Geodesic distances and intrinsic distances on some fractal sets

Masanori Hino (Kyoto Univ.)

6th International Conference on Stochastic Analysis and Its Applications Będlewo, September 10, 2012

Intrinsic distance in the framework of Dirichlet forms (cf. Biloli–Mosco, Sturm etc.)

 (K, λ) : a locally compact, separable metric measure space $(\mathcal{E}, \mathcal{F})$: a strong local regular Dirichlet form on $L^2(K; \lambda)$

Intrinsic distance in the framework of Dirichlet forms (cf. Biloli–Mosco, Sturm etc.)

 (K, λ) : a locally compact, separable metric measure space $(\mathcal{E}, \mathcal{F})$: a strong local regular Dirichlet form on $L^2(K; \lambda)$ $\mu_{\langle f \rangle}$: the energy measure of $f \in \mathcal{F}$

When f is bounded, $\int_{K} \varphi \, d\mu_{\langle f \rangle} = 2\mathcal{E}(f, f\varphi) - \mathcal{E}(f^{2}, \varphi) \quad \forall \varphi \in \mathcal{F} \cap C_{b}(K).$ If $\mathcal{E}(f, g) = \frac{1}{2} \int_{\mathbb{R}^{d}} (a_{ij}(x) \nabla f(x), \nabla g(x))_{\mathbb{R}^{d}} \, dx,$ then $\mu_{\langle f \rangle}(dx) = (a_{ij}(x) \nabla f(x), \nabla f(x))_{\mathbb{R}^{d}} \, dx.$

Intrinsic distance in the framework of Dirichlet forms (cf. Biloli–Mosco, Sturm etc.)

 (K, λ) : a locally compact, separable metric measure space $(\mathcal{E}, \mathcal{F})$: a strong local regular Dirichlet form on $L^2(K; \lambda)$ $\mu_{\langle f \rangle}$: the energy measure of $f \in \mathcal{F}$ When *f* is bounded, $\int_{K} \varphi \, d\mu_{\langle f \rangle} = 2\mathcal{E}(f, f\varphi) - \mathcal{E}(f^{2}, \varphi) \quad \forall \varphi \in \mathcal{F} \cap C_{b}(K).$ If $\mathcal{E}(f,g) = \frac{1}{2} \int_{\mathbb{R}^d} (a_{ij}(x) \nabla f(x), \nabla g(x))_{\mathbb{R}^d} dx$, then $\mu_{\langle f \rangle}(dx) = (a_{ij}(x)\nabla f(x), \nabla f(x))_{\mathbb{R}^d} dx.$

Intrinsic distance in the framework of Dirichlet forms (cf. Biloli–Mosco, Sturm etc.)

 (K, λ) : a locally compact, separable metric measure space $(\mathcal{E}, \mathcal{F})$: a strong local regular Dirichlet form on $L^2(K; \lambda)$ $\mu_{\langle f \rangle}$: the energy measure of $f \in \mathcal{F}$ d(x, y): the intrinsic distance $\mathsf{d}(x,y) := \sup \left\{ f(y) - f(x) \middle| \begin{array}{l} f \in \mathcal{F}_{\mathrm{loc}} \cap C(K) \\ \text{and } \mu_{\langle f \rangle} \leq \lambda \end{array} \right\}.$ In this framework, various Gaussian estimates of the

Intrinsic distance in the framework of Dirichlet forms (cf. Biloli–Mosco, Sturm etc.)

 (K, λ) : a locally compact, separable metric measure space $(\mathcal{E}, \mathcal{F})$: a strong local regular Dirichlet form on $L^2(K; \lambda)$ $\mu_{\langle f \rangle}$: the energy measure of $f \in \mathcal{F}$ d(x, y): the intrinsic distance $\mathbf{d}(x,y) := \sup \left\{ f(y) - f(x) \middle| \begin{array}{c} f \in \mathcal{F}_{\mathrm{loc}} \cap C(K) \\ \text{and } \mu_{\langle f \rangle} \leq \lambda \end{array} \right\}.$ In this framework, various Gaussian estimates of the transition density have been obtained.

Question:

Is **d** identified with the geodesic distance (=shortest path metric)?

In particular, what if K is a fractal set, which does not have a (usual) differential structure?

But the straightforward formulation is not very useful as I will explain...

Question:

Is **d** identified with the geodesic distance (=shortest path metric)?

In particular, what if K is a fractal set, which does not have a (usual) differential structure?

But the straightforward formulation is not very useful as I will explain...

