Brownian couplings and applications

Mihai N. Pascu
Transilvania University of Braşov, Romania
6th International Conference on Stochastic Analysis and Its Applications

Bedlewo, Poland, September 10 - 14, 2012

Plan of the talk

The method of coupling of reflecting Brownian motions (RBM) is a useful technique for proving results on various functionals associated to RBM.

> In this talk, we will present two such couplings: the scaling coupling and the mirror coupling.

> As an application of the scaling coupling, we will prove a monotonicity of the lifetime of reflecting Brownian motion with killing, which implies the validity of the Hot Spots conjecture of J. Rauch for a certain class of domains. As applications of the mirror coupling, we will present the proof of the Laugesen-Morpurgo conjecture, and a unifying proof of the results of I. Chavel and W. Kendall on Chavel's conjecture.

> Time-nermitting, I will discuss some recent results on and its applications.

Plan of the talk

The method of coupling of reflecting Brownian motions (RBM) is a useful technique for proving results on various functionals associated to RBM.

In this talk, we will present two such couplings: the scaling coupling and the mirror coupling.

As an application of the scaling coupling, we will prove a monotonicity of the lifetime of reflecting Brownian motion with killing, which implies the validity of the Hot Spots conjecture of J. Rauch for a certain class of domains. As applications of the mirror coupling, we will present the proof of the Laugesen-Morpurgo conjecture, and a unifying proof of the results of I. Chavel and W. Kendall on Chavel's conjecture.

Time-permitting, I will discuss some recent results on and its applications.

Plan of the talk

The method of coupling of reflecting Brownian motions (RBM) is a useful technique for proving results on various functionals associated to RBM.

In this talk, we will present two such couplings: the scaling coupling and the mirror coupling.

As an application of the scaling coupling, we will prove a monotonicity of the lifetime of reflecting Brownian motion with killing, which implies the validity of the Hot Spots conjecture of J. Rauch for a certain class of domains.

As applications of the mirror coupling, we will present the proof of the Laugesen-Morpurgo conjecture, and a unifying proof of the results of I Chavel and W. Kendall on Chavel's conjecture.

Time-permitting, I will discuss some recent results on and its applications.

Plan of the talk

The method of coupling of reflecting Brownian motions (RBM) is a useful technique for proving results on various functionals associated to RBM.

In this talk, we will present two such couplings: the scaling coupling and the mirror coupling.

As an application of the scaling coupling, we will prove a monotonicity of the lifetime of reflecting Brownian motion with killing, which implies the validity of the Hot Spots conjecture of J. Rauch for a certain class of domains.

As applications of the mirror coupling, we will present the proof of the Laugesen-Morpurgo conjecture, and a unifying proof of the results of I. Chavel and W. Kendall on Chavel's conjecture.

Time-permitting, I will discuss some recent results on and its applications.

Plan of the talk

The method of coupling of reflecting Brownian motions (RBM) is a useful technique for proving results on various functionals associated to RBM.

In this talk, we will present two such couplings: the scaling coupling and the mirror coupling.

As an application of the scaling coupling, we will prove a monotonicity of the lifetime of reflecting Brownian motion with killing, which implies the validity of the Hot Spots conjecture of J. Rauch for a certain class of domains.

As applications of the mirror coupling, we will present the proof of the Laugesen-Morpurgo conjecture, and a unifying proof of the results of I. Chavel and W. Kendall on Chavel's conjecture.

Time-permitting, I will discuss some recent results on translation coupling and its applications.

- Where should I put the bed, to keep warm in the long run?

Heuristics

Consider $u(t, x)$ the solution of the Neumann heat equation in a smooth bounded domain $D \subset \mathbb{R}^{d}$ with generic initial condition u_{0}.
Let x_{t}^{+}be the hot spot at time t and x_{t}^{-}be the cold spot, i.e.

If the second Neumann eigenvalue λ_{2} is simple, and φ_{2} is a corresponding second Neumann eigenfunction, for large t we have

so x_{t}^{+}and x_{t}^{-}are close to the maximum/minimum points of φ_{2}. Hot spots (x_{+}^{+}) and cold spots (x_{+}^{-}) renel each other, so the distance between them tends to increase wrt t. In convex domains, the maximum distance is attained for points on the boundary.
Together with the above, this suggests the following.

Heuristics

Consider $u(t, x)$ the solution of the Neumann heat equation in a smooth bounded domain $D \subset \mathbb{R}^{d}$ with generic initial condition u_{0}.
Let x_{t}^{+}be the hot spot at time t and x_{t}^{-}be the cold spot, i.e.

$$
u\left(t, x_{t}^{+}\right)=\max _{x \in \bar{D}} u(t, x) \quad \text { and } \quad u\left(t, x_{t}^{-}\right)=\min _{x \in \bar{D}} u(t, x)
$$

If the second Neumann eigenvalue λ_{2} is simple, and φ_{2} is a corresponding second Neumann eigenfunction, for large t we have

so x_{t}^{+}and x_{t}^{-}are close to the maximum/minimum points of φ_{2}. Hot spots (x_{+}^{+}) and cold spots (x_{+}^{-}) repel each other, so the distance between them tends to increase wrt t. In convex domains, the maximum distance is attained for points on the boundary.
Together with the above, this suggests the following.

