
Geodesic distances and intrinsic distances
on some fractal sets

Masanori Hino (Kyoto Univ.)

6th International Conference on
Stochastic Analysis and Its Applications
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1. Introduction

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli–Mosco, Sturm etc.)

(K, λ): a locally compact, separable metric measure space

(E , F): a strong local regular Dirichlet form on L2(K; λ)
µ〈 f 〉: the energy measure of f ∈ F

When f is bounded,∫∫∫∫
K ϕdµ〈 f 〉 = 2E( f , fϕ) − E( f 2,ϕ) ∀ϕ∈F ∩ Cb(K).

If E( f , g) = 1
2

∫∫∫∫
RRRd(aij(x)∇ f (x), ∇g(x))RRRd dx,

then µ〈 f 〉(dx) = (aij(x)∇ f (x), ∇ f (x))RRRd dx.
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1. Introduction

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli–Mosco, Sturm etc.)

(K, λ): a locally compact, separable metric measure space

(E , F): a strong local regular Dirichlet form on L2(K; λ)

µ〈 f 〉: the energy measure of f ∈ F
d(x, y): the intrinsic distance

d(x, y) :=sup
{

f (y)− f (x)
f ∈ Floc ∩ C(K)
and µ〈 f〉 ≤λ

}
.

In this framework, various Gaussian estimates of the
transition density have been obtained.
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Question:

Is d identified with the geodesic distance (=shortest path
metric)?

In particular, what if K is a fractal set, which does not
have a (usual) differential structure?

But the straightforward formulation is not very useful as I
will explain...
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2. Canonical Dirichlet forms on typical self-
similar fractals

Case of the 2-dim. standard Sierpinski gasket

K ⊃ V2

Vn: nth level graph approximation

E(n)( f , f ) =
(

5
3

)n

∑
x,y∈Vn , x∼y

( f (x) − f (y))2
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E(n)( f , f ) ↗ ∃E( f , f ) ≤ +∞ ∀ f ∈ C(K).

F := { f ∈ C(K) | E( f , f ) < +∞}
Then, (E , F) is a strong local regular Dirichlet form on
L2(K; λ). (λ: the Hausdorff measure on K)

   {Xt}: “Brownian motion” on K
(invariant under scaling and isometric transformations)

Similar construction is valid for more general finitely
ramified self-similar fractals.
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In many examples, µ〈 f 〉 ⊥ λ (self-similar measure).
Then, d(x, y) = sup{ f (y) − f (x) | f = const.} = 0.

(This is closely connected with the fact that the heat
kernel density has a sub-Gaussian estimate.)

By taking different measures as λ, however, we have
nontrivial quantities...
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K: 2-dim. Sierpinski gasket

(E , F): the standard Dirichlet form on L2(K, ν) with
ν := µ〈h1〉 + µ〈h2〉 (Kusuoka measure)

(hi: a harmonic function, E(hi, hj) = δi,j)

Theorem (Kigami ’93, ’08, Kajino ’12)
I (Ki) hhh : K → hhh(K) ⊂ RRR2 is homeomorphic;
I (Ka) The intrinsic distance d coincides with the geodesic

distance ρhhh on hhh(K) by the identifying K and hhh(K);
I (Ki, Ka) The transition density pν

t (x, y) has a
Gaussian estimate w. r. t. ρhhh(= d);

I (Ki) The red line is the geodesic.
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K: 2-dim. Sierpinski gasket
hhh=(h1,h2)−−−−→

hhh(K)

RRR2

(E , F): the standard Dirichlet form on L2(K, ν) with
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Observation: an alternative expression of ρhhh

K hhh(K)

For a continuous curve γ : [0, 1] → K, the length lhhh(γ)
of γ based on hhh is defined as

lhhh(γ) := sup
{ n

∑
i=1

|hhh(γ(ti)) − hhh(γ(ti−1))|RRR2 ;

0 = t0 < t1 < · · · < tn = 1
}

.

Then, by identifying K and hhh(K),

ρhhh(x, y) = inf
{

lhhh(γ)
γ is a continuous curve con-
necting x and y

}
.

