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Bernstein functions and Subordinate Brownian Motions

Let ψ be the Laplace exponent of a subordinator St. Assume
that ψ is a Bernstein function:

ψ(λ) = bλ+

∫ ∞
0

(1− e−λx)µ(dx),

where the measure µ:
∫∞
0 (1− e−x)µ(dx) <∞. In this talk

b = 0.

Examples:
β-stable subordinator, ψ(λ) = λβ, 0 < β < 1
geometric stable, ψ(λ) = ln(1 + λβ), 0 < β ≤ 1
relativistic stable ψ(λ) = (λ+m1/β)β −m, 0 < β < 1,m ≥ 0
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Subordinate Brownian Motions

Let Bt be a Brownian motion (with variance 2t) independent
of the subordinator St. From now on we consider

Xt = BSt

Generator of Xt:
A = −ψ (−∆)

Lévy-Khintchine exponent of Xt : Ψ(x) = ψ(|x|2)
Examples:

α-stable process A = − (−∆)α/2 , 0 < α < 2

geometric α-stable process
A = − ln

(
1 + (−∆)α/2

)
, 0 < α ≤ 2

relativistic α-stable process
A = −

(
−∆ +m2/α

)α/2
+m, 0 < α < 2
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Subordinate Brownian Motions

The process Xt has a density of the form

p(t, x, y) = p(t, x− y) =

∫ ∞
0

g(u, x− y)P (St ∈ du), (0.1)

where g(t, x− y) we denote the density of Bt.

The Lévy measure of process Xt is given by density

ν(x) = lim
t↘0

pt(x)

t
=

∫ ∞
0

gu(x)µ(du).

The stable case ν(x) = A
|x|d+α , but in the geometric stable

ν(x) ≈ 1
|x|d , |x| ≤ 1.
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Survival probability. Dirichlet heat kernel.

The first exit (survival) time from open D ⊂ Rd:

τD = inf{t > 0 : Xt /∈ D}

Transition density (Dirichlet heat kernel) of the process
killed on leaving D:

pD(t, x, y) = p(t, x, y)− Ex[τD < t; p(t− τD, XτD , y)]

We have P x(Xt ∈ B, τD > t) =
∫
B pD(t, x, y)dy.

In particular pD yields the probability of surviving time t:

P x(τD > t) =

∫
pD(t, x, y)dy.

and the Green function of D:

GD(x, y) =

∫ ∞
0

pD(t, x, y)dt.
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Exact formulas for the stable case

The survival probability for a halfspace for α = 1 was
computed by Darling (1956). Recent progress: Doney (2008),
Graczyk and Jakubowski (2009), Doney and Savov (2010),
Kuznetsov (2010), Kuznietzov and Halubek (2011)

Integral formulas for the heat kernel for a halfline for α = 1
were obtained by Kulczycki, Kwaśnicki, Małecki, and Stós
(2009). Further work done by Kwaśnicki (2010).

For more complicated sets - even intervals such formulas seem
to be out of reach.

Michał Ryznar Heat kernels



Exact formulas for the stable case

The survival probability for a halfspace for α = 1 was
computed by Darling (1956). Recent progress: Doney (2008),
Graczyk and Jakubowski (2009), Doney and Savov (2010),
Kuznetsov (2010), Kuznietzov and Halubek (2011)

Integral formulas for the heat kernel for a halfline for α = 1
were obtained by Kulczycki, Kwaśnicki, Małecki, and Stós
(2009). Further work done by Kwaśnicki (2010).

For more complicated sets - even intervals such formulas seem
to be out of reach.

Michał Ryznar Heat kernels



Exact formulas for the stable case

The survival probability for a halfspace for α = 1 was
computed by Darling (1956). Recent progress: Doney (2008),
Graczyk and Jakubowski (2009), Doney and Savov (2010),
Kuznetsov (2010), Kuznietzov and Halubek (2011)

Integral formulas for the heat kernel for a halfline for α = 1
were obtained by Kulczycki, Kwaśnicki, Małecki, and Stós
(2009). Further work done by Kwaśnicki (2010).