Heuristics

Consider $u(t, x)$ the solution of the Neumann heat equation in a smooth bounded domain $D \subset \mathbb{R}^{d}$ with generic initial condition u_{0}.
Let x_{t}^{+}be the hot spot at time t and x_{t}^{-}be the cold spot, i.e.

$$
u\left(t, x_{t}^{+}\right)=\max _{x \in \bar{D}} u(t, x) \quad \text { and } \quad u\left(t, x_{t}^{-}\right)=\min _{x \in \bar{D}} u(t, x)
$$

If the second Neumann eigenvalue λ_{2} is simple, and φ_{2} is a corresponding second Neumann eigenfunction, for large t we have

$$
u(t, x)=\int_{D} u_{0}+e^{-\lambda_{2} t} \varphi_{2}(x) \int_{D} u_{0} \varphi_{2}+R_{2}(t, x) \approx c_{0}+c_{1} e^{-\lambda_{2} t} \varphi_{2}(x)
$$

so x_{t}^{+}and x_{t}^{-}are close to the maximum/minimum points of φ_{2}.
them tends to increase wrt t. In convex domains, the maximum distance is
attained for points on the boundary.
Together with the above, this suggests the following.

Heuristics

Consider $u(t, x)$ the solution of the Neumann heat equation in a smooth bounded domain $D \subset \mathbb{R}^{d}$ with generic initial condition u_{0}.
Let x_{t}^{+}be the hot spot at time t and x_{t}^{-}be the cold spot, i.e.

$$
u\left(t, x_{t}^{+}\right)=\max _{x \in \bar{D}} u(t, x) \quad \text { and } \quad u\left(t, x_{t}^{-}\right)=\min _{x \in \bar{D}} u(t, x)
$$

If the second Neumann eigenvalue λ_{2} is simple, and φ_{2} is a corresponding second Neumann eigenfunction, for large t we have

$$
u(t, x)=\int_{D} u_{0}+e^{-\lambda_{2} t} \varphi_{2}(x) \int_{D} u_{0} \varphi_{2}+R_{2}(t, x) \approx c_{0}+c_{1} e^{-\lambda_{2} t} \varphi_{2}(x)
$$

so x_{t}^{+}and x_{t}^{-}are close to the maximum/minimum points of φ_{2}.
Hot spots $\left(x_{t}^{+}\right)$and cold spots $\left(x_{t}^{-}\right)$repel each other, so the distance between them tends to increase wrt t. In convex domains, the maximum distance is attained for points on the boundary.

Heuristics

Consider $u(t, x)$ the solution of the Neumann heat equation in a smooth bounded domain $D \subset \mathbb{R}^{d}$ with generic initial condition u_{0}.
Let x_{t}^{+}be the hot spot at time t and x_{t}^{-}be the cold spot, i.e.

$$
u\left(t, x_{t}^{+}\right)=\max _{x \in \bar{D}} u(t, x) \quad \text { and } \quad u\left(t, x_{t}^{-}\right)=\min _{x \in \bar{D}} u(t, x)
$$

If the second Neumann eigenvalue λ_{2} is simple, and φ_{2} is a corresponding second Neumann eigenfunction, for large t we have

$$
u(t, x)=\int_{D} u_{0}+e^{-\lambda_{2} t} \varphi_{2}(x) \int_{D} u_{0} \varphi_{2}+R_{2}(t, x) \approx c_{0}+c_{1} e^{-\lambda_{2} t} \varphi_{2}(x)
$$

so x_{t}^{+}and x_{t}^{-}are close to the maximum/minimum points of φ_{2}.
Hot spots $\left(x_{t}^{+}\right)$and cold spots $\left(x_{t}^{-}\right)$repel each other, so the distance between them tends to increase wrt t. In convex domains, the maximum distance is attained for points on the boundary.
Together with the above, this suggests the following.

Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)

Maxima and minima of second Neumann eigenfunctions of convex bounded domains are attained (only) on the boundary of the domain.

HS still open in its full generality! (e.g., proof for acute triangles?...)

Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)

Maxima and minima of second Neumann eigenfunctions of convex bounded domains are attained (only) on the boundary of the domain.

- B. Kawohl: true for balls, annuli, parallelipipeds in \mathbb{R}^{d}
- K. Burdzy and W. Werner: counterexample (non-convex domain): minimum inside the domain, maximum on the boundary
- R. Bass and K. Burdzy: stronger counterexample (non-convex domain): both minimum and maximum inside the domain
- D. Jerisson and N. Nadirashvili: true if the domain has two orthogonal axis of symmetry
- R. Bañuelos and K. Burdzy: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} symmetric wrt it
- MNP: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ antisymmetric wrt it, or ... (some condition on the nodal set of φ_{2})
- Other results: true for obtuse triangles, for some some doubly connected domains, for nearly circular domains

Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)

Maxima and minima of second Neumann eigenfunctions of convex bounded domains are attained (only) on the boundary of the domain.

