Geodesic distances and intrinsic distances on some fractal sets

Masanori Hino (Kyoto Univ.)

6th International Conference on Stochastic Analysis and Its Applications

Będlewo, September 10, 2012
1. Introduction

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli–Mosco, Sturm etc.)

\((K, \lambda)\): a locally compact, separable metric measure space

\((\mathcal{E}, \mathcal{F})\): a strong local regular Dirichlet form on \(L^2(K; \lambda)\)

\(\mu_{\langle f \rangle}\): the energy measure of \(f \in \mathcal{F}\)

When \(f\) is bounded,

\[\int_K \varphi \, d\mu_{\langle f \rangle} = 2\mathcal{E}(f, f\varphi) - \mathcal{E}(f^2, \varphi) \quad \forall \varphi \in \mathcal{F} \cap \mathcal{C}_b(K).\]

If \(\mathcal{E}(f, g) = \frac{1}{2} \int_{\mathbb{R}^d} (a_{ij}(x) \nabla f(x), \nabla g(x))_{\mathbb{R}^d} \, dx,\)

then \(\mu_{\langle f \rangle}(dx) = (a_{ij}(x) \nabla f(x), \nabla f(x))_{\mathbb{R}^d} \, dx.\)
1. Introduction

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli–Mosco, Sturm etc.)

\((K, \lambda)\): a locally compact, separable metric measure space

\((\mathcal{E}, \mathcal{F})\): a strong local regular Dirichlet form on \(L^2(K; \lambda)\)

\(\mu(\langle f \rangle)\): the energy measure of \(f \in \mathcal{F}\)

When \(f\) is bounded,

\[
\int_K \varphi \, d\mu(\langle f \rangle) = 2\mathcal{E}(f, f\varphi) - \mathcal{E}(f^2, \varphi) \quad \forall \varphi \in \mathcal{F} \cap C_b(K).
\]

If \(\mathcal{E}(f, g) = \frac{1}{2} \int_{\mathbb{R}^d} (a_{ij}(x) \nabla f(x), \nabla g(x))_{\mathbb{R}^d} \, dx\),
then \(\mu(\langle f \rangle) (dx) = (a_{ij}(x) \nabla f(x), \nabla f(x))_{\mathbb{R}^d} \, dx\).
1. Introduction

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli–Mosco, Sturm etc.)

(K, λ): a locally compact, separable metric measure space

$(\mathcal{E}, \mathcal{F})$: a strong local regular Dirichlet form on $L^2(K; \lambda)$

$\mu_{\langle f \rangle}$: the energy measure of $f \in \mathcal{F}$

When f is bounded,

$$\int_K \varphi \, d\mu_{\langle f \rangle} = 2\mathcal{E}(f, f\varphi) - \mathcal{E}(f^2, \varphi) \quad \forall \varphi \in \mathcal{F} \cap C_b(K).$$

If $\mathcal{E}(f, g) = \frac{1}{2} \int_{\mathbb{R}^d} (a_{ij}(x) \nabla f(x), \nabla g(x))_{\mathbb{R}^d} \, dx$,
then $\mu_{\langle f \rangle}(dx) = (a_{ij}(x) \nabla f(x), \nabla f(x))_{\mathbb{R}^d} \, dx$.
1. Introduction

Intrinsic distance in the framework of Dirichlet forms (cf. Biloli–Mosco, Sturm etc.)

\((K, \lambda)\): a locally compact, separable metric measure space

\((\mathcal{E}, \mathcal{F})\): a strong local regular Dirichlet form on \(L^2(K; \lambda)\)

\(\mu(f)\): the energy measure of \(f \in \mathcal{F}\)

\(d(x, y)\): the intrinsic distance

\[
d(x, y) := \sup \left\{ f(y) - f(x) \middle| f \in \mathcal{F}_{\text{loc}} \cap C(K), \text{ and } \mu(f) \leq \lambda \right\}.
\]

In this framework, various Gaussian estimates of the transition density have been obtained.
1. Introduction

Intrinsic distance in the framework of Dirichlet forms (cf. Biloli–Mosco, Sturm etc.)

