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Plan of the talk

The method of coupling of reflecting Brownian motions (RBM) is a useful
technique for proving results on various functionals associated to RBM.

In this talk, we will present two such couplings: the scaling coupling and the
mirror coupling.

As an application of the scaling coupling, we will prove a monotonicity of the
lifetime of reflecting Brownian motion with killing, which implies the validity
of the Hot Spots conjecture of J. Rauch for a certain class of domains.

As applications of the mirror coupling, we will present the proof of the
Laugesen-Morpurgo conjecture, and a unifying proof of the results of I.
Chavel and W. Kendall on Chavel’s conjecture.

Time-permitting, I will discuss some recent results on translation coupling
and its applications.
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– Where should I put the bed, to keep warm in the long run?
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Heuristics

Consider u (t, x) the solution of the Neumann heat equation in a smooth
bounded domain D ⊂ Rd with generic initial condition u0.
Let x+t be the hot spot at time t and x−t be the cold spot, i.e.

u
(
t, x+t

)
= max

x∈D
u (t, x) and u

(
t, x−t

)
= min

x∈D
u (t, x)

If the second Neumann eigenvalue λ2 is simple, and ϕ2 is a corresponding
second Neumann eigenfunction, for large t we have

u (t, x) =
∫

D
u0 + e−λ2tϕ2 (x)

∫
D

u0ϕ2 + R2(t, x) ≈ c0 + c1e−λ2tϕ2 (x) ,

so x+t and x−t are close to the maximum/minimum points of ϕ2.
Hot spots (x+t ) and cold spots (x−t ) repel each other, so the distance between
them tends to increase wrt t. In convex domains, the maximum distance is
attained for points on the boundary.
Together with the above, this suggests the following.
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Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)
Maxima and minima of second Neumann eigenfunctions of convex bounded
domains are attained (only) on the boundary of the domain.

B. Kawohl: true for balls, annuli, parallelipipeds in Rd

K. Burdzy and W. Werner: counterexample (non-convex domain): minimum inside the domain,
maximum on the boundary

R. Bass and K. Burdzy: stronger counterexample (non-convex domain): both minimum and
maximum inside the domain

D. Jerisson and N. Nadirashvili: true if the domain has two orthogonal axis of symmetry

R. Bañuelos and K. Burdzy: true if there are two orthogonal axes of symmetry, or just one axis of
symmetry and ϕ2 symmetric wrt it

MNP: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and ϕ2
antisymmetric wrt it, or ... (some condition on the nodal set of ϕ2)

Other results: true for obtuse triangles, for some some doubly connected domains, for nearly
circular domains.

HS still open in its full generality! (e.g., proof for acute triangles?...)
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Definition 2 (Reflecting Brownian motion)

Reflecting Brownian motion in D ⊂ Rd starting at x0 ∈ D: a solution to

Xt = x0 + Bt +

∫ t

0
νD (Xs) dLX

s , t ≥ 0, (1)

where Bt is a d-dimensional Brownian motion starting at origin, νD is the
inward unit vector field on ∂D, LX

t is the local time of X on ∂D.

Bt

XtνD(Xs)

Bs

Xs

X0 = B0

D
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Definition 3 (Reflecting Brownian motion with killing)

Reflecting Brownian motion in D killed on hitting S ⊂ ∂D, starting at x0 ∈ D:

Yt =

{
Xt, t < τ
†, t ≥ τ , (2)

where Xt is RBM in D starting at x0, τ = τ S = inf{t > 0 : Xt ∈ S} is the
killing time, and † /∈ D is the cemetery state.

Ys Xs

Bs

X0 = Y0

D

Yt= † , t ≥ τ

Xτ
S⊂ ∂D
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Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

Synchronous coupling: (Bt,Bt + v)

Mirror coupling: (Bt,RBt)

Scaling coupling: (Bt, cBt/c2)

M. N. Pascu (Transilvania Univ) Couplings of RBM 8/31 14.09.2012 8 / 31



Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

Synchronous coupling: (Bt,Bt + v)

Mirror coupling: (Bt,RBt)

Scaling coupling: (Bt, cBt/c2)

M. N. Pascu (Transilvania Univ) Couplings of RBM 8/31 14.09.2012 8 / 31



Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

Synchronous coupling: (Bt,Bt + v)