For more complicated sets - even intervals such formulas seem
to be out of reach.

Michał Ryznar Heat kernels



Classical Laplacian

Exact formulas for heat kernels are known in several cases:
intervals, halfspaces, balls and cones (for balls and cones in
terms of complicated series involving Bessel functions).

Explicit qualitatively sharp estimates for the classical heat
kernel in C1,1 domains, d ≥ 3: Zhang (2002)

pD(t, x, y) ≥ C−1
(

1 ∧ δD(x)

t1/2

)
p(t, cx, cy)

(
1 ∧ δD(y)

t1/2

)
,

pD(t, x, y) ≤ C
(

1 ∧ δD(x)

t1/2

)
p(t, c−1x, c−1y)

(
1 ∧ δD(y)

t1/2

)
,

for x, y ∈ Rd, t < 1, c, C ≥ 1

Qualitatively sharp heat kernel estimates for Lipschitz
domains: Varopulous (2003)
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Estimates for fractional Laplacian

Upper heat kernel bounds for the complements of balls:
Kulczycki, Siudeja (2006)

Upper heat kernel bounds for convex domains: Siudeja (2006)

Heat kernel for C1,1 domains: Chen, Kim, Song (2008).

For 0 < t ≤ 1 , x, y ∈ Rd,

pD(t, x, y) ≈

(
1 ∧

δ
α/2
D (x)√

t

)
p(t, x, y)

(
1 ∧

δ
α/2
D (y)√

t

)
.

Here δD(x) = dist(x,Dc)

.

Circular cones V : Bogdan and Grzywny (2008)

pV (t, x, y) ≈ P x(τV > t) p(t, x, y)P y(τV > t) , t > 0.
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κ-fat domains

Definition

Let x ∈ Rd, r > 0 and 0 < κ ≤ 1. We say that open D is (κ, r)-fat
at x if there is a ball B(A, κr) ⊂ D ∩B(x, r).

If this is true for
every x ∈ D then we say that D is (κ, r)-fat. We say that D is
κ-fat if there is R > 0 such that D is (κ, r)-fat for all r ∈ (0, R].

Let Ar(x) = A.
We have:
δD(Ar) ≈ r ∨ δD(x).
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C1,1 domains

Definition

Open D is of class C1,1 at scale r > 0 if for every Q ∈ ∂D there
exist balls B(x′, r) ⊂ D and B(x′′, r) ⊂ Dc tangent at Q.

If D is C1,1 at scale r then it is (1/2, p)-fat for all p ∈ (0, r].

Michał Ryznar Heat kernels



C1,1 domains

Definition

Open D is of class C1,1 at scale r > 0 if for every Q ∈ ∂D there
exist balls B(x′, r) ⊂ D and B(x′′, r) ⊂ Dc tangent at Q.

If D is C1,1 at scale r then it is (1/2, p)-fat for all p ∈ (0, r].

Michał Ryznar Heat kernels



C1,1 domains

Definition

Open D is of class C1,1 at scale r > 0 if for every Q ∈ ∂D there
exist balls B(x′, r) ⊂ D and B(x′′, r) ⊂ Dc tangent at Q.

If D is C1,1 at scale r then it is (1/2, p)-fat for all p ∈ (0, r].

Michał Ryznar Heat kernels



General two-sided estimate of Dirichlet heat kernel. Stable
case.

Theorem ( Bogdan, Grzywny and R, 2010)

If D is κ-fat then there is C = C(α,D) such that for all x, y ∈ Rd,

pD(t, x, y)
C
≈ P x(τD > t) p(t, x, y)P y(τD > t) , 0 < t ≤ 1.