\((K, \lambda)\): a locally compact, separable metric measure space

\((\mathcal{E}, \mathcal{F})\): a strong local regular Dirichlet form on \(L^2(K; \lambda)\)

\(\mu_{\langle f \rangle}\): the energy measure of \(f \in \mathcal{F}\)

\(d(x, y)\): the intrinsic distance

\[d(x, y) := \sup \left\{ f(y) - f(x) \middle| f \in \mathcal{F}_{\text{loc}} \cap C(K) \land \mu_{\langle f \rangle} \leq \lambda \right\}. \]

In this framework, various Gaussian estimates of the transition density have been obtained.
Question:

Is d identified with the **geodesic distance** (=shortest path metric)?

In particular, what if K is a fractal set, which does not have a (usual) differential structure?

But the straightforward formulation is not very useful as I will explain...
Question:

Is d identified with the geodesic distance (=shortest path metric)?

In particular, what if K is a fractal set, which does not have a (usual) differential structure?

But the straightforward formulation is not very useful as I will explain...
2. Canonical Dirichlet forms on typical self-similar fractals

Case of the 2-dim. standard Sierpinski gasket

\[K \supset V_2 \]

\[V_n: \text{nth level graph approximation} \]

\[\mathcal{E}^{(n)}(f,f) = \left(\frac{5}{3} \right)^n \sum_{x,y \in V_n, x \sim y} (f(x) - f(y))^2 \]
2. Canonical Dirichlet forms on typical self-similar fractals

Case of the 2-dim. standard Sierpinski gasket

\[K \supset \bigcup_{n} V_n: \text{nth level graph approximation} \]

\[\mathcal{E}(f, f) = \left(\frac{5}{3} \right)^n \sum_{x, y \in V_n, x \sim y} (f(x) - f(y))^2 \]

\[\text{scaling factor} \]
$E^{(n)}(f,f) / \exists E(f,f) \leq +\infty \ \forall f \in C(K)$.

$\mathcal{F} := \{ f \in C(K) \mid E(f,f) < +\infty \}$

Then, $(\mathcal{E}, \mathcal{F})$ is a strong local regular Dirichlet form on $L^2(K;\lambda)$. (λ: the Hausdorff measure on K)

$\{X_t\}$: “Brownian motion” on K

(invariant under scaling and isometric transformations)

Similar construction is valid for more general finitely ramified self-similar fractals.
2. Canonical Dirichlet forms on typical self-similar fractals (cont’d)

\[E^{(n)}(f, f) \nearrow \exists E(f, f) \leq +\infty \quad \forall f \in C(K). \]

\[\mathcal{F} := \{ f \in C(K) \mid E(f, f) < +\infty \} \]

Then, \((\mathcal{E}, \mathcal{F}) \) is a strong local regular Dirichlet form on \(L^2(K; \lambda) \). (\(\lambda \): the Hausdorff measure on \(K \))

\(\sim \{X_t\} \): “Brownian motion” on \(K \)

(invariant under scaling and isometric transformations)

Similar construction is valid for more general finitely ramified self-similar fractals.
In many examples, $\mu(f) \perp \lambda$ (self-similar measure). Then, $d(x, y) = \sup\{f(y) - f(x) \mid f = \text{const.}\} = 0$.

(This is closely connected with the fact that the heat kernel density has a sub-Gaussian estimate.)

By taking different measures as λ, however, we have nontrivial quantities...
In many examples, $\mu\langle f \rangle \perp \lambda$ (self-similar measure). Then, $d(x, y) = \sup \{ f(y) - f(x) \mid f = \text{const.} \} = 0$.

(This is closely connected with the fact that the heat kernel density has a sub-Gaussian estimate.)