2. Canonical Dirichlet forms on typical selfsimilar fractals

Case of the 2-dim. standard Sierpinski gasket

 V_n : *n*th level graph approximation

$$\mathcal{E}^{(n)}(f,f) = \left(\frac{5}{3}\right)^n \sum_{x,y \in V_n, x \sim y} (f(x) - f(y))^2$$

2. Canonical Dirichlet forms on typical selfsimilar fractals

Case of the 2-dim. standard Sierpinski gasket

 V_n : *n*th level graph approximation

$$\mathcal{E}^{(n)}(f,f) = \left(\frac{5}{3}\right)^n \sum_{\substack{x,y \in V_n, \ x \sim y \\ \uparrow \ \text{scaling factor}}} (f(x) - f(y))^2$$

$\mathcal{E}^{(n)}(f,f) \nearrow^{\exists} \mathcal{E}(f,f) \leq +\infty \quad \forall f \in C(K).$ $\mathcal{F} := \{ f \in C(K) \mid \mathcal{E}(f,f) < +\infty \}$

Then, $(\mathcal{E}, \mathcal{F})$ is a strong local regular Dirichlet form on $L^2(K; \lambda)$. (λ : the Hausdorff measure on K)

 $\rightsquigarrow \{X_t\}$: "Brownian motion" on K (invariant under scaling and isometric transformations)

Similar construction is valid for more general finitely ramified self-similar fractals.

$$\mathcal{E}^{(n)}(f,f) \nearrow^{\exists} \mathcal{E}(f,f) \leq +\infty \ \forall f \in C(K).$$

$$\mathcal{F} := \{ f \in C(K) \mid \mathcal{E}(f, f) < +\infty \}$$

Then, $(\mathcal{E}, \mathcal{F})$ is a strong local regular Dirichlet form on $L^2(K; \lambda)$. (λ : the Hausdorff measure on K)

 $\rightsquigarrow \{X_t\}$: "Brownian motion" on K(invariant under scaling and isometric transformations)

Similar construction is valid for more general finitely ramified self-similar fractals.

Then, $d(x, y) = \sup\{f(y) - f(x) \mid f = \text{const.}\} = 0.$

(This is closely connected with the fact that the heat kernel density has a sub-Gaussian estimate.)

By taking different measures as λ , however, we have nontrivial quantities...

In many examples, $\mu_{\langle f \rangle} \perp \lambda$ (self-similar measure). Then, $\mathbf{d}(x, y) = \sup\{f(y) - f(x) \mid f = \text{const.}\} = 0$.

(This is closely connected with the fact that the heat kernel density has a sub-Gaussian estimate.)

By taking different measures as λ , however, we have nontrivial quantities...

In many examples, $\mu_{\langle f \rangle} \perp \lambda$ (self-similar measure). Then, $\mathbf{d}(x, y) = \sup\{f(y) - f(x) \mid f = \text{const.}\} = 0$.

(This is closely connected with the fact that the heat kernel density has a sub-Gaussian estimate.)

By taking different measures as λ , however, we have nontrivial quantities...

K: 2-dim. Sierpinski gasket

- $(\mathcal{E},\mathcal{F})$: the standard Dirichlet form on $L^2(K,\nu)$ with
- $\nu:=\mu_{\langle h_1
 angle}+\mu_{\langle h_2
 angle}$ (Kusuoka measure)
- $(h_i: a \text{ harmonic function}, \mathcal{E}(h_i, h_j) = \delta_{i,j})$
- Theorem (Kigami '93, '08, Kajino '12)
 (Ki) h: K → h(K) ⊂ ℝ² is homeomorphic;
 (Ka) The intrinsic distance d coincides with the geodesic distance ρ_h on h(K) by the identifying K and h(K);
 (Ki, Ka) The transition density p^ν_t(x, y) has a
 - Gaussian estimate w.r.t. ρ_h (= d);
- ► (Ki) The red line is the geodesic.

- K: 2-dim. Sierpinski gasket
- $(\mathcal{E},\mathcal{F})$: the standard Dirichlet form on $L^2(K,\nu)$ with
- $\nu:=\mu_{\langle h_1
 angle}+\mu_{\langle h_2
 angle}$ (Kusuoka measure)
- $(h_i: a \text{ harmonic function}, \mathcal{E}(h_i, h_j) = \delta_{i,j})$
- Theorem (Kigami '93, '08, Kajino '12)
 (Ki) h: K → h(K) ⊂ ℝ² is homeomorphic;
 (Ka) The intrinsic distance d coincides with the geodesic distance ρ_h on h(K) by the identifying K and h(K);
 (Ki, Ka) The transition density p^ν_t(x, y) has a x

7/20

 \mathbb{R}^2

h(K)

 $h = (h_1, h_2)$

- Gaussian estimate w.r.t. ρ_h (= d);
- ► (Ki) The red line is the geodesic.