- B. Kawohl: true for balls, annuli, parallelipipeds in \mathbb{R}^{d}
- K. Burdzy and W. Werner: counterexample (non-convex domain): minimum inside the domain, maximum on the boundary
- R. Bass and K. Burdzy: stronger counterexample (non-convex domain): both minimum and maximum inside the domain
- D. Jerisson and N. Nadirashvili: true if the domain has two orthogonal axis of symmetry
- R. Bañuelos and K. Burdzy: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} symmetric wrt it
- MNP: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and antisymmetric wrt it, or ... (some condition on the nodal set of φ_{2})
- Other results: true for obtuse triangles, for some some doubly connected domains, for nearly circular domains

Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)

Maxima and minima of second Neumann eigenfunctions of convex bounded domains are attained (only) on the boundary of the domain.

- B. Kawohl: true for balls, annuli, parallelipipeds in \mathbb{R}^{d}
- K. Burdzy and W. Werner: counterexample (non-convex domain): minimum inside the domain, maximum on the boundary
- R. Bass and K. Burdzy: stronger counterexample (non-convex domain): both minimum and maximum inside the domain
- D. Jerisson and N. Nadirashvili: true if the domain has two orthogonal axis of symmetry
- R. Bañuelos and K. Burdzy: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} symmetric wrt it
- MNP: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and antisymmetric wrt it, or ... (some condition on the nodal set of φ_{2})
- Other results: true for obtuse trianoles, for some some doubly connected domains, for nearly circular domains

Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)

Maxima and minima of second Neumann eigenfunctions of convex bounded domains are attained (only) on the boundary of the domain.

- B. Kawohl: true for balls, annuli, parallelipipeds in \mathbb{R}^{d}
- K. Burdzy and W. Werner: counterexample (non-convex domain): minimum inside the domain, maximum on the boundary
- R. Bass and K. Burdzy: stronger counterexample (non-convex domain): both minimum and maximum inside the domain
- D. Jerisson and N. Nadirashvili: true if the domain has two orthogonal axis of symmetry
- R. Bañuelos and K. Burdzy: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} symmetric wrt it
- MND. true if there are two orthogonal axes of symmetry, or just one axis of symmetry and 4 antisymmetric wrt it, or ... (some condition on the nodal set of φ_{2})
- Other results: true for obtuse triangles, for some some doubly connected domains, for nearly circular domains

Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)

Maxima and minima of second Neumann eigenfunctions of convex bounded domains are attained (only) on the boundary of the domain.

- B. Kawohl: true for balls, annuli, parallelipipeds in \mathbb{R}^{d}
- K. Burdzy and W. Werner: counterexample (non-convex domain): minimum inside the domain, maximum on the boundary
- R. Bass and K. Burdzy: stronger counterexample (non-convex domain): both minimum and maximum inside the domain
- D. Jerisson and N. Nadirashvili: true if the domain has two orthogonal axis of symmetry
- R. Bañuelos and K. Burdzy: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} symmetric wrt it
- MNP: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and antisymmetric wrt it, or ... (some condition on the nodal set of φ_{2})
- Other results: true for obtuse triangles for some some doubly connected domains, for nearly circular domains

Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)

Maxima and minima of second Neumann eigenfunctions of convex bounded domains are attained (only) on the boundary of the domain.

- B. Kawohl: true for balls, annuli, parallelipipeds in \mathbb{R}^{d}
- K. Burdzy and W. Werner: counterexample (non-convex domain): minimum inside the domain, maximum on the boundary
- R. Bass and K. Burdzy: stronger counterexample (non-convex domain): both minimum and maximum inside the domain
- D. Jerisson and N. Nadirashvili: true if the domain has two orthogonal axis of symmetry
- R. Bañuelos and K. Burdzy: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} symmetric wrt it
- MNP: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} antisymmetric wrt it, or ... (some condition on the nodal set of φ_{2})
- Other results: true for obtuse triangles, for some some doubly connected domains, for nearly circular domains

Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)

Maxima and minima of second Neumann eigenfunctions of convex bounded domains are attained (only) on the boundary of the domain.

- B. Kawohl: true for balls, annuli, parallelipipeds in \mathbb{R}^{d}
- K. Burdzy and W. Werner: counterexample (non-convex domain): minimum inside the domain, maximum on the boundary
- R. Bass and K. Burdzy: stronger counterexample (non-convex domain): both minimum and maximum inside the domain
- D. Jerisson and N. Nadirashvili: true if the domain has two orthogonal axis of symmetry
- R. Bañuelos and K. Burdzy: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} symmetric wrt it
- MNP: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} antisymmetric wrt it, or ... (some condition on the nodal set of φ_{2})
- Other results: true for obtuse triangles, for some some doubly connected domains, for nearly circular domains.
HS still open in its full generality! (e.g., proof for acute triangles?...)

Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)

Maxima and minima of second Neumann eigenfunctions of convex bounded domains are attained (only) on the boundary of the domain.

- B. Kawohl: true for balls, annuli, parallelipipeds in \mathbb{R}^{d}
- K. Burdzy and W. Werner: counterexample (non-convex domain): minimum inside the domain, maximum on the boundary
- R. Bass and K. Burdzy: stronger counterexample (non-convex domain): both minimum and maximum inside the domain
- D. Jerisson and N. Nadirashvili: true if the domain has two orthogonal axis of symmetry
- R. Bañuelos and K. Burdzy: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} symmetric wrt it
- MNP: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} antisymmetric wrt it, or ... (some condition on the nodal set of φ_{2})
- Other results: true for obtuse triangles, for some some doubly connected domains, for nearly circular domains.
HS still open in its full generality! (e.g., proof for acute triangles?...)

