lor Y_{\sigma_i}^{i,2}.$$

• By scaling of Bessel processes

$$au_n = \sum_{j=1}^n \xi_{j-1}^2 \sigma_j, \quad \text{with} \quad \xi_j = \prod_{i=1}^j \alpha_i$$

• To check when $\tau_n \to \infty$ we use the following result

Alternative construction of FV

Let Y_t = (Y¹_t, Y²_t), where Y¹ and Y² are independent copies of X ~ Bes^v(1)
Let Yⁱ_t = (Y^{i,1}_t, Y^{i,2}_t), i = 1, 2, ..., be a sequence of independent copies of Y.
For i = 1, 2, ... we set

$$\sigma_i = \inf \left\{ t > 0 : Y_t^{i,1} \land Y_t^{i,2} = 0 \right\}, \qquad \alpha_i = Y_{\sigma_i}^{i,1} \lor Y_{\sigma_i}^{i,2}.$$

• By scaling of Bessel processes

$$au_n = \sum_{j=1}^n \xi_{j-1}^2 \sigma_j, \quad \text{with} \quad \xi_j = \prod_{i=1}^j lpha_i$$

• To check when $\tau_n \to \infty$ we use the following result

Alternative construction of FV

Let Y_t = (Y¹_t, Y²_t), where Y¹ and Y² are independent copies of X ~ Bes^v(1)
Let Yⁱ_t = (Y^{i,1}_t, Y^{i,2}_t), i = 1, 2, ..., be a sequence of independent copies of Y.
For i = 1, 2, ... we set

$$\sigma_i = \inf \left\{ t > 0 : Y_t^{i,1} \land Y_t^{i,2} = 0 \right\}, \qquad \alpha_i = Y_{\sigma_i}^{i,1} \lor Y_{\sigma_i}^{i,2}.$$

• By scaling of Bessel processes

$$au_n = \sum_{j=1}^n \xi_{j-1}^2 \sigma_j, \quad \text{with} \quad \xi_j = \prod_{i=1}^j lpha_i$$

• To check when $\tau_n \to \infty$ we use the following result

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Theorem (e.g. Diaconis, Freedman)

Let $\{(A_n, B_n), n \ge 1\}$ be a sequence of independent and identically distributed random variables such that $A_n, B_n \in \mathbb{R}$ and

$$\mathbb{E}\left(\log^+|A_1|\right) < \infty, \quad \mathbb{E}\left(\log^+|B_1|\right) < \infty.$$

Then the infinite random series

$$\sum_{n=1}^{\infty} \left(\prod_{j=1}^{n-1} A_j \right) B_n$$

converges a.s. to a finite limit if and only if $\mathbb{E} \log |A_1| < 0$.

Theorem (e.g. Diaconis, Freedman)

Let $\{(A_n, B_n), n \ge 1\}$ be a sequence of independent and identically distributed random variables such that $A_n, B_n \in \mathbb{R}$ and

$$\mathbb{E}\left(\left| \mathsf{log}^+ \left| \mathsf{A}_1 \right|
ight) < \infty, \quad \mathbb{E}\left(\left| \mathsf{log}^+ \left| \mathsf{B}_1 \right|
ight) < \infty.$$

Then the infinite random series

$$\sum_{n=1}^{\infty} \left(\prod_{j=1}^{n-1} A_j\right) B_n$$

converges a.s. to a finite limit if and only if $\mathbb{E} \log |A_1| < 0$.

・ロト・日本・日本・ 日本・ シュー

• The case $\nu \ge 2$ is very simple: then $\text{Bes}^{\nu}(x)$ never hits 0, so $\sigma_1 = \infty$, a.s., so $\tau_{\infty} = \infty$, a.s.