Observation: an alternative expression of ρ_h

For a continuous curve $\gamma \colon [0,1] \to K$, the length $l_h(\gamma)$ of γ based on **h** is defined as

8/20

h(K)

$$l_{h}(\gamma) := \sup \left\{ \sum_{i=1}^{n} |h(\gamma(t_{i})) - h(\gamma(t_{i-1}))|_{\mathbb{R}^{2}}; \\ 0 = t_{0} < t_{1} < \cdots < t_{n} = 1 \right\}.$$

Then, by identifying K and h(K),

 $\rho_{h}(x, y) = \inf \left\{ l_{h}(\gamma) \middle| \begin{array}{l} \gamma \text{ is a continuous curve con-} \\ \text{necting } x \text{ and } y \end{array} \right\}$

In this expression, *h* does not need to be homeomorphic.

Observation: an alternative expression of ρ_h

For a continuous curve $\gamma : [0,1] \to K$, the length $l_h(\gamma)$ of γ based on h is defined as

8/20

h(K)

$$l_h(\gamma) := \sup \left\{ \sum_{i=1}^n |h(\gamma(t_i)) - h(\gamma(t_{i-1}))|_{\mathbb{R}^2}; 0 = t_0 < t_1 < \cdots < t_n = 1 \right\}.$$

Then, by identifying K and h(K),

 $\rho_{h}(x, y) = \inf \left\{ l_{h}(\gamma) \middle| \begin{array}{l} \gamma \text{ is a continuous curve con-} \\ \text{necting } x \text{ and } y \end{array} \right\}$

In this expression, \boldsymbol{h} does not need to be homeomorphic.

Brief formulation of the problem

$$(\mathcal{E},\mathcal{F}), \mathbf{h} = (h_1,\ldots,h_N) \in \mathcal{F}^N \cap C(K \to \mathbb{R}^N)$$
: given

 \mathbf{d}_{h} : the intrinsic distance based on $(\mathcal{E}, \mathcal{F})$ and

$$\nu := \mu_{\langle h_1 \rangle} + \cdots + \mu_{\langle h_N \rangle}$$

 ρ_h : the geodesic distance based on h

The relation between $\mathbf{d}_{\mathbf{h}}$ and $\rho_{\mathbf{h}}$, in particular when the underlying space has a fractal structure?

3. General framework

 (K, d_K) : a separable and compact metric space

 λ : a finite Borel measure on K

 $(\mathcal{E}, \mathcal{F})$: a strong local regular Dirichlet form on $L^2(K, \lambda)$ $N \in \mathbb{N}, h = (h_1, \dots, h_N) \in \mathcal{F}^N \cap C(K \to \mathbb{R}^N)$ $\nu := \mu_{\langle h \rangle} := \sum_{j=1}^N \mu_{\langle h_j \rangle}$

The intrinsic distance $d_h(x, y)$ based on $(\mathcal{E}, \mathcal{F})$ and h is defined as

$$\mathsf{d}_{h}(x,y) := \sup \left\{ f(y) - f(x) \middle| \begin{array}{l} f \in \mathcal{F} \cap C(K) \\ \text{and } \mu_{\langle f \rangle} \leq \mu_{\langle h \rangle} \end{array} \right\}.$$

3. General framework

 (K, d_K) : a separable and compact metric space

 λ : a finite Borel measure on K

 $(\mathcal{E}, \mathcal{F})$: a strong local regular Dirichlet form on $L^2(K, \lambda)$ $N \in \mathbb{N}, h = (h_1, \dots, h_N) \in \mathcal{F}^N \cap C(K \to \mathbb{R}^N)$ $\nu := \mu_{\langle h \rangle} := \sum_{j=1}^N \mu_{\langle h_j \rangle}$

The intrinsic distance $d_h(x, y)$ based on $(\mathcal{E}, \mathcal{F})$ and h is defined as

$$\mathbf{d}_{\mathbf{h}}(x,y) := \sup \left\{ f(y) - f(x) \middle| \begin{array}{l} f \in \mathcal{F} \cap C(K) \\ \text{and } \mu_{\langle f \rangle} \leq \mu_{\langle \mathbf{h} \rangle} \end{array} \right\}.$$