Hot Spots conjecture (Jeffrey Rauch, 1974)

Conjecture 1 (Hot Spots conjecture)

Maxima and minima of second Neumann eigenfunctions of convex bounded domains are attained (only) on the boundary of the domain.

- B. Kawohl: true for balls, annuli, parallelipipeds in \mathbb{R}^{d}
- K. Burdzy and W. Werner: counterexample (non-convex domain): minimum inside the domain, maximum on the boundary
- R. Bass and K. Burdzy: stronger counterexample (non-convex domain): both minimum and maximum inside the domain
- D. Jerisson and N. Nadirashvili: true if the domain has two orthogonal axis of symmetry
- R. Bañuelos and K. Burdzy: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} symmetric wrt it
- MNP: true if there are two orthogonal axes of symmetry, or just one axis of symmetry and φ_{2} antisymmetric wrt it, or ... (some condition on the nodal set of φ_{2})
- Other results: true for obtuse triangles, for some some doubly connected domains, for nearly circular domains.
HS still open in its full generality! (e.g., proof for acute triangles?...)

Definition 2 (Reflecting Brownian motion)

Reflecting Brownian motion in $D \subset \mathbb{R}^{d}$ starting at $x_{0} \in \bar{D}$: a solution to

$$
\begin{equation*}
X_{t}=x_{0}+B_{t}+\int_{0}^{t} \nu_{D}\left(X_{s}\right) d L_{s}^{X}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

where B_{t} is a d-dimensional Brownian motion starting at origin, ν_{D} is the inward unit vector field on $\partial D, L_{t}^{X}$ is the local time of X on ∂D.

Definition 3 (Reflecting Brownian motion with killing)

Reflecting Brownian motion in D killed on hitting $S \subset \partial D$, starting at $x_{0} \in \bar{D}$:

$$
Y_{t}= \begin{cases}X_{t}, & t<\tau \tag{2}\\ \dagger, & t \geq \tau\end{cases}
$$

where X_{t} is RBM in D starting at $x_{0}, \tau=\tau_{S}=\inf \left\{t>0: X_{t} \in S\right\}$ is the killing time, and $\dagger \notin D$ is the cemetery state.

Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- Synchronous coupling: $\left(B_{t}, B_{t}+v\right)$
- Mirror coupling: $\left(B_{t}, R B_{t}\right)$
- Scaling coupling: $\left(B_{t}, c B_{t / c^{2}}\right)$

Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- Synchronous coupling: $\left(B_{t}, B_{t}+v\right)$
- Mirror coupling: $\left(B_{t}, R B_{t}\right)$
- Scaling coupling: $\left(B_{t}, c B_{t / c^{2}}\right)$

Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- Synchronous coupling: $\left(B_{t}, B_{t}+v\right)$
- Mirror coupling: $\left(B_{t}, R B_{t}\right)$
- Scaling coupling: $\left(B_{t}, c B_{t / c^{2}}\right)$

Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- Synchronous coupling: $\left(B_{t}, B_{t}+v\right)$
- Mirror coupling: $\left(B_{t}, R B_{t}\right)$
- Scaling coupling: $\left(B_{t}, c B_{t / c^{2}}\right)$

Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).
This gives rise to:

- Synchronous coupling: $\left(B_{t}, B_{t}+v\right)$
- Mirror coupling: $\left(B_{t}, R B_{t}\right)$
- Scaling coupling: $\left(B_{t}, c B_{t / c^{2}}\right)$

The above can be extended to the case of reflecting Brownian motion.

Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).
Couplings of RBM:

- Synchronous coupling: (R. Atar, K. Burdzy, R. Bañuelos, Z. Q. Chen, M. Cranston)

Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).
Couplings of RBM:

- Synchronous coupling: (R. Atar, K. Burdzy, R. Bañuelos, Z. Q. Chen, M. Cranston)
- Mirror coupling : (W. S. Kendal, M. Cranston, R. Atar, K. Burdzy, R. Bañuelos, MNP)

Couplings of RBM

BM is invariant under translation, rotation/symmetry and scaling (almost).
Couplings of RBM:

- Synchronous coupling: (R. Atar, K. Burdzy, R. Bañuelos, Z. Q. Chen, M. Cranston)
- Mirror coupling : (W. S. Kendal, M. Cranston, R. Atar, K. Burdzy, R. Bañuelos, MNP)
- Scaling coupling : (MNP)

Lemma 4 ("Multiplicative Skorokhod lemma" in the unit disk, MNP)
If B_{t} is a 2-dimensional $B M, M_{t}=1 \vee \sup _{s \leq t}\left|B_{s}\right|$ and $\alpha_{t}^{-1}=A_{t}=\int_{0}^{t} \frac{1}{M_{s}^{2}} d s$,

$$
X_{t}=\frac{1}{M_{\alpha_{t}}} B_{\alpha_{t}}, \quad t \geq 0
$$

is a $R B M$ in $U=\left\{z \in \mathbb{R}^{2}:|z|<1\right\}$.