By taking different measures as λ, however, we have nontrivial quantities...
In many examples, \(\mu \langle f \rangle \perp \lambda \) (self-similar measure). Then,
\[
\text{d}(x, y) = \sup \{ f(y) - f(x) \mid f = \text{const.} \} = 0.
\]
(This is closely connected with the fact that the heat kernel density has a sub-Gaussian estimate.)

By taking different measures as \(\lambda \), however, we have nontrivial quantities...
K: 2-dim. Sierpinski gasket

$(\mathcal{E}, \mathcal{F})$: the standard Dirichlet form on $L^2(K, \nu)$ with

$\nu := \mu_{\langle h_1 \rangle} + \mu_{\langle h_2 \rangle}$ (Kusuoka measure)

(h_i: a harmonic function, $\mathcal{E}(h_i, h_j) = \delta_{i,j}$)

Theorem (Kigami '93, '08, Kajino '12)

- (Ki) $h: K \to h(K) \subset \mathbb{R}^2$ is homeomorphic;
- (Ka) The intrinsic distance d coincides with the geodesic distance ρ_h on $h(K)$ by the identifying K and $h(K)$;
- (Ki, Ka) The transition density $p^\nu_t(x, y)$ has a Gaussian estimate w.r.t. $\rho_h (= d)$;
- (Ki) The red line is the geodesic.
2. Canonical Dirichlet forms on typical self-similar fractals (cont’d)

K: 2-dim. Sierpinski gasket

$(\mathcal{E}, \mathcal{F})$: the standard Dirichlet form on $L^2(K, \nu)$ with

$\nu := \mu_{\langle h_1 \rangle} + \mu_{\langle h_2 \rangle}$ (Kusuoka measure)

$(h_i$: a harmonic function, $\mathcal{E}(h_i, h_j) = \delta_{i,j})$

Theorem (Kigami ’93, ’08, Kajino ’12)

- (Ki) $h: K \rightarrow h(K) \subset \mathbb{R}^2$ is homeomorphic;
- (Ka) The intrinsic distance d coincides with the geodesic distance ρ_h on $h(K)$ by the identifying K and $h(K)$;
- (Ki, Ka) The transition density $p_{t}^{\nu}(x, y)$ has a Gaussian estimate w. r. t. $\rho_h (= d)$;
- (Ki) The red line is the geodesic.
Observation: an alternative expression of ρ_h

For a continuous curve $\gamma: [0, 1] \to K$, the length $l_h(\gamma)$ of γ based on h is defined as

$$l_h(\gamma) := \sup \left\{ \sum_{i=1}^{n} |h(\gamma(t_i)) - h(\gamma(t_{i-1}))|_{\mathbb{R}^2}; 0 = t_0 < t_1 < \cdots < t_n = 1 \right\}.$$

Then, by identifying K and $h(K)$,

$$\rho_h(x, y) = \inf \left\{ l_h(\gamma) \mid \gamma \text{ is a continuous curve connecting } x \text{ and } y \right\}.$$

In this expression, h does not need to be homeomorphic.
Observation: an alternative expression of ρ_h

For a continuous curve $\gamma: [0, 1] \rightarrow K$, the length $l_h(\gamma)$ of γ based on h is defined as

$$l_h(\gamma) := \sup \left\{ \sum_{i=1}^{n} |h(\gamma(t_i)) - h(\gamma(t_{i-1}))|_{\mathbb{R}^2} : 0 = t_0 < t_1 < \cdots < t_n = 1 \right\}.$$

Then, by identifying K and $h(K)$,

$$\rho_h(x, y) = \inf \left\{ l_h(\gamma) \left| \gamma \text{ is a continuous curve connecting } x \text{ and } y \right. \right\}.$$

In this expression, h does not need to be homeomorphic.
Brief formulation of the problem