For a continuous curve $\gamma \in C([0,1] \to K)$, its length based on **h** is defined as

$$egin{aligned} l_{h}(\gamma) &:= \supiggl\{ \sum\limits_{i=1}^{n} ig| h(\gamma(t_{i})) - h(\gamma(t_{i-1})) ig|_{\mathbb{R}^{N}}; \ n \in \mathbb{N}, \ 0 &= t_{0} < t_{1} < \cdots < t_{n} = 1 iggr\}. \end{aligned}$$

The geodesic distance $\rho_{h}(x, y)$ based on **h** is defined as

$$\rho_{h}(x, y) = \inf \left\{ l_{h}(\gamma) \middle| \begin{array}{l} \gamma \text{ is a continuous curve} \\ \text{connecting } x \text{ and } y \end{array} \right\}$$

Problem: The relation between \mathbf{d}_{h} and ρ_{h} ?

Theorem 1 $\rho_h(x,y) \leq d_h(x,y)$ if the following hold:

- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of *K* such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in *K*;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;

(iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0.$

- (A2) $\mathcal{F} \subset C(K)$.
- (A3) $\mathcal{E}(f, f) = 0$ if and only if f is a constant function.

- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of *K* such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in *K*;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0.$

- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of *K* such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in *K*;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0.$

- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of *K* such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in *K*;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0.$

- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of *K* such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in *K*;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0.$

- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of *K* such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in *K*;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;
 - (iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0.$

Theorem 1 $\rho_h(x,y) \leq d_h(x,y)$ if the following hold:

- (A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of *K* such that
 - (i) $\bigcup_{m=0}^{\infty} V_m$ is dense in *K*;
 - (ii) For each $m, K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;

(iii) $\lim_{m\to\infty} \max_{\lambda\in\Lambda_m} \operatorname{diam} U_{\lambda} = 0.$

- (A2) $\mathcal{F} \subset C(K)$.
- (A3) $\mathcal{E}(f, f) = 0$ if and only if f is a constant function.

Theorem 2 $\rho_h(x,y) \ge d_h(x,y)$ if

- K: a 2-dimensional (generalized) Sierpinski gasket that is also a nested fractal;
- (λ : the normalized Hausdorff measure;)
- $(\mathcal{E}, \mathcal{F})$: the self-similar Dirichlet form associated with the Brownian motion on K;

► The harmonic structure associated with (*E*, *F*) is nondegenerate. (That is, for any nonconstant harmonic function *g*, *g* is not constant on any nonempty open sets.)

Theorem 2 $\rho_h(x,y) = \mathbf{d}_h(x,y)$ if

- K: a 2-dimensional (generalized) Sierpinski gasket that is also a nested fractal;
- (λ : the normalized Hausdorff measure;)
- $(\mathcal{E}, \mathcal{F})$: the self-similar Dirichlet form associated with the Brownian motion on K;

► The harmonic structure associated with (*E*, *F*) is nondegenerate. (That is, for any nonconstant harmonic function *g*, *g* is not constant on any nonempty open sets.) The nondegeneracy assumption holds for 2-dim. level l S. G. with $l \leq 50$ (by the numerical computation).

(level l S. G. with l = 2, 3, 4, 5, 10)

Remark Theorem 2 is valid under more general situations. Essential assumptions (for the current proof) are:

▶ #the vertex set = 3;

► The harmonic structure is near to symmetric.

The nondegeneracy assumption holds for 2-dim. level l S. G. with $l \leq 50$ (by the numerical computation).

(level l S. G. with l = 2, 3, 4, 5, 10)

Remark Theorem 2 is valid under more general situations. Essential assumptions (for the current proof) are:

- #the vertex set = 3;
- ► The harmonic structure is near to symmetric.

5. Idea of the proof of Theorem 1 ($\rho_h \leq d_h$)

In the case of Riemannian manifolds M, the proof is given as follows:

For $x \in M$, define $\rho(y)$ as the geodesic distance between x and $y \in M$. Then, ρ is Lipschitz and $|\nabla \rho| \leq 1$.

Therefore,
$$\rho(x, y) = \rho(y) - \rho(x) \le d(x, y)$$
.

In Theorem 1, the main part of the proof is to prove $\rho \in \mathcal{F}$ and $\mu_{\langle \rho \rangle} \leq \mu_{\langle h \rangle}$. This is done by the discrete approximation.