Lemma 4 ("Multiplicative Skorokhod lemma" in the unit disk, MNP)

If B_{t} is a 2-dimensional $B M, M_{t}=1 \vee \sup _{s \leq t}\left|B_{s}\right|$ and $\alpha_{t}^{-1}=A_{t}=\int_{0}^{t} \frac{1}{M_{s}^{2}} d s$,

$$
X_{t}=\frac{1}{M_{\alpha_{t}}} B_{\alpha_{t}}, \quad t \geq 0
$$

is a $R B M$ in $U=\left\{z \in \mathbb{R}^{2}:|z|<1\right\}$.

Lemma 4 ("Multiplicative Skorokhod lemma" in the unit disk, MNP)

If B_{t} is a 2-dimensional $B M, M_{t}=1 \vee \sup _{s \leq t}\left|B_{s}\right|$ and $\alpha_{t}^{-1}=A_{t}=\int_{0}^{t} \frac{1}{M_{s}^{2}} d s$,

$$
X_{t}=\frac{1}{M_{\alpha_{t}}} B_{\alpha_{t}}, \quad t \geq 0
$$

is a $R B M$ in $U=\left\{z \in \mathbb{R}^{2}:|z|<1\right\}$.

Proof: Itô formula with $f(x, y)=\frac{x}{y}, B_{t}$ and M_{t} (and a time change).

Scaling coupling of RBM in U starting at $\left(x e^{i \theta}, y e^{i \theta}\right)(0<x \leq y \leq 1)$: a pair $\left(X_{t}, Y_{t}\right)$, where X_{t} RBM in U starting at $x e^{i \theta}, Y_{t}=\frac{1}{M_{\alpha_{t}}} X_{\alpha_{t}}$,

$$
M_{t}=\frac{x}{y} \vee \sup _{s \leq t}\left|X_{s}\right|, \text { and } \alpha_{t}^{-1}=A_{t}=\int_{0}^{t} \frac{1}{M_{s}^{2}} d s
$$

Lifetime of RBM in the unit disk, killed on a diameter

Lifetime of RBM in the unit disk, killed on a diameter

$$
\begin{aligned}
& M_{t}=\frac{x}{y} \vee \sup _{s \leq t}\left|X_{s}\right| \leq 1 \Longrightarrow A_{t}=\int_{0} \frac{1}{M_{s}^{2}} d s \geq t \Longrightarrow \alpha_{t}=A_{t} \\
& \left(\tau^{X}, \tau^{Y} \text { denote the lifetime of } X_{t}, Y_{t} \text { killed on the diameter } S\right) \text {. }
\end{aligned}
$$

Lifetime of RBM in the unit disk, killed on a diameter

(τ^{X}, τ^{Y} denote the lifetime of X_{t}, Y_{t} killed on the diameter S).

Lifetime of RBM in the unit disk, killed on a diameter

$\left(\tau^{X}, \tau^{Y}\right.$ denote the lifetime of X_{t}, Y_{t} killed on the diameter S).

Lifetime of RBM in the unit disk, killed on a diameter

$\left(\tau^{X}, \tau^{Y}\right.$ denote the lifetime of X_{t}, Y_{t} killed on the diameter $\left.S\right)$.

Lifetime of RBM in the unit disk, killed on a diameter

(τ^{X}, τ^{Y} denote the lifetime of X_{t}, Y_{t} killed on the diameter S).

Scaling coupling and applications

Corollary 5 (Monotonicity of lifetime in the disk)
For any $t>0, P\left(\tau^{x}>t\right)$ is a radially increasing function in U (τ^{x} is the lifetime of RBM in U starting at x, killed on a diameter).

Remark: for t large, $P\left(\tau^{x}>t\right) \approx c e^{-\mu_{1} t} \psi_{1}(x)=c e^{-\lambda_{2} t} \varphi_{2}(x)$.

Theorem 6 (Monotonicity of antisymmetric second Neumann eigenfunctions)

 If φ is a second Neumann eigenfunction of the Laplacian on U, antisymmetric with respect to a diameter, then φ is a radially monotone function.Remark: any second Neumann eigenfunction is antisymmetric in the disk!

Corollary 7 (Hot Snots for the unit disk)

The Hot Spots conjecture holds for the unit disk U, that is for any second Neumann eigenfunction φ of the laplacian on U we have

Scaling coupling and applications

Corollary 5 (Monotonicity of lifetime in the disk)
For any $t>0, P\left(\tau^{x}>t\right)$ is a radially increasing function in U (τ^{x} is the lifetime of RBM in U starting at x, killed on a diameter).

Remark: for t large, $P\left(\tau^{x}>t\right) \approx c e^{-\mu_{1} t} \psi_{1}(x)=c e^{-\lambda_{2} t} \varphi_{2}(x)$.

$$
\begin{aligned}
& \text { Theorem } 6 \text { (Monotonicity of antisymmetric second Neumann eigenfunctions) } \\
& \text { If } \varphi \text { is a second Neumann eigenfunction of the Laplacian on } U \text {, antisymmetric } \\
& \text { with respect to a diameter, then } \varphi \text { is a radially monotone function. }
\end{aligned}
$$

\square
\square
The Hot Spots conjecture holds for the unit disk U, that is for any second Neumann eigenfunction φ of the laplacian on U we have

Scaling coupling and applications

Corollary 5 (Monotonicity of lifetime in the disk)
For any $t>0, P\left(\tau^{x}>t\right)$ is a radially increasing function in U (τ^{x} is the lifetime of RBM in U starting at x, killed on a diameter).