- For $\nu < 2$ we apply the above Theorem with $A_n = \alpha_n^2$ and $B_n = \sigma_n$.
- After some calculations we conclude that $\mathbb{E}\log^+|B_1|=\mathbb{E}\log^+\sigma_1<\infty$ and

$$\mathbb{E}(\log |A_1|) = \mathbb{E}\log(\alpha_1^2) = \frac{1}{2}\mathbb{E}\log\frac{2|X|}{\sqrt{2-\nu}}$$

where X is a random variable with *t*-distribution with $(2 - \nu)$ -degrees of freedom • Therefore

$$\mathbb{E}(\log A_1) = \frac{1}{4} \left(\psi(1) - \psi\left(\frac{2-\nu}{2}\right) \right),$$

where ψ is the digamma function

• Therefore $\mathbb{E}(\log A_1) < 0$ iff $\frac{2-\nu}{2} > 1$ iff $\nu < 0$.

Sketch of the proof		000000
F-V type process	Two Bessel particles	N particles with strong dr

- The case $\nu \ge 2$ is very simple: then $\text{Bes}^{\nu}(x)$ never hits 0, so $\sigma_1 = \infty$, a.s., so $\tau_{\infty} = \infty$, a.s.
- For $\nu < 2$ we apply the above Theorem with $A_n = \alpha_n^2$ and $B_n = \sigma_n$.
- After some calculations we conclude that $\mathbb{E}\log^+|B_1|=\mathbb{E}\log^+\sigma_1<\infty$ and

$$\mathbb{E}(\log |A_1|) = \mathbb{E}\log(\alpha_1^2) = \frac{1}{2}\mathbb{E}\log\frac{2|X|}{\sqrt{2-\nu}}$$

$$\mathbb{E}(\log A_1) = \frac{1}{4} \left(\psi(1) - \psi\left(\frac{2-\nu}{2}\right) \right),$$

where ψ is the digamma function

• Therefore $\mathbb{E}(\log A_1) < 0$ iff $\frac{2-\nu}{2} > 1$ iff $\nu < 0$.

rift

F-V type process	Two Bessel particles	N particles with strong
	00000	
Sketch of the proof		

- The case $\nu \ge 2$ is very simple: then $\text{Bes}^{\nu}(x)$ never hits 0, so $\sigma_1 = \infty$, a.s., so $\tau_{\infty} = \infty$, a.s.
- For $\nu < 2$ we apply the above Theorem with $A_n = \alpha_n^2$ and $B_n = \sigma_n$.
- After some calculations we conclude that $\mathbb{E}\log^+|B_1|=\mathbb{E}\log^+\sigma_1<\infty$ and

$$\mathbb{E}(\log |A_1|) = \mathbb{E}\log(\alpha_1^2) = \frac{1}{2}\mathbb{E}\log\frac{2|X|}{\sqrt{2-\nu}}$$

$$\mathbb{E}(\log A_1) = \frac{1}{4}\left(\psi(1) - \psi\left(\frac{2-\nu}{2}\right)\right),$$

where ψ is the digamma function

• Therefore $\mathbb{E}(\log A_1) < 0$ iff $\frac{2-\nu}{2} > 1$ iff $\nu < 0$.

drift

F-V type process	Two Bessel particles	N particles with strong
	00000	
Sketch of the proof		

- The case $\nu \ge 2$ is very simple: then $\text{Bes}^{\nu}(x)$ never hits 0, so $\sigma_1 = \infty$, a.s., so $\tau_{\infty} = \infty$, a.s.
- For $\nu < 2$ we apply the above Theorem with $A_n = \alpha_n^2$ and $B_n = \sigma_n$.
- After some calculations we conclude that $\mathbb{E}\log^+|B_1|=\mathbb{E}\log^+\sigma_1<\infty$ and

$$\mathbb{E}(\log |A_1|) = \mathbb{E}\log(lpha_1^2) = rac{1}{2}\mathbb{E}\lograc{2|X|}{\sqrt{2-
u}}$$

$$\mathbb{E}(\log A_1) = \frac{1}{4}\left(\psi(1) - \psi\left(\frac{2-\nu}{2}\right)\right),$$

where ψ is the digamma function

• Therefore $\mathbb{E}(\log A_1) < 0$ iff $\frac{2-\nu}{2} > 1$ iff $\nu < 0$.

drift

F-V type process	Two Bessel particles	N particles with strong
	0000	
Sketch of the proof		

