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1. Introduction

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli-Mosco, Sturm etc.)
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1. Introduction

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli-Mosco, Sturm etc.)

(K, A): alocally compact, separable metric measure space

(€, F): a strong local regular Dirichlet form on L*(K; A)
1 (r): the energy measure of f € F

When f is bounded,
Jxedn sy =2E(f, fo) — E(f29) "9 € F N Cy(K).

tE(f,8) = 3 Jga(aij(x) Vf(x), Vg (x))pa dx,
then p gy (dx) = (aij(x) V f(x), V f(x))ga dx.
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1. Introduction

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli-Mosco, Sturm etc.)

(K, A): alocally compact, separable metric measure space
(€, F): a strong local regular Dirichlet form on L*(K; A)
1 (r): the energy measure of f € F

d(x,vy): the intrinsic distance

d(x, ) ==sup{f<y>—f<x)

f € Floc N C(K)
and H(F) <A .
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1. Introduction

Intrinsic distance in the framework of Dirichlet forms
(cf. Biloli-Mosco, Sturm etc.)

(K, A): alocally compact, separable metric measure space
(€, F): a strong local regular Dirichlet form on L*(K; A)
1 (r): the energy measure of f € F

d(x,vy): the intrinsic distance
fEflocmC(K)}

d(x,9) =sup{ FO)~ ()| 1g 1
In this framework, various Gaussian estimates of the
transition density have been obtained.
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Question:

Is d identified with the geodesic distance (=shortest path
metric)?

In particular, what if K is a fractal set, which does not
have a (usual) differential structure?



1. Introduction (cont'd)

Question:

Is d identified with the geodesic distance (=shortest path
metric)?

In particular, what if K is a fractal set, which does not
have a (usual) differential structure?

But the straightforward formulation is not very useful as |
will explain...
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2. (Canonical Dirichlet forms on typical self-

similar fractals

Case of the 2-dim. standard Sierpinski gasket

%)
V,,: nth level graph approximation

e =(2) ¥ U@-rwy

3 x,YyeVy, x~y
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2. (Canonical Dirichlet forms on typical self-

similar fractals

Case of the 2-dim. standard Sierpinski gasket

%)
V,,: nth level graph approximation

e =(2) ¥ U@-rwy

3 x,YyeVy, x~y
T scaling factor
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EN(f,f) ./ PE(f, f) < +oo Vf € C(K).
F:={f € C(K) | £(f,f) < 4o}

Then, (&, F) is a strong local regular Dirichlet form on
L*(K;A). (A: the Hausdorff measure on K)




2. Canonical Dirichlet forms on typical self-similar fractals (cont'd)

EN(f,f) ./ PE(f, f) < +oo Vf € C(K).
F:={f € C(K) | £(f,f) < 4o}

Then, (&, F) is a strong local regular Dirichlet form on
L*(K;A). (A: the Hausdorff measure on K)

~~ { Xt }: “Brownian motion” on K
(invariant under scaling and isometric transformations)

Similar construction is valid for more general finitely
ramified self-similar fractals.
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2. Canonical Dirichlet forms on typical self-similar fractals (cont'd) 6/20

In many examples, sy L A (self-similar measure).
Then, d(x,y) = sup{f(y) — f(x) | f = const.} = 0.
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In many examples, sy L A (self-similar measure).
Then, d(x,y) = sup{f(y) — f(x) | f = const.} = 0.

(This is closely connected with the fact that the heat
kernel density has a sub-Gaussian estimate.)



2. Canonical Dirichlet forms on typical self-similar fractals (cont'd)

In many examples, sy L A (self-similar measure).
Then, d(x,y) = sup{f(y) — f(x) | f = const.} = 0.

(This is closely connected with the fact that the heat
kernel density has a sub-Gaussian estimate.)

By taking different measures as A, however, we have
nontrivial quantities...
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K: 2-dim. Sierpinski gasket 42

V= M) + M, (Kusuoka measure)

(h;: a harmonic function, £ (h;, h;) = §; ;)



2. Canonical Dirichlet forms on typical self-similar fractals (cont'd) R
K: 2-dim. Sierpinski gasket  4°& >

(€, F): the standard Dirichlet form on L*(K, v) with
V= M) + M, (Kusuoka measure)

(h;: a harmonic function, € (h;, hj) = 6; ;)

Theorem (Kigami 93, '08, Kajino '12)
» (Ki) h: K — h(K) C R?* is homeomorphic;
» (Ka) The intrinsic distance d coincides with the geodesic
distance pj, on h(K) by the identifying K and h(K);
» (Ki, Ka) The transition density p} (x,y) has a x