In this expression, hhh does not need to be homeomorphic.
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Brief formulation of the problem

(E , F), hhh = (h1, . . . , hN) ∈ F N ∩ C(K → RRRN): given

dhhh: the intrinsic distance based on (E , F) and
ν := µ〈h1〉 + · · · + µ〈hN〉

ρhhh: the geodesic distance based on hhh

The relation between dhhh and ρhhh, in particular when the
underlying space has a fractal structure?
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3. General framework

(K, dK): a separable and compact metric space
λ: a finite Borel measure on K
(E , F): a strong local regular Dirichlet form on L2(K, λ)
N ∈ NNN, hhh = (h1, . . . , hN) ∈ F N ∩ C(K → RRRN)

ν := µ〈hhh〉 :=
N

∑
j=1

µ〈hj〉

The intrinsic distance dhhh(x, y) based on (E , F) and hhh is
defined as

dhhh(x, y) := sup
{

f (y) − f (x)
f ∈ F ∩ C(K)
and µ〈 f 〉 ≤ µ〈hhh〉

}
.
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For a continuous curve γ ∈ C([0, 1] → K), its length
based on hhh is defined as

lhhh(γ) := sup
{ n

∑
i=1

|hhh(γ(ti)) − hhh(γ(ti−1))|RRRN ;

n ∈ NNN, 0 = t0 < t1 < · · · < tn = 1
}

.

The geodesic distance ρhhh(x, y) based on hhh is defined as

ρhhh(x, y) = inf
{

lhhh(γ)
γ is a continuous curve
connecting x and y

}
.

Problem: The relation between dhhh and ρhhh?
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4. Results

Theorem 1 ρhhh(x, y) ≤ dhhh(x, y) if the following hold:

(A1) (Finitely ramified cell structure) There exists an
increasing sequence of finite subsets {Vm}∞

m=0 of
K such that

(i)
∪∞

m=0 Vm is dense in K;

(ii) For each m, K \ Vm is decomposed as a finite
number of connected components {Uλ}λ∈Λm ;

(iii) limm→∞ maxλ∈Λm diam Uλ = 0.
(A2) F ⊂ C(K).
(A3) E( f , f ) = 0 if and only if f is a constant function.
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Theorem 2 ρhhh(x, y) ≥ dhhh(x, y) if

I K: a 2-dimensional (generalized) Sierpinski gasket
that is also a nested fractal;

I (λ: the normalized Hausdorff measure;)

I (E , F): the self-similar Dirichlet form
associated with the Brownian motion on K;

I hhh = (h1, . . . , hd); each hi is a harmonic function;

I The harmonic structure associated with (E , F) is
nondegenerate. (That is, for any nonconstant
harmonic function g, g is not constant on any
nonempty open sets.)
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The nondegeneracy assumption holds for 2-dim. level l
S. G. with l ≤ 50 (by the numerical computation).

(level l S. G. with l = 2, 3, 4, 5, 10)

Remark Theorem 2 is valid under more general
situations. Essential assumptions (for the current proof)
are:

I #the vertex set = 3;

I The harmonic structure is near to symmetric.
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5. Idea of the proof of Theorem 1 (ρhhh ≤ dhhh)
In the case of Riemannian manifolds M, the proof is
given as follows:

For x ∈ M, define ρ(y) as the geodesic distance
between x and y ∈ M. Then, ρ is Lipschitz and
|∇ρ| ≤ 1.

Therefore, ρ(x, y) = ρ(y) − ρ(x) ≤ d(x, y).

In Theorem 1, the main part of the proof is to prove
ρ ∈ F and µ〈ρ〉 ≤ µ〈hhh〉. This is done by the discrete
approximation.
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5. Idea of the proof of Theorem 1 (ρhhh ≤ dhhh)（cont’d） 16/20

More precisely,

I ρ(y) := ρhhh(x, y); the distance function from x ∈ K

It is sufficient to prove that ρ ∈ F and µ〈ρ〉 ≤ µ〈hhh〉.