\((\mathcal{E}, \mathcal{F}), h = (h_1, \ldots, h_N) \in \mathcal{F}^N \cap C(K \to \mathbb{R}^N)\): given \(d_h\): the intrinsic distance based on \((\mathcal{E}, \mathcal{F})\) and

\[\nu := \mu\langle h_1 \rangle + \cdots + \mu\langle h_N \rangle \]

\(\rho_h\): the geodesic distance based on \(h\)

The relation between \(d_h\) and \(\rho_h\), in particular when the underlying space has a fractal structure?
3. General framework

\((K, d_K)\): a separable and compact metric space

\(\lambda\): a finite Borel measure on \(K\)

\((\mathcal{E}, \mathcal{F})\): a strong local regular Dirichlet form on \(L^2(K, \lambda)\)

\(N \in \mathbb{N}, \ h = (h_1, \ldots, h_N) \in \mathcal{F}^N \cap C(K \to \mathbb{R}^N)\)

\(\nu := \mu(h) := \sum_{j=1}^{N} \mu(h_j)\)

The intrinsic distance \(d_h(x, y)\) based on \((\mathcal{E}, \mathcal{F})\) and \(h\) is defined as

\[d_h(x, y) := \sup \left\{ f(y) - f(x) \ \bigg| \ f \in \mathcal{F} \cap C(K) \text{ and } \mu(f) \leq \mu(h) \right\}.\]
3. General framework

\((K, d_K)\): a separable and compact metric space

\(\lambda\): a finite Borel measure on \(K\)

\((\mathcal{E}, \mathcal{F})\): a strong local regular Dirichlet form on \(L^2(K, \lambda)\)

\(N \in \mathbb{N}, \ h = (h_1, \ldots, h_N) \in \mathcal{F}^N \cap C(K \to \mathbb{R}^N)\)

\(v := \mu \langle h \rangle := \sum_{j=1}^{N} \mu \langle h_j \rangle\)

The intrinsic distance \(d_h(x, y)\) based on \((\mathcal{E}, \mathcal{F})\) and \(h\) is defined as

\[d_h(x, y) := \sup \left\{ f(y) - f(x) \left| f \in \mathcal{F} \cap C(K) \text{ and } \mu \langle f \rangle \leq \mu \langle h \rangle \right. \right\} .\]
For a continuous curve \(\gamma \in C([0, 1] \rightarrow K) \), its length based on \(h \) is defined as

\[
 l_h(\gamma) := \sup \left\{ \sum_{i=1}^{n} |h(\gamma(t_i)) - h(\gamma(t_{i-1}))| \right\}_{\mathbb{R}^N},
\]

where \(n \in \mathbb{N}, 0 = t_0 < t_1 < \cdots < t_n = 1 \).

The geodesic distance \(\rho_h(x, y) \) based on \(h \) is defined as

\[
 \rho_h(x, y) = \inf \left\{ l_h(\gamma) \mid \gamma \text{ is a continuous curve connecting } x \text{ and } y \right\}.
\]

Problem: The relation between \(d_h \) and \(\rho_h \)?
4. Results

Theorem 1 \(\rho_h(x, y) \leq d_h(x, y) \) if the following hold:

(A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets \(\{V_m\}_{m=0}^{\infty} \) of \(K \) such that

(i) \(\bigcup_{m=0}^{\infty} V_m \) is dense in \(K \);

(ii) For each \(m \), \(K \setminus V_m \) is decomposed as a finite number of connected components \(\{U_\lambda\}_{\lambda \in \Lambda_m} \);

(iii) \(\lim_{m \to \infty} \max_{\lambda \in \Lambda_m} \text{diam } U_\lambda = 0 \).

(A2) \(\mathcal{F} \subset C(K) \).