Remark: for t large, $P\left(\tau^{x}>t\right) \approx c e^{-\mu_{1} t} \psi_{1}(x)=c e^{-\lambda_{2} t} \varphi_{2}(x)$.
Theorem 6 (Monotonicity of antisymmetric second Neumann eigenfunctions)
If φ is a second Neumann eigenfunction of the Laplacian on U, antisymmetric with respect to a diameter, then φ is a radially monotone function.

Remark: any second Neumann eigenfunction is antisymmetric in the disk!
\square
The Hot Spots conjecture holds for the unii disk U, that is for any second Neumann eigenfunction φ of the laplacian on U we have
$\min _{\partial U} \varphi=\min _{\bar{U}} \varphi<\max _{\bar{U}} \varphi=\max _{\partial U} \varphi$,

Scaling coupling and applications

Corollary 5 (Monotonicity of lifetime in the disk)
For any $t>0, P\left(\tau^{x}>t\right)$ is a radially increasing function in U (τ^{x} is the lifetime of RBM in U starting at x, killed on a diameter).

Remark: for t large, $P\left(\tau^{x}>t\right) \approx c e^{-\mu_{1} t} \psi_{1}(x)=c e^{-\lambda_{2} t} \varphi_{2}(x)$.
Theorem 6 (Monotonicity of antisymmetric second Neumann eigenfunctions)
If φ is a second Neumann eigenfunction of the Laplacian on U, antisymmetric with respect to a diameter, then φ is a radially monotone function.

Remark: any second Neumann eigenfunction is antisymmetric in the disk!
Corolary 7 (Hot Spots for the unit disk)
The Hot Spots conjecture holds for the unit disk U, that is for any second Neumann eigenfunction φ of the laplacian on U we have
$\min _{\partial U} \varphi=\min _{\bar{U}} \varphi<\max _{\bar{U}} \varphi=\max _{\partial U} \varphi$,

Scaling coupling and applications

Corollary 5 (Monotonicity of lifetime in the disk)

For any $t>0, P\left(\tau^{x}>t\right)$ is a radially increasing function in U (τ^{x} is the lifetime of RBM in U starting at x, killed on a diameter).

Remark: for t large, $P\left(\tau^{x}>t\right) \approx c e^{-\mu_{1} t} \psi_{1}(x)=c e^{-\lambda_{2} t} \varphi_{2}(x)$.

Theorem 6 (Monotonicity of antisymmetric second Neumann eigenfunctions)

If φ is a second Neumann eigenfunction of the Laplacian on U, antisymmetric with respect to a diameter, then φ is a radially monotone function.

Remark: any second Neumann eigenfunction is antisymmetric in the disk!

Corollary 7 (Hot Spots for the unit disk)

The Hot Spots conjecture holds for the unit disk U, that is for any second Neumann eigenfunction φ of the laplacian on U we have

$$
\min _{\partial U} \varphi=\min _{\bar{U}} \varphi<\max _{\bar{U}} \varphi=\max _{\partial U} \varphi
$$

More applications of scaling coupling...

The previous result is known (B. Kawohl, [6])... $\ddot{\sim}$
Conformal invariance of $\mathrm{RBM}+$ geometric characterization of a convex maps \Rightarrow the same is true for any smooth bounded convex domain $D \subset \mathbb{R}^{2}$!

Theorem 8 (MNP)

If $D \subset \mathbb{R}^{2}$ is a convex $C^{1, \alpha}$ domain $(0<\alpha<1)$, and at least one of the following hypothesis hold,
i) D is symmetric with respect to both coordinate axes;
ii) D is symmetric with respect to the horizontal axis and the diameter to width ratio d_{D} / l_{D} is larger than $\frac{4 j_{0}}{\pi} \approx 3.06$;
then Hot Spots conjecture holds for the domain D.

More applications of scaling coupling...

The previous result is known (B. Kawohl, [6])... $\ddot{\sim}$
Conformal invariance of RBM + geometric characterization of a convex maps \Rightarrow the same is true for any smooth bounded convex domain $D \subset \mathbb{R}^{2}!\ddot{=}$

Theorem 8 (MNP)
 If $D \subset \mathbb{m}^{2}$ is a convex $C^{1, \alpha}$ domain $(0<\alpha<1)$, and at least one of the
 following hypothesis hold,
 D is symmetric with respect to both coordinate axes;
 D is symmetric with respect to the horizontal axis and the diameter to width ratio d_{D} / l_{D} is larger than $\frac{4 j_{0}}{\pi} \approx 3.06$;

then Hot Spots conjecture holds for the domain D.

More applications of scaling coupling...