- The case $\nu \ge 2$ is very simple: then $\text{Bes}^{\nu}(x)$ never hits 0, so $\sigma_1 = \infty$, a.s., so $\tau_{\infty} = \infty$, a.s.
- For $\nu < 2$ we apply the above Theorem with $A_n = \alpha_n^2$ and $B_n = \sigma_n$.
- After some calculations we conclude that $\mathbb{E}\log^+|B_1|=\mathbb{E}\log^+\sigma_1<\infty$ and

$$\mathbb{E}(\log |A_1|) = \mathbb{E}\log(\alpha_1^2) = \frac{1}{2}\mathbb{E}\log\frac{2|X|}{\sqrt{2-\nu}}$$

$$\mathbb{E}(\log A_1) = \frac{1}{4}\left(\psi(1) - \psi\left(\frac{2-\nu}{2}\right)\right),$$

where ψ is the digamma function

• Therefore $\mathbb{E}(\log A_1) < 0$ iff $\frac{2-\nu}{2} > 1$ iff $\nu < 0$.

drift

N particles with strong drift

Outline of the talk

Fleming-Viot type process

2 Two-particle F-V driven by Bessel process on $(0,\infty)$

3 *N*-particle **F**-**V** driven by a diffusion with strong drift

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへで

N particles with strong drift ●○○○○○○

Main result

N particles with "strong" drift

• Intuitively it may seem that $\tau_{\infty} = \infty$ for sufficiently large N.

• Our next result shows that this claim is false: once the drift of the diffusion is slightly stronger than the drift of any Bessel process, then $\tau_{\infty} < \infty$ for the Fleming-Viot process driven by this diffusion and *every* N.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

N particles with strong drift ●○○○○○○

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Main result

N particles with "strong" drift

- Intuitively it may seem that $\tau_{\infty} = \infty$ for sufficiently large N.
- Our next result shows that this claim is false: once the drift of the diffusion is slightly stronger than the drift of any Bessel process, then $\tau_{\infty} < \infty$ for the Fleming-Viot process driven by this diffusion and *every* N.

Main result

N particles with "strong" drift

• Consider the following SDE for a diffusion on (0,2],

$$X_{t} = x_{0} + W_{t} - \int_{0}^{t} \frac{1}{\beta X_{t}^{\beta-1}} \, ds - L_{t}, \quad t \leq T_{0}, \tag{1}$$

where $x_0 \in (0, 2]$, $\beta > 2$, W is Brownian motion, T_0 is the first hitting time of 0 by X, and L_t is the local time of X at 2

• We consider a Fleming-Viot process on D = (0, 2] driven by this diffusion. The role of the boundary is played only by the point 0, since X is reflected at 2.

Main result

N particles with "strong" drift

• Consider the following SDE for a diffusion on (0,2],

$$X_t = x_0 + W_t - \int_0^t \frac{1}{\beta X_t^{\beta - 1}} \, ds - L_t, \quad t \le T_0, \tag{1}$$

where $x_0 \in (0, 2]$, $\beta > 2$, W is Brownian motion, T_0 is the first hitting time of 0 by X, and L_t is the local time of X at 2

• We consider a Fleming-Viot process on D = (0, 2] driven by this diffusion. The role of the boundary is played only by the point 0, since X is reflected at 2.

F-V type process	Two Bessel particles	<i>N</i> particles with strong drift ○○●○○○○
Main result		
<u> </u>		

Theorem

Theorem

Fix any $\beta > 2$. For every $N \ge 2$, the *N*-particle Fleming-Viot process on (0, 2] driven by diffusion X has the property that $\tau_{\infty} < \infty$, a.s. Moreover,

 $\mathbb{P}^{\mathsf{x}}(au_{\infty}>t)\leq c_{1}\mathrm{e}^{-c_{2}t}, \qquad t\geq 0, \; \mathsf{x}\in(0,2]^{N},$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

where c_1 and c_2 depend only on N and eta, and satisfy $0 < c_1, c_2 < \infty$.

F-V type process	Two Bessel particles	<i>N</i> particles with strong drift ○○●○○○○
Main result		

Theorem

Theorem

Fix any $\beta > 2$. For every $N \ge 2$, the *N*-particle Fleming-Viot process on (0, 2] driven by diffusion X has the property that $\tau_{\infty} < \infty$, a.s. Moreover,

$$\mathbb{P}^{\mathsf{x}}(au_{\infty}>t)\leq c_{1}\mathrm{e}^{-c_{2}t}, \qquad t\geq 0, \; \mathsf{x}\in(0,2]^{N},$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

where c_1 and c_2 depend only on N and β , and satisfy $0 < c_1, c_2 < \infty$.