(A3) \(\mathcal{E}(f, f) = 0 \) if and only if \(f \) is a constant function.
4. Results

Theorem 1 \(\rho_h(x, y) \leq d_h(x, y) \) if the following hold:

(A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets \(\{ V_m \}_{m=0}^{\infty} \) of \(K \) such that

(i) \(\bigcup_{m=0}^{\infty} V_m \) is dense in \(K \);

(ii) For each \(m \), \(K \setminus V_m \) is decomposed as a finite number of connected components \(\{ U_\lambda \}_{\lambda \in \Lambda_m} \);

(iii) \(\lim_{m \to \infty} \max_{\lambda \in \Lambda_m} \text{diam} U_\lambda = 0 \).
4. Results

Theorem 1 \(\rho_h(x, y) \leq d_h(x, y) \) if the following hold:

(A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets \(\{V_m\}_{m=0}^{\infty} \) of \(K \) such that

(i) \(\bigcup_{m=0}^{\infty} V_m \) is dense in \(K \);

(ii) For each \(m \), \(K \setminus V_m \) is decomposed as a finite number of connected components \(\{U_\lambda\}_{\lambda \in \Lambda_m} \);

(iii) \(\lim_{m \to \infty} \max_{\lambda \in \Lambda_m} \text{diam } U_\lambda = 0. \)
4. Results

Theorem 1 $\rho_h(x, y) \leq d_h(x, y)$ if the following hold:

(A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of K such that

(i) $\bigcup_{m=0}^{\infty} V_m$ is dense in K;
(ii) For each m, $K \setminus V_m$ is decomposed as a finite number of connected components $\{U_\lambda\}_{\lambda \in \Lambda_m}$;

(iii) $\lim_{m \to \infty} \max_{\lambda \in \Lambda_m} \text{diam } U_\lambda = 0.$
4. Results

Theorem 1 $\rho_h(x, y) \leq d_h(x, y)$ if the following hold:

(A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets $\{V_m\}_{m=0}^{\infty}$ of K such that

(i) $\bigcup_{m=0}^{\infty} V_m$ is dense in K;

(ii) For each m, $K \setminus V_m$ is decomposed as a finite number of connected components $\{U_{\lambda}\}_{\lambda \in \Lambda_m}$;

(iii) $\lim_{m \to \infty} \max_{\lambda \in \Lambda_m} \text{diam } U_{\lambda} = 0$.

\[V_2 \]

\[\begin{array}{cccc}
V_0 & V_1 & V_2 & V_3 \\
\end{array} \]
4. Results

Theorem 1 \(\rho_h(x, y) \leq d_h(x, y) \) if the following hold:

(A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets \(\{V_m\}_m=0^{\infty} \) of \(K \) such that

(i) \(\bigcup_{m=0}^{\infty} V_m \) is dense in \(K \);

(ii) For each \(m \), \(K \setminus V_m \) is decomposed as a finite number of connected components \(\{U_\lambda\}_{\lambda \in \Lambda_m} \);

(iii) \(\lim_{m \to \infty} \max_{\lambda \in \Lambda_m} \text{diam } U_\lambda = 0 \).
4. Results

Theorem 1 \(\rho_h(x, y) \leq d_h(x, y) \) if the following hold:

(A1) (Finitely ramified cell structure) There exists an increasing sequence of finite subsets \(\{V_m\}_{m=0}^\infty \) of \(K \) such that

(i) \(\bigcup_{m=0}^\infty V_m \) is dense in \(K \);
(ii) For each \(m \), \(K \setminus V_m \) is decomposed as a finite number of connected components \(\{U_\lambda\}_{\lambda \in \Lambda_m} \);
(iii) \(\lim_{m \to \infty} \max_{\lambda \in \Lambda_m} \text{diam } U_\lambda = 0 \).

(A2) \(\mathcal{F} \subset C(K) \).