Mirror coupling: (Bt,RBt)

Scaling coupling: (Bt, cBt/c2)

M. N. Pascu (Transilvania Univ) Couplings of RBM 8/31 14.09.2012 8 / 31



Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

Synchronous coupling: (Bt,Bt + v)

Mirror coupling: (Bt,RBt)

Scaling coupling: (Bt, cBt/c2)

M. N. Pascu (Transilvania Univ) Couplings of RBM 8/31 14.09.2012 8 / 31



Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

Synchronous coupling: (Bt,Bt + v)

Mirror coupling: (Bt,RBt)

Scaling coupling: (Bt, cBt/c2)

The above can be extended to the case of reflecting Brownian motion.
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Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).

Couplings of RBM:

Synchronous coupling: (R. Atar, K. Burdzy, R. Bañuelos, Z. Q. Chen, M.
Cranston)
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Lemma 4 (“Multiplicative Skorokhod lemma” in the unit disk, MNP)

If Bt is a 2-dimensional BM, Mt = 1 ∨ sup
s≤t
|Bs| and α−1

t = At =

∫ t

0

1
M2

s
ds,

Xt =
1

Mαt

Bαt , t ≥ 0

is a RBM in U = {z ∈ R2 : |z| < 1}.

U

b(t)

x(t)

x(0) = b(0)

Proof: Itô formula with f (x, y) = x
y , Bt and Mt (and a time change).
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y , Bt and Mt (and a time change).
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Scaling coupling of RBM in U starting at (xeiθ, yeiθ) (0 < x ≤ y ≤ 1):

a pair (Xt,Yt), where Xt RBM in U starting at xeiθ, Yt =
1

Mαt

Xαt ,

Mt =
x
y ∨ sup

s≤t
|Xs|, and α−1

t = At =

∫ t

0

1
M2

s
ds.

Xt

Yt

Y0

X0

U
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Lifetime of RBM in the unit disk, killed on a diameter

Xt

Yt

Y0 = iy

X0 = ix

U

S

Mt =
x
y∨sups≤t|Xs| ≤ 1 =⇒ At =

t∫
0

1
M2

s
ds ≥ t =⇒ αt = A−1

t ≤ t =⇒ τX = ατY≤ τY

(τX, τY denote the lifetime of Xt, Yt killed on the diameter S).
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Scaling coupling and applications

Corollary 5 (Monotonicity of lifetime in the disk)

For any t > 0, P(τ x > t) is a radially increasing function in U
(τ x is the lifetime of RBM in U starting at x, killed on a diameter).

Remark: for t large, P(τ x > t) ≈ ce−µ1tψ1(x) = ce−λ2tϕ2(x).

Theorem 6 (Monotonicity of antisymmetric second Neumann eigenfunctions)
If ϕ is a second Neumann eigenfunction of the Laplacian on U, antisymmetric
with respect to a diameter, then ϕ is a radially monotone function.

Remark: any second Neumann eigenfunction is antisymmetric in the disk!

Corollary 7 (Hot Spots for the unit disk)
The Hot Spots conjecture holds for the unit disk U, that is for any second
Neumann eigenfunction ϕ of the laplacian on U we have

min
∂U

ϕ = min
U
ϕ < max

U
ϕ = max

∂U
ϕ,
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More applications of scaling coupling...

The previous result is known (B. Kawohl, [6])... _̈
Conformal invariance of RBM + geometric characterization of a convex maps
⇒ the same is true for any smooth bounded convex domain D ⊂ R2! ¨̂

Theorem 8 (MNP)

If D ⊂ R2 is a convex C1,α domain (0 < α < 1), and at least one of the
following hypothesis hold,

i) D is symmetric with respect to both coordinate axes;

ii) D is symmetric with respect to the horizontal axis and the diameter to
width ratio dD/lD is larger than 4j0

π ≈ 3.06;

then Hot Spots conjecture holds for the domain D.
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– Where should I put the radiator, to feel warmest at all times?
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Laugesen-Morpurgo conjecture

Conjecture 9 (R. Laugesen, C. Morpurgo, 1998)

For any t > 0, pU (t, x, x) is a strictly increasing radial function in the unit
ball U, that is

pU(t, x, x) < pU(t, y, y), (3)

for all x, y ∈ U with ‖x‖ < ‖y‖.