The proof is based on the boundary Harnack principle (BHP),
the Lévy system of X, and comparability of p with ν:
p(t, x) ≈ t−d/α ∧ t

|x|d+α

Motivation: let c(t) = p(t, 0, 0) ≥ supz,y∈Rd pD(t, z, y),

pD(3t, x, y) =

∫ ∫
pD(t, x, z)pD(t, z, w)pD(t, w, y)dwdz

≤

P x(τD > t)

c(t)

P y(τD > t)

.
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The proof is based on the boundary Harnack principle (BHP),
the Lévy system of X, and comparability of p with ν:
p(t, x) ≈ t−d/α ∧ t

|x|d+α

Motivation: let c(t) = p(t, 0, 0) ≥ supz,y∈Rd pD(t, z, y),

pD(3t, x, y) =

∫ ∫
pD(t, x, z)pD(t, z, w)pD(t, w, y)dwdz

≤

P x(τD > t)

c(t)

P y(τD > t)

.
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General estimate of the survival probability. Stable case.

We let sD(x) = ExτD =
∫
GD(x, y)dy if finite,

otherwise we let

sD(x) = MD(x) = lim
D3y→∞

GD(x, y)

GD(x0, y)

Theorem (Bogdan, Grzywny and R, 2010)

If D is (κ,t1/α)-fat at x then

P x(τD > t)
C
≈ sD(x)

sD(At1/α(x))
,

where C = C(d, α, κ).
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Applications: the complement of the ball D = (−1, 1)c for
α = d = 1

For α = d = 1, sD(x) ≈ log(1 + δ
1/2
D (x))

, and so
sD(At1/α(x)) = log(1 + (t ∨ δD(x))1/2),

P x(τD > t) ≈
log(1 + δ

1/2
D (x))

log(1 + (t ∨ δD(x))1/2)
= 1 ∧

log(1 + δ
1/2
D (x))

log(1 + t1/2)
.

Thus

pD(t, x, y) ≈

(
1 ∧

log(1 + δ
1/2
D (x))

log(1 + t1/2)

)
p(t, x, y)

(
1 ∧ log(1 + δ1/2(y))

log(1 + t1/2)

)
.

Here all t > 0 and x, y ∈ Rd are allowed.
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Applications: the complement of ball D = (−1, 1)c when
α > d = 1

We have sD(x) ≈ δα−1D (x) ∧ δα/2D (x)

, therefore

sD(At1/α(x)) ≈ (t1/α ∨ δD(x))α−1 ∧ (t1/α ∨ δD(x))α/2, and so

P x(τD > t) ≈
δα−1D (x) ∧ δα/2D (x)

(t1/α ∨ δD(x))α−1 ∧ (t1/α ∨ δD(x))α/2
.

We obtain that

pD(t, x, y)

p(t, x, y)
≈

(
1 ∧

δα−1D (x) ∧ δα/2D (x)

t1−1/α ∧ t1/2

)(
1 ∧

δα−1D (y) ∧ δα/2D (y)

t1−1/α ∧ t1/2

)

for all 0 < t <∞ and x, y ∈ Rd.
In the transient case d > α similar estimates hold (obtained also by
Chen and Tokle (2010)).
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back to Subordinate Brownian Motions

Let Bt be a Brownian motion (with variance 2t) independent
of the subordinator St. From now on we consider

Xt = BSt

Lévy-Khintchine exponent of Xt : Ψ(x) = ψ(|x|2), where ψ
be the Laplace exponent of a subordinator St.
The process Xt has a density of the form

pt(x− y) =

∫ ∞
0

gu(x− y)P (St ∈ du),

where gt(x) we denote the density of Bt.
Goal: find good estimates of Dirichlet heat kernel:

pD(t, x, y) = p(t, x, y)− Ex[τD < t; p(t− τD, XτD , y)],

D - open set with a smooth boundary.
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Lemma

Consider open D1, D3 ⊂ D such that dist(D1, D3) > 0. Let
D2 = D \ (D1 ∪D3). If x ∈ D1, y ∈ D3 and t > 0, then

pD(t, x, y) ≤ P x(XτD1
∈ D2) sup

s<t, z∈D2

p(s, z, y)

+ (t ∧ ExτD1) sup
u∈D1, z∈D3

ν(z − u) .
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pD(t, x, y) ≥ tP x(τD1 > t)P y(τD3 > t) inf
u∈D1, z∈D3

ν(z − u) .