(A3) \(E(f, f) = 0 \) if and only if \(f \) is a constant function.
Theorem 2 \(\rho_h(x, y) \geq d_h(x, y) \) if

- \(K \): a 2-dimensional (generalized) Sierpinski gasket that is also a nested fractal;
- \((\lambda: \text{the normalized Hausdorff measure;}) \)
- \((\mathcal{E}, \mathcal{F}) \): the self-similar Dirichlet form associated with the Brownian motion on \(K \);
- \(h = (h_1, \ldots, h_d) \); each \(h_i \) is a harmonic function;
- The harmonic structure associated with \((\mathcal{E}, \mathcal{F}) \) is nondegenerate. (That is, for any nonconstant harmonic function \(g \), \(g \) is not constant on any nonempty open sets.)
Theorem 2 \(\rho_h(x, y) = d_h(x, y) \) if

- \(K \): a 2-dimensional (generalized) Sierpinski gasket that is also a nested fractal;
- \(\lambda \): the normalized Hausdorff measure;
- \((\mathcal{E}, \mathcal{F}) \): the self-similar Dirichlet form associated with the Brownian motion on \(K \);
- \(h = (h_1, \ldots, h_d) \); each \(h_i \) is a harmonic function;
- The harmonic structure associated with \((\mathcal{E}, \mathcal{F}) \) is nondegenerate. (That is, for any nonconstant harmonic function \(g \), \(g \) is not constant on any nonempty open sets.)
The nondegeneracy assumption holds for 2-dim. level l S. G. with $l \leq 50$ (by the numerical computation).

Remark Theorem 2 is valid under more general situations. Essential assumptions (for the current proof) are:

- #the vertex set $= 3$;
- The harmonic structure is near to symmetric.
The nondegeneracy assumption holds for 2-dim. level l S. G. with $l \leq 50$ (by the numerical computation).

Remark Theorem 2 is valid under more general situations. Essential assumptions (for the current proof) are:

- #the vertex set $= 3$;
- The harmonic structure is near to symmetric.
5. Idea of the proof of Theorem 1 \((\rho_h \leq d_h)\)

In the case of Riemannian manifolds \(M\), the proof is given as follows:

For \(x \in M\), define \(\rho(y)\) as the geodesic distance between \(x\) and \(y \in M\). Then, \(\rho\) is Lipschitz and \(|\nabla \rho| \leq 1\).

Therefore, \(\rho(x, y) = \rho(y) - \rho(x) \leq d(x, y)\).

In Theorem 1, the main part of the proof is to prove \(\rho \in \mathcal{F}\) and \(\mu(\rho) \leq \mu(h)\). This is done by the discrete approximation.
5. Idea of the proof of Theorem 1 \((\rho_h \leq d_h)\)

In the case of Riemannian manifolds \(M\), the proof is given as follows:

For \(x \in M\), define \(\rho (y)\) as the geodesic distance between \(x\) and \(y \in M\). Then, \(\rho\) is Lipschitz and \(|\nabla \rho| \leq 1\).

Therefore, \(\rho (x, y) = \rho (y) - \rho (x) \leq d (x, y)\).

In Theorem 1, the main part of the proof is to prove \(\rho \in \mathcal{F}\) and \(\mu_{\langle \rho \rangle} \leq \mu_{\langle h \rangle}\). This is done by the discrete approximation.
More precisely,

- \(\rho(y) := \rho_h(x, y) \); the distance function from \(x \in K \)
 It is sufficient to prove that \(\rho \in \mathcal{F} \) and \(\mu(\rho) \leq \mu(\nu_h) \).

- Discrete approximation. Assume \(x \in V_m \).
 \[
f^{(n)}(y) := \rho_h^{(n)}(x, y), \quad y \in V_n, n \geq m;
 \]
 the discrete version of the geodesic distance
 \[
 |f^{(n)}(y) - f^{(n)}(z)| \leq |h(y) - h(z)|_{\mathbb{R}^N}, \quad y, z \in V_n.
 \]
5. Idea of the proof of Theorem 1 \((\rho_h \leq d_h)\) (cont’d)

(cont’d)

- \(\rho(y) := \rho_h(x, y)\)
- \(f^{(n)}(y) := \rho^{(n)}_h(x, y), \ y \in V_n, n \geq m\)

\[
|f^{(n)}(y) - f^{(n)}(z)| \leq |h(y) - h(z)|_{\mathbb{R}^N}, \ y, z \in V_n
\]