Gaussian estimate w.r.t. pp (= d);
» (Ki) The red line is the geodesic.
y



2. Canonical Dirichlet forms on typical self-similar fractals (cont'd)

LALR
Ab  Ab
b A A A
¥ Vs AAAA

For a continuous curve : [0,1] — K, the length I, (y)
of v based on h is defined as

() o= sup{ g; B(v (1) — h(y(ti1)) |ges

O:t0<t1<"’<tn:1}-

Observation: an alternative expression of py,

Then, by identifying K and h(K),

v IS @ continuous curve con-}

pu(x,y) = int { ()| 7 255



2. Canonical Dirichlet forms on typical self-similar fractals (cont'd)

£, h (K)
Observation: an alternative expression of p, A& A

For a continuous curve : [0,1] — K, the length I, (y)
of v based on h is defined as

n

() o= sup{ Y (v (1)) — (v (ti-1)) g

i=1
0=t <tHh < "'<tn:1}-
Then, by identifying K and h(K),

7y IS a continuous curve con-
necting x and y '

on(x,y) = inf {zm)

In this expression, h does not need to be homeomorphic.



2. Canonical Dirichlet forms on typical self-similar fractals (cont'd)

Brief formulation of the problem
(&, F),h= (h,...,hn) € F¥NNC(K — RN): given

dj,: the intrinsic distance based on (£, F) and
VS ) T Py

oy, the geodesic distance based on h

The relation between dj, and py, in particular when the
underlying space has a fractal structure?
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3. General framework

(K, dk): a separable and compact metric space

A: afinite Borel measure on K

(€, F): a strong local regular Dirichlet form on L*(K, 1)
NeNh=(hy,...,hy) € F¥NNC(K - RY)

N
VIS B = L Py
]:
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3. General framework

(K, dk): a separable and compact metric space

A: afinite Borel measure on K

(€, F): a strong local regular Dirichlet form on L*(K, 1)
NeNh=(hy,...,hy) € F¥NNC(K - RY)

N
VIS B = L Py
]:

The intrinsic distance dj, (x,y) based on (£, F) and h is
defined as

() = sup { ) — F) |1 S 7 LTI

and pi(gy < pny




3. General framework (cont'd)

For a continuous curve v € C([0,1] — K), its length
based on h is defined as

(1) i= sup Y- 1h(1(6)) = By (ti1)) o

1=1
nEN,0=t0<i’1<“°<tn=1}.

The geodesic distance py, (x,y) based on h is defined as

7 is a continuous curve}

pr(x,y) = inf {lh(v) connecting x and y

Problem: The relation between dj, and py,?
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4. Results

Theorem 1 pp(x,v) < dy(x,y) if the following hold:

(A1) (Finitely ramified cell structure) There exists an

increasing sequence of finite subsets {V,, },._, of
K such that

(i) Upp—o Vi is dense in K;

(i) Foreach m, K \ V,, is decomposed as a finite
number of connected components {Uj }rca,,;

(i) limy, 0 maxycp,, diam Uy = 0.
(A2) F C C(K).

(A3) £(f, f) = 0if and only if f is a constant function.
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4. Results (cont'd)

Theorem 2 pp(x,y) > dp(x,y) if
» K: a 2-dimensional (generalized) Sierpinski gasket
that is also a nested fractal;

» (A:the normalized Hausdorff measure;)

» (£, F): the self-similar Dirichlet form
associated with the Brownian motion on K;

» h = (hy,...,h,;); each h; is a harmonic function;

» The harmonic structure associated with (€, F) is
nondegenerate. (That is, for any nonconstant
harmonic function g, g IS not constant on any
nonempty open sets.)
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4. Results (cont'd)

The nondegeneracy assumption holds for 2-dim. level [
S. G. with I < 50 (by the numerical computation).

(level I S. G. with I = 2,3,4,5,10)



4. Results (cont'd)

The nondegeneracy assumption holds for 2-dim. level [
S. G. with I < 50 (by the numerical computation).

(level I S. G. with I = 2,3,4,5,10)

Remark Theorem 2 is valid under more general
situations. Essential assumptions (for the current proof)
are:

» #Hthe vertex set = 3;

» [he harmonic structure is near to symmetric.
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5. Idea of the proof of Theorem 1 (p;, < dp)

In the case of Riemannian manifolds M, the proof is
given as follows:

For x € M, define p(y) as the geodesic distance
between x and y € M. Then, p is Lipschitz and
|Vp| <1

Therefore, p(x,y) = p(y) — p(x) < d(x,y).
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5. Idea of the proof of Theorem 1 (p;, < dp)

In the case of Riemannian manifolds M, the proof is
given as follows:

For x € M, define p(y) as the geodesic distance
between x and y € M. Then, p is Lipschitz and
|'Vp| <1

Therefore, p(x,y) = p(y) — p(x) < d(x,y).