Remark: Laugesen-Morpugo conjecture⇒ Hot spots conjecture for the disk.
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Mirror coupling of BM/RBM

Was introduced by Kendall ([7]) and Cranston ([Cr]) (BM on manifolds), and
developed by Burdzy et al. ([1], [2], [3], ...) (RBM in a smooth domains).

Loosely speaking, in both cases the idea is that the increments of one
BM/RBM is the mirror image of the other.

A bit more precise: let Xt,Yt be RBM is a smooth domain D ⊂ Rd, with
driving BM Bt,Zt, and consider the SDE:

Zt = Bt − 2
∫ t

0

Xs − Ys

‖Xs − Ys‖2 (Xs − Ys) · dBs. (4)

Burdzy et al. proved the existence of a strong solution and pathwise
uniqueness of the above SDE for t < τ = inf {s > 0 : Xs = Ys}.
We let Xt = Yt for t ≥ τ , and refer to (Xt,Yt) as a mirror coupling in D
starting at x, y ∈ D.
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What does this mean?
For a unitary vector m, let H(m) = I − 2mm′ (reflection in the hyperplane
through the origin and perpendicular to m), and define G(x) = H

(
x
‖x‖

)
if

x 6= 0 and G(0) = I.

(4)⇐⇒ dZt = G
(

Xt − Yt

||Xt − Yt||

)
dWt,

so, (4) says that the increments dZt and dBt are mirror images wrt hyperplane
of symmetryMt between Xt and Yt).

Yt

Xt

H

0

Xξ = Yξ

Xt = Yt

m

Figure: Mirror coupling of Brownian motions (no reflection).
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Lemma 10 (“MirrorMt moves towards origin”, MNP)

Let Xt, Yt be a mirror coupling of RBM in U starting at x, y ∈ U, and let
τ = inf{t > 0 : Xt = Yt} and τ 1 = inf{t > 0 : 0 ∈Mt}.

For all times t < τ ∧ τ 1, the mirrorMt moves towards the origin, in such a way that if
a point P ∈ U and the origin are separated byMt1 for t1 ∈ [0, τ ∧ τ 1), then the point

P and the origin are separated byMt2 for all t2 ∈ [t1, τ ∧ τ 1).

0

Yt

Xt

x
y

Mt M0

At

Bt

P
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Inequalities for the Neumann heat kernel pU(t, x, y) of the unit ball U

Theorem 11 (MNP)

For any points x, y, z ∈ U such that ‖y‖ ≤ ‖x‖ and ‖x− z‖ ≤ ‖y− z‖, and
any t > 0 we have:

pU (t, y, z) ≤ pU (t, x, z) . (5)

Corollary 12

For any x ∈ U− {0}, r ∈ (0,min {‖x‖, 1− ‖x‖}) and t > 0 we have:∫
∂U

pU (t, x + ru, x) dσ(u) ≤ pU(t, x+r x
‖x‖ , x) ≤ pU(t, x+r x

‖x‖ , x+r x
‖x‖), (6)

where σ is the normalized surface measure on ∂U.
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Resolution of the Laugesen-Morpurgo conjecture

Theorem 13 (MNP)

For any t > 0, pU (t, x, x) is a strictly increasing radial function in U, that is

pU(t, x, x) < pU(t, y, y), (7)

for all x, y ∈ U with ‖x‖ < ‖y‖.

Proof.
d

d‖x‖pU (t, x, x) = lim
r↘0

pU(t, x + r x
‖x‖ , x + r x

‖x‖)− pU (t, x, x)

r

≥ lim
r↘0

∫
∂U pU (t, x + ru, x) dσ(u)− pU (t, x, x)

r

=

∫
∂U

lim
r↘0

pU (t, x + ru, x)− pU (t, x, x)
r

dσ(u)

=

∫
∂U
∇pU (t, x, x) · u dσ(u)

= 0.
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Proof.
d

d‖x‖pU (t, x, x) = lim
r↘0

pU(t, x + r x
‖x‖ , x + r x

‖x‖)− pU (t, x, x)

r

≥ lim
r↘0

∫
∂U pU (t, x + ru, x) dσ(u)− pU (t, x, x)

r

=

∫
∂U

lim
r↘0

pU (t, x + ru, x)− pU (t, x, x)
r

dσ(u)

=

∫
∂U
∇pU (t, x, x) · u dσ(u)

= 0.
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– Are we going to be warmer or colder in a bigger apartment??
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Chavel’s conjecture on domain monotonicity of Neumann heat kernel

Conjecture 14 (I. Chavel, 1986)
If D1 ⊂ D2 are convex domains then for all t > 0 and x, y ∈ D1 we have

pD1 (t, x, y) ≥ pD2 (t, x, y) .