F-V type process

Two Bessel particles

N particles with strong drift 000000

Sketch of the proof

Freidlin-Wentzell inequality

• Consider a diffusion $X_t, t \in [s, u]$, satisfying SDE

$$dX_t = dW_t + b(X_t) dt, \quad X_s = a.$$

• Let y_t be the solution to the ordinary differential equation

$$\frac{d}{dt}y_t = b(y_t), \quad y_s = a.$$

• If *b* is a Lipschitz function on [s, u] then for every $\delta > 0$

$$\mathbb{P}\left(\sup_{s\leq t\leq u}|X_t-y_t|>\delta\right)\leq c_0\exp\left(-\frac{\delta^2}{2(u-s)}e^{-2L(u-s)}\right)$$

where L is a Lipschitz constant of b and c_0 is an absolute costant.

F-V type process

Two Bessel particles

N particles with strong drift 000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Sketch of the proof

Freidlin-Wentzell inequality

• Consider a diffusion $X_t, t \in [s, u]$, satisfying SDE

$$dX_t = dW_t + b(X_t) dt, \quad X_s = a.$$

• Let y_t be the solution to the ordinary differential equation

$$rac{d}{dt}y_t=b(y_t),\quad y_s=a.$$

• If *b* is a Lipschitz function on [s, u] then for every $\delta > 0$

$$\mathbb{P}\left(\sup_{s\leq t\leq u}|X_t-y_t|>\delta\right)\leq c_0\exp\left(-\frac{\delta^2}{2(u-s)}e^{-2L(u-s)}\right)$$

where *L* is a Lipschitz constant of *b* and c_0 is an absolute costant.

F-V type process

Two Bessel particles

N particles with strong drift 000000

Sketch of the proof

Freidlin-Wentzell inequality

• Consider a diffusion $X_t, t \in [s, u]$, satisfying SDE

$$dX_t = dW_t + b(X_t) dt, \quad X_s = a.$$

• Let y_t be the solution to the ordinary differential equation

$$rac{d}{dt}y_t=b(y_t),\quad y_s=a.$$

• If *b* is a Lipschitz function on [s, u] then for every $\delta > 0$

$$\mathbb{P}\left(\sup_{s\leq t\leq u}|X_t-y_t|>\delta\right)\leq c_0\exp\left(-\frac{\delta^2}{2(u-s)}e^{-2L(u-s)}\right)$$

where *L* is a Lipschitz constant of *b* and c_0 is an absolute costant.

In our case

$$b(x)=-rac{1}{eta x^{eta -1}},\quad x>0.$$

with $\beta > 2$.

• If
$$y' = b(y)$$
, $y_s = a$, then

$$y(t):=\left(a^{eta}+s-t
ight)^{1/eta},\quad s\leq t\leq s+a^{eta},$$

• So *b* is not Lipschitz on $[s, s + a^{\beta}]$

• This causes a lot of complicated and tedious calculations and considerations

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

In our case

$$b(x)=-rac{1}{eta x^{eta -1}},\quad x>0.$$

with $\beta > 2$.

• If
$$y' = b(y)$$
, $y_s = a$, then

$$y(t) := \left(a^{eta} + s - t
ight)^{1/eta}, \quad s \leq t \leq s + a^{eta},$$

• So b is not Lipschitz on $[s,s+a^\beta]$

• This causes a lot of complicated and tedious calculations and considerations

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

In our case

$$b(x)=-rac{1}{eta x^{eta -1}},\quad x>0.$$

with $\beta > 2$.

• If
$$y' = b(y)$$
, $y_s = a$, then

$$y(t) := \left(a^{eta} + s - t
ight)^{1/eta}, \quad s \leq t \leq s + a^{eta},$$

- So *b* is not Lipschitz on $[s, s + a^{\beta}]$
- This causes a lot of complicated and tedious calculations and considerations

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

In our case

$$b(x)=-rac{1}{eta x^{eta -1}},\quad x>0.$$

with $\beta > 2$.