In Theorem 1, the main part of the proof is to prove

p € Fandp,y < ppy- This is done by the discrete
approximation.



5. ldea of the proof of Theorem 1 (p, < dj) (contd)

More precisely,

» o(y) := pp(x,vy); the distance function from x € K
It is sufficient to prove that p € F and p(,y < ppy.
» Discrete approximation. Assume x € V,,.

O (y) = py" (x,y), yE Vin>m
the discrete version of the geodesic distance

Vi gy -
X

£ () = £ (2)| < h(y) —h(z) gy, y,2E€ Vi



5. ldea of the proof of Theorem 1 (p, < dj) (contd)

(cont'd) Vi vy .
e p(y) := pn(xy) * %

o fM(y):=p"(xy). yEVan>m
F(y) — ()| < |h(y) — h(z)|gn, ¥, 2EV,

> g("): the harmonic extension of f(")
,”<g(n)>(UA) < ,”(h)(UA) for any Uy
> g8 — pin Fand pg,y <

» For general x € K, an argument of approximation is
available.
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6. Idea of the proof of Theorem 2 (pj > dj)

> Let f € F with u sy < gy, and take a continuous
curve 7y connecting x and y.
» It is sufficient to prove that f(y) — f(x) < I (7).

> °M > 0, Ve > 0, we can take finitely many points
X1,X2,...,XM € U, —o Vin On the curve v such that

f(xiga) — f(xi) < (1 +€) [h(xiq1) — h(xi) |gn
for most of i (when x; is a good point),
f(xig1) —f(xi) SMh(xi11) — h(x;)|pn forall i.

m\ ’Y \‘/y _ xM

X = X 2
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6. Idea of the proof of Theorem 2 (pj > dj)

> Let f € F with u sy < gy, and take a continuous
curve 7y connecting x and y.

» It is sufficient to prove that f(y) — f(x) < I (7).

> °M > 0, Ve > 0, we can take finitely many points
X1,X2,...,XM € U, —o Vin On the curve v such that

f(xiga) — f(xi) < (1 +€) [h(xiq1) — h(xi) |gn
for most of i (when x; is a good point),

f(xig1) —f(xi) SMh(xi11) — h(x;)|pn forall i.
By summing up, f(y) — f(x) < (14 0(1))In(7)-
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On the proof of

f(xig1) —f(xi) S (1 + €)[h(xip1) — h(x;)[gn
for most of 1:



6. Idea of the proof of Theorem 2 (p;, > dj,) (cont'd)
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f(xig1) —f(xi) S (1 + €)[h(xip1) — h(x;)[gn
for most of 1:

e A analog of | V| < 1a.e. on domain D C R”
implies that f has local Lipschitz constant 1”
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On the proof of

f(xig1) —f(xi) S (1 + €)[h(xip1) — h(x;)[gn
for most of 1:

e A analog of | V| < 1a.e. on domain D C R”
implies that f has local Lipschitz constant 1”

e The obstacle is that the “Riemaniann metric” on K is
degenerate on many points; on “nondegenerate”
points for h we have the above inequalty.



6. Idea of the proof of Theorem 2 (p;, > dj,) (cont'd)

On the proof of

f(xiva) = f(xi) < (1 +€)|h(xit1) — h(x;) gy
for most of 1:
e A analog of | V| < 1a.e. on domain D C R”

implies that f has local Lipschitz constant 1”

e The obstacle is that the “Riemaniann metric” on K is
degenerate on many points; on “nondegenerate”
points for h we have the above inequalty.

e The assumption that #the vertex set= 3
assures that, on each small cell, either
of the vertices the curve passes is
nondegenerate w.r.t. h.
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/. On the nondegeneracy condition

The nondegeneracy condition is summarized as follows:

| 4

level 4 gasket
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/. On the nondegeneracy condition

The nondegeneracy condition is summarized as follows:
u: function on Vy

14 the harmonic extesion of u to V1, that Is,

v =uon Vp,andforall x € Vq \ Vp,
Yy~x(v(y) —ov(x)) =0.

Condition: If # is not constant, then

v IS not constant on everyA A

It is conjectured that every level I gasket "‘jve' 4 gasket
is nondegenerate. VO — 1o}

. , 1 — {0,0}
(This is a problem of linear algebras.)