I Discrete approximation. Assume x ∈ Vm.

f (n)(y) := ρ
(n)
hhh (x, y), y ∈ Vn, n ≥ m;

the discrete version of the geodesic distance

x

y zVn

| f (n)(y)− f (n)(z)| ≤ |hhh(y)−hhh(z)|RRRN , y, z∈Vn.
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(cont’d)

x

y zVn Uλ

• ρ(y) := ρhhh(x, y)

• f (n)(y) := ρ
(n)
hhh (x, y), y ∈ Vn, n ≥ m

| f (n)(y) − f (n)(z)| ≤ |hhh(y) − hhh(z)|RRRN , y, z∈Vn

I g(n): the harmonic extension of f (n)

µ〈g(n)〉(Uλ) ≤ µ〈hhh〉(Uλ) for any Uλ

I g(n(k)) → ρ in F and µ〈ρ〉 ≤ µ〈hhh〉

I For general x ∈ K, an argument of approximation is
available.
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6. Idea of the proof of Theorem 2 (ρhhh ≥ dhhh)
I Let f ∈ F with µ〈 f 〉 ≤ µ〈hhh〉, and take a continuous

curve γ connecting x and y.

I It is sufficient to prove that f (y) − f (x) ≤ lhhh(γ).

I ∃M > 0, ∀ε > 0, we can take finitely many points
x1, x2, . . . , xM ∈ ∪∞

m=0 Vm on the curve γ such that
f (xi+1)− f (xi)≤(1 + ε)|hhh(xi+1) − hhh(xi)|RRRN

for most of i (when xi is a good point),

f (xi+1)− f (xi)≤ M|hhh(xi+1) − hhh(xi)|RRRN for all i.

x = x0
x1 x2 · · ·

y = xM
γ
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for most of i (when xi is a good point),

f (xi+1)− f (xi)≤ M|hhh(xi+1) − hhh(xi)|RRRN for all i.

By summing up, f (y) − f (x) ≤ (1 + o(1))lhhh(γ).



6. Idea of the proof of Theorem 2 (ρhhh ≥ dhhh)（cont’d） 19/20

On the proof of
f (xi+1)− f (xi)≤(1 + ε)|hhh(xi+1) − hhh(xi)|RRRN

for most of i:
• A analog of “|∇ f | ≤ 1 a.e. on domain D ⊂ RRRd

implies that f has local Lipschitz constant 1”

• The obstacle is that the “Riemaniann metric” on K is
degenerate on many points; on “nondegenerate”
points for hhh we have the above inequalty.

• The assumption that #the vertex set = 3
assures that, on each small cell, either
of the vertices the curve passes is
nondegenerate w.r.t. hhh.
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for most of i:
• A analog of “|∇ f | ≤ 1 a.e. on domain D ⊂ RRRd

implies that f has local Lipschitz constant 1”

• The obstacle is that the “Riemaniann metric” on K is
degenerate on many points; on “nondegenerate”
points for hhh we have the above inequalty.

• The assumption that #the vertex set = 3

x

y
assures that, on each small cell, either
of the vertices the curve passes is
nondegenerate w.r.t. hhh.
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7. On the nondegeneracy condition

The nondegeneracy condition is summarized as follows:

level 4 gasket

u: function on V0

∃1v: the harmonic extesion of u to V1, that is,
v = u on V0, and for all x ∈ V1 \ V0,
∑∑∑y∼x(v(y) − v(x)) = 0.

Condition: If u is not constant, then
v is not constant on every .

It is conjectured that every level l gasket
is nondegenerate.
(This is a problem of linear algebras.)
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7. On the nondegeneracy condition

The nondegeneracy condition is summarized as follows:

level 4 gasket
V0 = {•}
V1 = {•, •}

u: function on V0

∃1v: the harmonic extesion of u to V1, that is,
v = u on V0, and for all x ∈ V1 \ V0,
∑∑∑y∼x(v(y) − v(x)) = 0.

Condition: If u is not constant, then
v is not constant on every .

It is conjectured that every level l gasket
is nondegenerate.
(This is a problem of linear algebras.)