The previous result is known (B. Kawohl, [6])... $\ddot{\sim}$
Conformal invariance of RBM + geometric characterization of a convex maps \Rightarrow the same is true for any smooth bounded convex domain $D \subset \mathbb{R}^{2}!\ddot{\sim}$

Theorem 8 (MNP)

If $D \subset \mathbb{R}^{2}$ is a convex $C^{1, \alpha}$ domain $(0<\alpha<1)$, and at least one of the following hypothesis hold,
i) D is symmetric with respect to both coordinate axes;
ii) D is symmetric with respect to the horizontal axis and the diameter to width ratio d_{D} / l_{D} is larger than $\frac{4 j_{0}}{\pi} \approx 3.06$;
then Hot Spots conjecture holds for the domain D.

- Where should I put the radiator, to feel warmest at all times?

Laugesen-Morpurgo conjecture

Conjecture 9 (R. Laugesen, C. Morpurgo, 1998)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in the unit ball U, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{3}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.

Remark: Laugesen-Morpugo conjecture \Rightarrow Hot spots conjecture for the disk.

Laugesen-Morpurgo conjecture

Conjecture 9 (R. Laugesen, C. Morpurgo, 1998)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in the unit ball U, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{3}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.

Remark: Laugesen-Morpugo conjecture \Rightarrow Hot spots conjecture for the disk.

Mirror coupling of BM/RBM

Was introduced by Kendall ([7]) and Cranston ([Cr]) (BM on manifolds), and developed by Burdzy et al. ([1], [2], [3], ...) (RBM in a smooth domains).

Loosely speaking, in both cases the idea is that the increments of one BM/RBM is the mirror image of the other.

A bit more precise: let X_{t}, Y_{t} be RBM is a smooth domain $D \subset R^{d}$, with driving $\mathrm{BM} B_{t}, Z_{t}$, and consider the SDE:

Burdzy et al. proved the existence of a strong solution and pathwise uniqueness of the above SDE for $t<\tau=\inf \left\{s>0: X_{s}=Y_{s}\right\}$.

We let $X_{t}=Y_{t}$ for $t \geq \tau$, and refer to $\left(X_{t}, Y_{t}\right)$ as a mirror coupling in D
starting at $x, y \in \bar{D}$.

Mirror coupling of BM/RBM

Was introduced by Kendall ([7]) and Cranston ([Cr]) (BM on manifolds), and developed by Burdzy et al. ([1], [2], [3], ...) (RBM in a smooth domains).

Loosely speaking, in both cases the idea is that the increments of one BM/RBM is the mirror image of the other.

A bit more precise: let X_{t}, Y_{t} be RBM is a smooth domain $D \subset R^{d}$, with driving $\mathrm{BM} B_{t}, Z_{t}$, and consider the SDE:

Burdzy et al. proved the existence of a strong solution and pathwise uniqueness of the above SDE for $t<\tau=\inf \left\{s>0: X_{s}=Y_{s}\right\}$ We let $X_{t}=Y_{t}$ for $t \geq \tau$, and refer to $\left(X_{t}, Y_{t}\right)$ as a mirror coupling in D starting at $x, y \in \bar{D}$.

Mirror coupling of BM/RBM

Was introduced by Kendall ([7]) and Cranston ([Cr]) (BM on manifolds), and developed by Burdzy et al. ([1], [2], [3], ...) (RBM in a smooth domains).

Loosely speaking, in both cases the idea is that the increments of one BM/RBM is the mirror image of the other.

A bit more precise: let X_{t}, Y_{t} be RBM is a smooth domain $D \subset R^{d}$, with driving $\mathrm{BM} B_{t}, Z_{t}$, and consider the SDE:

$$
\begin{equation*}
Z_{t}=B_{t}-2 \int_{0}^{t} \frac{X_{s}-Y_{s}}{\left\|X_{s}-Y_{s}\right\|^{2}}\left(X_{s}-Y_{s}\right) \cdot d B_{s} \tag{4}
\end{equation*}
$$

Burdzy et al. proved the existence of a strong solution and pathwise uniqueness of the above SDE for $t<\tau=\inf \left\{s>0: X_{s}=Y_{s}\right\}$. We let $X_{t}=Y_{t}$ for $t \geq \tau$, and refer to $\left(X_{t}, Y_{t}\right)$ as a mirror coupling in D starting at $x, y \in \bar{D}$.

Mirror coupling of BM/RBM

Was introduced by Kendall ([7]) and Cranston ([Cr]) (BM on manifolds), and developed by Burdzy et al. ([1], [2], [3], ...) (RBM in a smooth domains).

Loosely speaking, in both cases the idea is that the increments of one BM/RBM is the mirror image of the other.

A bit more precise: let X_{t}, Y_{t} be RBM is a smooth domain $D \subset R^{d}$, with driving $\mathrm{BM} B_{t}, Z_{t}$, and consider the SDE:

$$
\begin{equation*}
Z_{t}=B_{t}-2 \int_{0}^{t} \frac{X_{s}-Y_{s}}{\left\|X_{s}-Y_{s}\right\|^{2}}\left(X_{s}-Y_{s}\right) \cdot d B_{s} \tag{4}
\end{equation*}
$$

Burdzy et al. proved the existence of a strong solution and pathwise uniqueness of the above SDE for $t<\tau=\inf \left\{s>0: X_{s}=Y_{s}\right\}$.