Michał Ryznar Heat kernels



Some fluctuation theory

{Yt}t≥0, Y0 = 0: Lévy process in R, not a subordinator

The characteristic function: E0 exp{iξYt} = exp{−tΨ(ξ)}

Mt = sup0≤s≤t Ys

Lt - local time of the reflected process Mt − Yt

Ht = ML−1
t

- ladder height process

V (x) =
∫∞
0 P(Hs < x)ds - renewal function

For our purpose we take Yt as a one-dimensional projection of
SBM Xt. We know that V (r) ≈ 1√

ψ(r−2)
.
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Scaling conditions for the Laplace exponent of the
subordinator

LSC condition for ψ. There are C > 0 and 0 < σ < 1 and θ0 > 0
such that

ψ(λθ) ≥ Cλσψ(θ), λ ≥ 1, θ > θ0

USC condition for ψ. There are C∗ > 0 and 0 < σ∗ < 1 and
θ∗0 > 0 such that

ψ(λθ) ≤ C∗λσ∗
ψ(θ), λ ≥ 1, θ > θ0

USC condition for ψ′. There is C > 0 and δ < 0 and θ0 > 0
such that

ψ′(λθ) ≤ Cλδψ′(θ), λ ≥ 1, θ > θ0.
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Estimates of the mean exit time

Lemma
Assume USC for ψ′. For r ≤ R

CV (δ(x))V (r) ≤ ExτB(0,r) ≤ 2V (δ(x))V (r),

where the constant C depends on R and is decreasing in R.

The above estimate holds for all r > 0 in many cases. E.g. :
stable case, rel. stable, geometric stable, sum of two
independent stable. In the case of one dimensional process it is
always true. We do not know any example in multidimensional
case when it fails.
The upper bound is true for any rotationally invariant Lévy
process.
Recall that for any subordiante Brownian motion
V (r) ≈ 1√

ψ(r−2)
.
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The upper bound is true for any rotationally invariant Lévy
process.
Recall that for any subordiante Brownian motion
V (r) ≈ 1√

ψ(r−2)
.
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Estimates of the mean exit time

Lemma

Assume USC for ψ′. Let D = B(0, R)c. Suppose that r < R. Let
x ∈ D such that 0 < δD(x) ≤ r/2 and x0 = x/|x|. We take
D1 = B(x0, r) ∩D. Then there is a constant C dependent of R
such that

sD1(x) = ExτD1 ≤ CV (r)V (δD(x))

The above estimates are based on the estimates of the action
of the generator on a test function which is built from V . The
idea comes from the paper of Kim, Song and Vondracek
(2011).
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Survival time estimates

Lemma

Let R ≤ 1. There are C1, C2 such that for t ≤ C1V
2(R)

P x(τB(0,R) > t) ≥ C2

(
V (δB(0,R))√

t
∧ 1

)
.

Let D = B(0, 1)c and let t ≤ 1. There is C such that

P x(τD > t) ≤ CV (δD(x))√
t

.
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Good properties for the transition density of the free process

Suppose that for t ≤ 1 and |y| ≤ R:

[A1] If V (|y|)2 ≤ t, then C1p(t, 0) ≤ p(t, y) ≤ p(t, 0).
[A2] C−12 p(t, y) ≤ tν(y) ≤ C2p(t, y), provided t ≤ V (|y|)2

for some constants C1, C2 possibly dependent on R.

If t ≤ V (|y|)2 then A2 implies

sup
s≤t

p(s, y) ≤ C3p(t, y).

The above conditions are satisfied by a number of examples: stable,
relativistic stable, sum of two stable processes (non-Gaussian), but
not for the geometric stable since p(t, 0) =∞ for small t.

pt(y) ≈ p(t, 0) ∧ tν(y), t ≤ 1, |y| ≤ R
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Heat kernel estimates.

Theorem (Bogdan, Grzywny, R 2012)

Assume LSC and USC for the subordinator.
(A) Then the conditions A1 and A2 hold.
(B) Suppose that D is a bounded C1,1 at scale r0. There are
constants C, c1, c2 dependent ψ, r0 and the diameter of D such
that

C−1P x(τD > t) p(t, c1(x− y))P y(τD > t)

≤ pD(t, x, y)

≤ CP x(τD > t) p(t, c2(x− y))P y(τD > t) , 0 < t < 1.