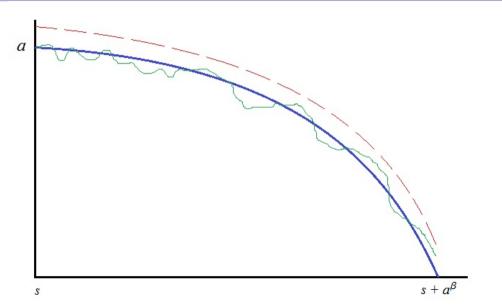
• If
$$y' = b(y)$$
, $y_s = a$, then

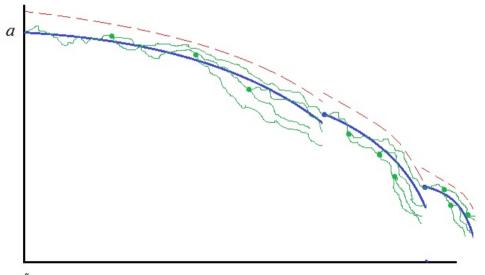
$$y(t) := \left(a^{eta} + s - t
ight)^{1/eta}, \quad s \leq t \leq s + a^{eta},$$

• So b is not Lipschitz on $[s,s+a^\beta]$

• This causes a lot of complicated and tedious calculations and considerations

・ロト・日本・日本・日本・日本・日本





- Consider N independent Brownian motions in \mathbb{R}^d (all starting from a fixed point)
- Every ε units of time, two particles are chosen uniformly
- The first particle jumps to the location of the second one
- Between the jumps the particles are independent Brownian motions
- Now assume that $N \to \infty$ and $\varepsilon \to 0$ (at some rate related to N)
- Then for each t ≥ 0, the empirical distributions of the particles converge to a random measure (carried by a set of fractal nature)

- Consider N independent Brownian motions in \mathbb{R}^d (all starting from a fixed point)
- Every ε units of time, two particles are chosen uniformly
- The first particle jumps to the location of the second one
- Between the jumps the particles are independent Brownian motions
- Now assume that $N \to \infty$ and $\varepsilon \to 0$ (at some rate related to N)
- Then for each t ≥ 0, the empirical distributions of the particles converge to a random measure (carried by a set of fractal nature)

- Consider N independent Brownian motions in \mathbb{R}^d (all starting from a fixed point)
- Every ε units of time, two particles are chosen uniformly
- The first particle jumps to the location of the second one
- Between the jumps the particles are independent Brownian motions
- Now assume that $N \to \infty$ and $\varepsilon \to 0$ (at some rate related to N)
- Then for each t ≥ 0, the empirical distributions of the particles converge to a random measure (carried by a set of fractal nature)

- Consider N independent Brownian motions in \mathbb{R}^d (all starting from a fixed point)
- Every ε units of time, two particles are chosen uniformly
- The first particle jumps to the location of the second one
- Between the jumps the particles are independent Brownian motions
- Now assume that $N \to \infty$ and $\varepsilon \to 0$ (at some rate related to N)
- Then for each t ≥ 0, the empirical distributions of the particles converge to a random measure (carried by a set of fractal nature)

- Consider N independent Brownian motions in \mathbb{R}^d (all starting from a fixed point)
- Every ε units of time, two particles are chosen uniformly
- The first particle jumps to the location of the second one
- Between the jumps the particles are independent Brownian motions
- Now assume that $N \to \infty$ and $\varepsilon \to 0$ (at some rate related to N)
- Then for each t ≥ 0, the empirical distributions of the particles converge to a random measure (carried by a set of fractal nature)

- Consider N independent Brownian motions in \mathbb{R}^d (all starting from a fixed point)
- Every ε units of time, two particles are chosen uniformly
- The first particle jumps to the location of the second one
- Between the jumps the particles are independent Brownian motions
- Now assume that $N \to \infty$ and $\varepsilon \to 0$ (at some rate related to N)
- Then for each t ≥ 0, the empirical distributions of the particles converge to a random measure (carried by a set of fractal nature)