I. Chavel: TRUE, if D2 is a ball centered at x (or y) and D1 is convex
(integration by parts).
W. S. Kendall: TRUE, if D1 is a ball centered at x (or y) and D2 is convex
(coupling arguments).

Theorem 15 (Chavel + Kendall)
If D1 ⊂ D2 are convex domains then for all t > 0 and x, y ∈ D1 we have

pD1 (t, x, y) ≥ pD2 (t, x, y) ,

whenever there exists a ball B centered at either x or y such that
D1 ⊂ B ⊂ D2.
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Extension of the mirror coupling

Question: can one define a mirror coupling of Brownian motions living in
different domains D1 and D2?
Answer: YES, for example if D1 = R and D2 = (0,∞):
Construction (Tanaka formula): Xt BM in R, Yt = |Xt| RBM on (0,∞) and

dYt = sgn(Xt)dXt + dLX
t , t ≥ 0. (8)

YES, if:

D1 = R2 and D2 half plane

D1 = R2 and D2 convex polygonal domain

D1 = R2 and D2 convex domain

D2 convex and D2 ⊂⊂ D1
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Extension of the mirror coupling

Question: can one define a mirror coupling of Brownian motions living in
different domains D1 and D2?
Answer: YES, if D1,2 ⊂ Rd smooth, with non-tangential boundaries, and
D1 ∩ D2 convex

D1

D2

Figure: Typical domains for the extended mirror coupling.
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An application of mirror coupling:
a unifying proof of Chavel’s conjecture

Theorem 16

If D1 ⊂ D2 ⊂ Rd are smooth and D1 is a convex domain, then for all t > 0
and x, y ∈ D1 we have

pD1 (t, x, y) ≥ pD2 (t, x, y) ,

whenever there exists a ball B centered at either x or y such that
D1 ⊂ B ⊂ D2.
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Sketch of the proof

Consider a mirror coupling of RBM Xt,Yt in D2,D1, starting at X0 = Y0 = x.
For all t > 0, the mirrorMt of the coupling cannot separate Yt and y.

y

D1 D2

B(y, r)

Mt

Xt

Yt

‖Yt− y‖ ≤ ‖Xt− y‖, t > 0 =⇒ pD1 (t, x, y) > pD2 (t, x, y) .
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Lion and Man problem (R. Rado, 1953)

 

 

 

tX tY

D

Given x, y ∈ D, does there exist X,Y with X0 = x, Y0 = y, |X′t | = |Y ′t | = 1 and

dist(Xt,Yt) > c, for all t > 0?

(Littlewood, Besicovitch, Croft, Bollobas et. al., Nahin, ...)
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Shy couplings (Benjamini, Burdzy and Chen – PTRF, 2007)

ε-shy coupling: P(dist(Xt,Yt) > ε for all t ≥ 0) > 0.

RBM case: no co-adapted shy coupling in

bounded convex planar domains with C2 boundary, without line
segments (BBC, 2007).

bounded convex domains in Rd, without line segments in the boundary if
d ≥ 3 (Kendall, 2009).

bounded CAT(0) spaces with boundary satisfying uniform exterior
sphere and interior cone conditions, e.g. simply connected bounded
planar domains with C2 boundary (Bramson, Burdzy & Kendall,
preprint).
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BMan and BLion problem on S2 (joint with I. Popescu) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tX tY

2S

Theorem 17

For any X0, Y0 ∈ S2, there exist couplings of BM on S2 s.t. for all t ≥ 0 we have

a) |Xt − Yt| =
√

4− |y + x|2 e−t ↗ 2 (distance-increasing coupling)

b) |Xt − Yt| = |y− x| e−t/2 ↘ 0 (distance-decreasing coupling)

c) |Xt − Yt| = |y− x| = const (fixed-distance coupling= “translation coupling”).
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Thank you!
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