In the recent years there has been a big progress in studying
subordinate Brownian motions. For example Chen, Kim, Song in a
number of papers (2010-2012) obtained sharp heat kernel estimates
in particular cases of subordinate Brownian motions for bounded
domains and some unbounded ones.
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Lower bound in the case D = B(0, 1)

Lemma

Suppose that r < 1 and R > 0. There are c1, c∗, C = C(R) such
that for t ≤ c∗V 2(r) we have

pB(x,r)∪B(y,r)(t, u, v) ≥ Cp(t, c1(x− y)) , |x− y| < R.

where u ∈ B(x, r/16) and v ∈ B(y, r/16)

Let D = B(x, r) ∪B(y, r). Let D1 = B(x, r) and D3 = B(y, r)
be disjoint. Then infu∈D1, z∈D3 ν(z − u) ≥ ν(2(x− y))

pD(t, u, v) ≥ tP u(τD1 > t)P v(τD3 > t) inf
u∈D1, z∈D3

ν(z − u)

pD(t, u, v) ≥ P u(τD1 > t)P v(τD3 > t) tν(2(x−y)) ≥ Cp(t, 2(x−y))

Michał Ryznar Heat kernels



Lower bound in the case D = B(0, 1)

Lemma

Suppose that r < 1 and R > 0. There are c1, c∗, C = C(R) such
that for t ≤ c∗V 2(r) we have

pB(x,r)∪B(y,r)(t, u, v) ≥ Cp(t, c1(x− y)) , |x− y| < R.

where u ∈ B(x, r/16) and v ∈ B(y, r/16)

Let D = B(x, r) ∪B(y, r). Let D1 = B(x, r) and D3 = B(y, r)
be disjoint. Then infu∈D1, z∈D3 ν(z − u) ≥ ν(2(x− y))

pD(t, u, v) ≥ tP u(τD1 > t)P v(τD3 > t) inf
u∈D1, z∈D3

ν(z − u)

pD(t, u, v) ≥ P u(τD1 > t)P v(τD3 > t) tν(2(x−y)) ≥ Cp(t, 2(x−y))

Michał Ryznar Heat kernels



Lower bound in the case D = B(0, 1)

Lemma

Suppose that r < 1 and R > 0. There are c1, c∗, C = C(R) such
that for t ≤ c∗V 2(r) we have

pB(x,r)∪B(y,r)(t, u, v) ≥ Cp(t, c1(x− y)) , |x− y| < R.

where u ∈ B(x, r/16) and v ∈ B(y, r/16)

Let D = B(x, r) ∪B(y, r). Let D1 = B(x, r) and D3 = B(y, r)
be disjoint. Then infu∈D1, z∈D3 ν(z − u) ≥ ν(2(x− y))

pD(t, u, v) ≥ tP u(τD1 > t)P v(τD3 > t) inf
u∈D1, z∈D3

ν(z − u)

pD(t, u, v) ≥ P u(τD1 > t)P v(τD3 > t) tν(2(x−y)) ≥ Cp(t, 2(x−y))

Michał Ryznar Heat kernels



Lower bound in the case D = B(0, 1)

Lemma

Suppose that r < 1 and R > 0. There are c1, c∗, C = C(R) such
that for t ≤ c∗V 2(r) we have

pB(x,r)∪B(y,r)(t, u, v) ≥ Cp(t, c1(x− y)) , |x− y| < R.

where u ∈ B(x, r/16) and v ∈ B(y, r/16)

Let D = B(x, r) ∪B(y, r). Let D1 = B(x, r) and D3 = B(y, r)
be disjoint. Then infu∈D1, z∈D3 ν(z − u) ≥ ν(2(x− y))

pD(t, u, v) ≥ tP u(τD1 > t)P v(τD3 > t) inf
u∈D1, z∈D3

ν(z − u)

pD(t, u, v) ≥ P u(τD1 > t)P v(τD3 > t) tν(2(x−y)) ≥ Cp(t, 2(x−y))