- \(g^{(n)}\): the harmonic extension of \(f^{(n)}\)

\[
\mu\langle g^{(n)} \rangle(U_\lambda) \leq \mu\langle h \rangle(U_\lambda) \text{ for any } U_\lambda
\]

- \(g^{(n(k))} \to \rho \text{ in } \mathcal{F} \) and \(\mu\langle \rho \rangle \leq \mu\langle h \rangle\)

- For general \(x \in K\), an argument of approximation is available.
6. Idea of the proof of Theorem 2 \((\rho_h \geq d_h)\)

- Let \(f \in \mathcal{F}\) with \(\mu_{\langle f \rangle} \leq \mu_{\langle h \rangle}\), and take a continuous curve \(\gamma\) connecting \(x\) and \(y\).

- It is sufficient to prove that \(f(y) - f(x) \leq l_h(\gamma)\).

- \(\exists M > 0, \forall \epsilon > 0\), we can take finitely many points \(x_1, x_2, \ldots, x_M \in \bigcup_{m=0}^{\infty} V_m\) on the curve \(\gamma\) such that

 \[f(x_{i+1}) - f(x_i) \leq (1 + \epsilon) |h(x_{i+1}) - h(x_i)|_{\mathbb{R}^N}\]

 for most of \(i\) (when \(x_i\) is a good point),

 \[f(x_{i+1}) - f(x_i) \leq M |h(x_{i+1}) - h(x_i)|_{\mathbb{R}^N}\]

 for all \(i\).
6. Idea of the proof of Theorem 2 ($\rho_h \geq d_h$)

- Let $f \in \mathcal{F}$ with $\mu\langle f \rangle \leq \mu\langle h \rangle$, and take a continuous curve γ connecting x and y.

- It is sufficient to prove that $f(y) - f(x) \leq l_h(\gamma)$.

- $\exists M > 0, \forall \epsilon > 0$, we can take finitely many points $x_1, x_2, \ldots, x_M \in \bigcup_{m=0}^{\infty} V_m$ on the curve γ such that

 $$f(x_{i+1}) - f(x_i) \leq (1 + \epsilon)|h(x_{i+1}) - h(x_i)|_{\mathbb{R}^N}$$

 for most of i (when x_i is a good point),

 $$f(x_{i+1}) - f(x_i) \leq M|h(x_{i+1}) - h(x_i)|_{\mathbb{R}^N}$$

 for all i.

By summing up, $f(y) - f(x) \leq (1 + o(1))l_h(\gamma)$.
On the proof of
\[f(x_{i+1}) - f(x_i) \leq (1 + \epsilon) |h(x_{i+1}) - h(x_i)|_{\mathbb{R}^N} \]
for most of \(i \):

- A analog of "\(|\nabla f| \leq 1 \) a.e. on domain \(D \subset \mathbb{R}^d \) implies that \(f \) has local Lipschitz constant 1"
- The obstacle is that the "Riemaniann metric" on \(K \) is degenerate on many points; on "nondegenerate" points for \(h \) we have the above inequality.
- The assumption that \#the vertex set = 3 assures that, on each small cell, either of the vertices the curve passes is nondegenerate w.r.t. \(h \).
On the proof of
\[f(x_{i+1}) - f(x_i) \leq (1 + \epsilon) |h(x_{i+1}) - h(x_i)|_{\mathbb{R}^N} \]
for most of \(i \):

- A analog of “\(|\nabla f| \leq 1\) a.e. on domain \(D \subset \mathbb{R}^d \) implies that \(f \) has local Lipschitz constant 1”

- The obstacle is that the “Riemannian metric” on \(K \) is degenerate on many points; on “nondegenerate” points for \(h \) we have the above inequality.