5. Idea of the proof of Theorem 1 ($\rho_h \leq d_h$)

In the case of Riemannian manifolds M, the proof is given as follows:

For $x \in M$, define $\rho(y)$ as the geodesic distance between x and $y \in M$. Then, ρ is Lipschitz and $|\nabla \rho| \leq 1$.

Therefore,
$$\rho(x,y) = \rho(y) - \rho(x) \le d(x,y)$$
.

In Theorem 1, the main part of the proof is to prove $\rho \in \mathcal{F}$ and $\mu_{\langle \rho \rangle} \leq \mu_{\langle h \rangle}$. This is done by the discrete approximation.

More precisely,

 $\triangleright \rho(y) := \rho_h(x, y)$; the distance function from $x \in K$ It is sufficient to prove that $\rho \in \mathcal{F}$ and $\mu_{\langle \rho \rangle} \leq \mu_{\langle h \rangle}$. \blacktriangleright Discrete approximation. Assume $x \in V_m$. $f^{(n)}(y) := \rho_{\mathbf{L}}^{(n)}(x,y), \quad y \in V_n, n \ge m;$ the discrete version of the geodesic distance V_n $|f^{(n)}(y) - f^{(n)}(z)| \leq |h(y) - h(z)|_{\mathbb{R}^N}, y, z \in V_n.$ (cont'd)

- $\rho(y) := \rho_h(x, y)$ • $f^{(n)}(y) := \rho_h^{(n)}(x, y), \quad y \in V_n, n \ge m$ $|f^{(n)}(y) - f^{(n)}(z)| \le |\mathbf{h}(y) - \mathbf{h}(z)|_{\mathbb{R}^N}, \quad y, z \in V_n$
- $g^{(n)}$: the harmonic extension of $f^{(n)}$ $\mu_{\langle g^{(n)} \rangle}(U_{\lambda}) \leq \mu_{\langle h \rangle}(U_{\lambda})$ for any U_{λ}
- ► $g^{(n(k))} \rightarrow \rho$ in \mathcal{F} and $\mu_{\langle \rho \rangle} \leq \mu_{\langle h \rangle}$
- For general $x \in K$, an argument of approximation is available.

6. Idea of the proof of Theorem 2 ($\rho_h \ge d_h$)

- Let $f \in \mathcal{F}$ with $\mu_{\langle f \rangle} \leq \mu_{\langle h \rangle}$, and take a continuous curve γ connecting x and y.
- ► It is sufficient to prove that $f(y) f(x) \le l_h(\gamma)$.
- ► $\exists M > 0, \forall \epsilon > 0$, we can take finitely many points $x_1, x_2, \ldots, x_M \in \bigcup_{m=0}^{\infty} V_m$ on the curve γ such that $f(x_{i+1}) f(x_i) \leq (1 + \epsilon) |\mathbf{h}(x_{i+1}) \mathbf{h}(x_i)|_{\mathbb{R}^N}$

for most of i (when x_i is a good point),

 $f(x_{i+1}) - f(x_i) \le M |\mathbf{h}(x_{i+1}) - \mathbf{h}(x_i)|_{\mathbb{R}^N}$ for all *i*.

6. Idea of the proof of Theorem 2 ($\rho_h \ge d_h$)

- Let $f \in \mathcal{F}$ with $\mu_{\langle f \rangle} \leq \mu_{\langle h \rangle}$, and take a continuous curve γ connecting x and y.
- ► It is sufficient to prove that $f(y) f(x) \le l_h(\gamma)$.
- ► $\exists M > 0, \forall \epsilon > 0$, we can take finitely many points $x_1, x_2, \dots, x_M \in \bigcup_{m=0}^{\infty} V_m$ on the curve γ such that $f(x_{i+1}) f(x_i) \leq (1+\epsilon) |\mathbf{h}(x_{i+1}) \mathbf{h}(x_i)|_{\mathbb{R}^N}$

for most of i (when x_i is a good point),

 $f(x_{i+1}) - f(x_i) \leq M |\mathbf{h}(x_{i+1}) - \mathbf{h}(x_i)|_{\mathbb{R}^N}$ for all i.

By summing up, $f(y) - f(x) \leq (1 + o(1))l_h(\gamma)$.