Michał Ryznar Heat kernels



Lower bound in the case D = B(0, 1)

Lemma

Let D = B(0, 1). Let r ≤ 1. Let x ∈ D : δD(x) < r/6. Denote
x0 = x/|x|, x1 = x0(1− r/3) and Bx = B(x1, r/8). There are
C, c such that for t ≤ cV 2(r),∫

Bx

pD(t, x, v)dv ≥ C t

V 2(r)
P x(τD > t)

Suppose that t < t0 and choose r such that t = cV 2(r) then for
x ∈ D with δD(x) < r/6.∫

Bx

pD(t, x, u)du ≥ CP x(τD > t).
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Assume that the same holds for y ∈ D∫
B.

pD(t, x, u)du ≥ CP .(τD > t).

pD(3t, x, y) ≥
∫
By

∫
Bx

pD(t, x, u)pD(t, u, v)pD(t, v, y)dudv

≥ inf
u∈Bx,v∈By

pD(t, u, v)

∫
Bx

pD(t, x, u)du

∫
By

pD(t, v, y)dv

≥ Cp(t, c(x− y))P x(τD > t)P y(τD > t) .
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Estimate of pD(t, x, y) for D = B(0, 1)c

Let x, y ∈ D. Let t ≤ 1. We choose r: V (r) =
√
t. First, assume

V 2(|x− y|/3) ≥ t, so |x− y| ≥ 3r. We define

D1 = B(x0, r) ∩D, x0 = x/|x|

and
D3 = B(x, |x− y|/2)c ∩D,

We assume 0 < δD(x) ≤ r/3. Note that z ∈ D2 = D \ (D1 ∪D2),

|z − y| ≥ |x− y|/2,

sup
s<t, z∈D2

p(s, z − y) ≤ sup
s<t

p(t, (x− y)/2) =: q(t, (x− y)/2)
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Moreover for u ∈ D1, z ∈ D3 we have
|u− z| ≥ |x− y|/2− |x− u| − |x0 − x| ≥ |x− y|/18, hence

sup
u∈D1, z∈D3

ν(z − u) ≤ ν((x− y)/18).

By Lemma

pD(t, x, y) ≤ P x(XτD1
∈ D2) sup

s<t, z∈D2

p(s, z − y)

+ (t ∧ ExτD1) sup
u∈D1, z∈D3

ν(z − u) ,

hence

pD(t, x, y) ≤ P x(XτD1
∈ D2)q(t, (x−y)/2)+ExτD1ν((x−y)/18) ,

Next,

P x(XτD1
∈ D2) ≤ C

ExτD1

V 2(r)

and
ExτD1 ≤ CV (r)V (δD(x)).
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Hence

P x(XτD1
∈ D2) ≤ C

V (δD(x))

V (r)

pD(t, x, y) ≤ CV (δD(x))

V (r)

(
q(t, (x− y)/2) + V 2(r)ν((x− y)/18)

)
,

Recall that V 2(r) = t, so we obtain

pD(t, x, y) ≤ C
V (δD(x))√

t
(q(t, (x− y)/2) + tν((x− y)/18)

≤ C
V (δD(x))√

t
(p(t, c(x− y)),

where we use the assumption on q(t, x) and the Lévy density (if
V 2(|x− y|/3) ≥ t).
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Next, we deal V 2(|x− y|/3) ≤ t. Then it is trivial that

pD(2t, x, y) ≤ p(t, 0)P x(τD > t) ≤ p(t, 0)
V (δD(x))√

t
,

where the last step follows from one of the previous Lemmas.
If V 2(|x− y|/3) ≤ t then p(t, 0) ≤ Cp(t, c(x− y).

Combining all facts we obtain

pD(t, x, y) ≤ C
(
V (δD(x))√

t
∧ 1

)
p(t, c(x− y)),

where x, y ∈ D |x|, |y| ≤ R, R > 1 and the constant C = C(R)
increases with R.

pD(t, x, y) ≤ CP x(τD > t)p(t, c(x− y)),

where C might depend on R in the increasing way.
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