- The assumption that \#the vertex set = 3 assures that, on each small cell, either of the vertices the curve passes is nondegenerate w.r.t. \(h \).
On the proof of
\[f(x_{i+1}) - f(x_i) \leq (1 + \epsilon)|h(x_{i+1}) - h(x_i)|_{\mathbb{R}^N} \]
for most of \(i \):

- A analog of “\(|\nabla f| \leq 1\) a.e. on domain \(D \subset \mathbb{R}^d\) implies that \(f \) has local Lipschitz constant 1”

- The obstacle is that the “Riemaniann metric” on \(K \) is degenerate on many points; on “nondegenerate” points for \(h \) we have the above inequality.

- The assumption that #the vertex set = 3 assures that, on each small cell, either of the vertices the curve passes is nondegenerate w.r.t. \(h \).
On the proof of
\[f(x_{i+1}) - f(x_i) \leq (1 + \epsilon) |h(x_{i+1}) - h(x_i)|_{\mathbb{R}^N} \]
for most of \(i \):

- A analog of “|\nabla f| \leq 1 \text{ a.e. on domain } D \subset \mathbb{R}^d \implies \text{that } f \text{ has local Lipschitz constant } 1”

- The obstacle is that the “Riemaniann metric” on \(K \) is degenerate on many points; on “nondegenerate” points for \(h \) we have the above inequality.

- The assumption that \#the vertex set = 3 assures that, on each small cell, either of the vertices the curve passes is nondegenerate w.r.t. \(h \).
7. On the nondegeneracy condition

The nondegeneracy condition is summarized as follows:

\(u \): function on \(V_0 \)

\(\exists \upsilon : \) the harmonic extension of \(u \) to \(V_1 \), that is, \(\upsilon = u \) on \(V_0 \), and for all \(x \in V_1 \setminus V_0 \),

\[\sum_{y \sim x} (\upsilon(y) - \upsilon(x)) = 0. \]

Condition: If \(u \) is not constant, then \(\upsilon \) is not constant on every \(V_l \).

It is conjectured that every level \(l \) gasket is nondegenerate.

(This is a problem of linear algebras.)

level 4 gasket
7. On the nondegeneracy condition

The nondegeneracy condition is summarized as follows:

\(u \): function on \(V_0 \)

\(\exists v \): the harmonic extension of \(u \) to \(V_1 \), that is, \(v = u \) on \(V_0 \), and for all \(x \in V_1 \setminus V_0 \),

\[\sum_{y \sim x} (v(y) - v(x)) = 0. \]

Condition: If \(u \) is not constant, then \(v \) is not constant on every

It is conjectured that every level \(l \) gasket is nondegenerate.

(This is a problem of linear algebras.)
7. On the nondegeneracy condition

The nondegeneracy condition is summarized as follows:

\(u \): function on \(V_0 \)

\(\exists ! \nu \): the harmonic extension of \(u \) to \(V_1 \), that is, \(\nu = u \) on \(V_0 \), and for all \(x \in V_1 \setminus V_0 \),

\[\sum_{y \sim x} (\nu(y) - \nu(x)) = 0. \]

Condition: If \(u \) is not constant, then \(\nu \) is not constant on every \(\bigtriangleup \bigtriangleup \).

It is conjectured that every level \(l \) gasket is nondegenerate.

(This is a problem of linear algebras.)
7. On the nondegeneracy condition

The nondegeneracy condition is summarized as follows:

- **u: function on V_0**

- **$\exists! \, v$: the harmonic extension of u to V_1, that is,**

 \[v = u \text{ on } V_0, \text{ and for all } x \in V_1 \setminus V_0, \]
 \[\sum_{y \sim x} (v(y) - v(x)) = 0. \]

Condition: If u is not constant, then v is not constant on every

It is conjectured that every level l gasket is nondegenerate.

(This is a problem of linear algebras.)

\[V_0 = \{ \bullet \} \]
\[V_1 = \{ \bullet , \bullet \} \]