On the proof of $f(x_{i+1}) - f(x_i) \leq (1 + \epsilon) |\mathbf{h}(x_{i+1}) - \mathbf{h}(x_i)|_{\mathbb{R}^N}$ for most of *i*:

- A analog of " $|\nabla f| \le 1$ a.e. on domain $D \subset \mathbb{R}^d$ implies that f has local Lipschitz constant 1"
- The obstacle is that the "Riemaniann metric" on K is degenerate on many points; on "nondegenerate" points for h we have the above inequalty.
- The assumption that #the vertex set = 3 assures that, on each small cell, either of the vertices the curve passes is nondegenerate w.r.t. *k*.

On the proof of $f(x_{i+1}) - f(x_i) \le (1 + \epsilon) |\mathbf{h}(x_{i+1}) - \mathbf{h}(x_i)|_{\mathbb{R}^N}$ for most of *i*:

- A analog of " $|\nabla f| \leq 1$ a.e. on domain $D \subset \mathbb{R}^d$ implies that f has local Lipschitz constant 1"
- The obstacle is that the "Riemaniann metric" on K is degenerate on many points; on "nondegenerate" points for h we have the above inequalty.
- The assumption that #the vertex set = 3 assures that, on each small cell, either of the vertices the curve passes is nondegenerate w.r.t. *k*.

On the proof of $f(x_{i+1}) - f(x_i) \le (1 + \epsilon) |\mathbf{h}(x_{i+1}) - \mathbf{h}(x_i)|_{\mathbb{R}^N}$ for most of *i*:

- A analog of " $|\nabla f| \leq 1$ a.e. on domain $D \subset \mathbb{R}^d$ implies that f has local Lipschitz constant 1"
- The obstacle is that the "Riemaniann metric" on K is degenerate on many points; on "nondegenerate" points for h we have the above inequalty.
- The assumption that #the vertex set = 3 assures that, on each small cell, either of the vertices the curve passes is nondegenerate w.r.t. *h*.

On the proof of $f(x_{i+1}) - f(x_i) \leq (1 + \epsilon) |\mathbf{h}(x_{i+1}) - \mathbf{h}(x_i)|_{\mathbb{R}^N}$ for most of *i*:

- A analog of " $|\nabla f| \leq 1$ a.e. on domain $D \subset \mathbb{R}^d$ implies that f has local Lipschitz constant 1"
- The obstacle is that the "Riemaniann metric" on K is degenerate on many points; on "nondegenerate" points for h we have the above inequalty.
- The assumption that #the vertex set = 3 assures that, on each small cell, either of the vertices the curve passes is nondegenerate w.r.t. *h*.

U

The nondegeneracy condition is summarized as follows: u: function on V_0

^{$\exists 1$}v: the harmonic extesion of u to V_1 , that v = u on V_0 , and for all $x \in V_1 \setminus V_0$, $\sum_{y \sim x} (v(y) - v(x)) = 0$.

Condition: If u is not constant, then

v is not constant on every

level 4 gasket

20/20

It is conjectured that every level *1* gasket is nondegenerate.

(This is a problem of linear algebras.)

The nondegeneracy condition is summarized as follows: u: function on V_0

 $\exists 1 v$: the harmonic extession of u to V_1 , that is, v = u on V_0 , and for all $x \in V_1 \setminus V_0$, $\sum_{y \sim x} (v(y) - v(x)) = 0.$

Condition: If u is not constant, then v is not constant on every

- It is conjectured that every level *1* gasket is nondegenerate.
- (This is a problem of linear algebras.)

at is,

20/20

level 4 gasket $V_0 = \{\bullet\}$ $V_1 = \{\bullet, \bullet\}$

The nondegeneracy condition is summarized as follows: u: function on V_0

 $\exists^1 v$: the harmonic extession of u to V_1 , that is, v = u on V_0 , and for all $x \in V_1 \setminus V_0$, $\sum_{y \sim x} (v(y) - v(x)) = 0$. Condition: If u is not constant, then v is not constant on every

It is conjectured that every level *1* gasket is nondegenerate. (This is a problem of linear algebras.) level 4 gasket $V_0 = \{\bullet\}$ $V_1 = \{\bullet, \bullet\}$ 20/20

The nondegeneracy condition is summarized as follows: u: function on V_0

 $\exists^1 v$: the harmonic extession of u to V_1 , that is,

v = u on V_0 , and for all $x \in V_1 \setminus V_0$,

$$\sum_{y\sim x}(v(y)-v(x))=0.$$

Condition: If u is not constant, then

v is not constant on every

It is conjectured that every level *l* gasket is nondegenerate.

(This is a problem of linear algebras.)

level 4 gasket $V_0 = \{\bullet\}$ $V_1 = \{\bullet, \bullet\}$