We let $X_{t}=Y_{t}$ for $t \geq \tau$, and refer to $\left(X_{t}, Y_{t}\right)$ as a mirror coupling in D
starting at $x, y \in \bar{D}$.

Mirror coupling of BM/RBM

Was introduced by Kendall ([7]) and Cranston ([Cr]) (BM on manifolds), and developed by Burdzy et al. ([1], [2], [3], ...) (RBM in a smooth domains).

Loosely speaking, in both cases the idea is that the increments of one BM/RBM is the mirror image of the other.

A bit more precise: let X_{t}, Y_{t} be RBM is a smooth domain $D \subset R^{d}$, with driving $\mathrm{BM} B_{t}, Z_{t}$, and consider the SDE:

$$
\begin{equation*}
Z_{t}=B_{t}-2 \int_{0}^{t} \frac{X_{s}-Y_{s}}{\left\|X_{s}-Y_{s}\right\|^{2}}\left(X_{s}-Y_{s}\right) \cdot d B_{s} \tag{4}
\end{equation*}
$$

Burdzy et al. proved the existence of a strong solution and pathwise uniqueness of the above SDE for $t<\tau=\inf \left\{s>0: X_{s}=Y_{s}\right\}$.

We let $X_{t}=Y_{t}$ for $t \geq \tau$, and refer to $\left(X_{t}, Y_{t}\right)$ as a mirror coupling in D starting at $x, y \in \bar{D}$.

What does this mean?

For a unitary vector m, let $H(m)=I-2 \mathrm{~mm}^{\prime}$ (reflection in the hyperplane through the origin and perpendicular to m), and define $G(x)=H\left(\frac{x}{\|x\|}\right)$ $x \neq 0$ and $G(0)=I$.

$$
(4) \Longleftrightarrow d Z_{t}=G\left(\frac{X_{t}-Y_{t}}{\left\|X_{t}-Y_{t}\right\|}\right) d W_{t},
$$

so, (4) says that the increments $d Z_{t}$ and $d B_{t}$ are mirror images wrt hyperplane of symmetry \mathcal{M}_{t} between X_{t} and Y_{t}).

What does this mean?
For a unitary vector m, let $H(m)=I-2 m m^{\prime}$ (reflection in the hyperplane through the origin and perpendicular to m), and define $G(x)=H\left(\frac{x}{\|x\|}\right)$ if $x \neq 0$ and $G(0)=I$.

so, (4) says that the increments $d Z_{t}$ and $d B_{t}$ are mirror images wrt hyperplane of symmetry \mathcal{M}_{t} between X_{t} and $\left.Y_{t}\right)$.

What does this mean?

For a unitary vector m, let $H(m)=I-2 \mathrm{~mm}^{\prime}$ (reflection in the hyperplane through the origin and perpendicular to m), and define $G(x)=H\left(\frac{x}{\|x\|}\right)$ if $x \neq 0$ and $G(0)=I$.

$$
(4) \Longleftrightarrow d Z_{t}=G\left(\frac{X_{t}-Y_{t}}{\left\|X_{t}-Y_{t}\right\|}\right) d W_{t},
$$

so, (4) says that the increments $d Z_{t}$ and $d B_{t}$ are mirror images wrt hyperplane of symmetry \mathcal{M}_{t} between X_{t} and Y_{t}).

What does this mean?
For a unitary vector m, let $H(m)=I-2 \mathrm{~mm}^{\prime}$ (reflection in the hyperplane through the origin and perpendicular to m$)$, and define $G(x)=H\left(\frac{x}{\|x\|}\right)$ if $x \neq 0$ and $G(0)=I$.

$$
(4) \Longleftrightarrow d Z_{t}=G\left(\frac{X_{t}-Y_{t}}{\left\|X_{t}-Y_{t}\right\|}\right) d W_{t},
$$

so, (4) says that the increments $d Z_{t}$ and $d B_{t}$ are mirror images wrt hyperplane of symmetry \mathcal{M}_{t} between X_{t} and Y_{t}).

What does this mean?
For a unitary vector m, let $H(m)=I-2 \mathrm{~mm}^{\prime}$ (reflection in the hyperplane through the origin and perpendicular to m$)$, and define $G(x)=H\left(\frac{x}{\|x\|}\right)$ if $x \neq 0$ and $G(0)=I$.

$$
(4) \Longleftrightarrow d Z_{t}=G\left(\frac{X_{t}-Y_{t}}{\left\|X_{t}-Y_{t}\right\|}\right) d W_{t},
$$

so, (4) says that the increments $d Z_{t}$ and $d B_{t}$ are mirror images wrt hyperplane of symmetry \mathcal{M}_{t} between X_{t} and Y_{t}).

Figure: Mirror coupling of Brownian motions (no reflection),

Lemma 10 ("Mirror \mathcal{M}_{t} moves towards origin", MNP)

Let X_{t}, Y_{t} be a mirror coupling of RBM in \mathbb{U} starting at $x, y \in \overline{\mathbb{U}}$, and let

$$
\tau=\inf \left\{t>0: X_{t}=Y_{t}\right\} \quad \text { and } \quad \tau_{1}=\inf \left\{t>0: 0 \in \mathcal{M}_{t}\right\} .
$$

For all times $t<\tau \wedge \tau_{1}$, the mirror \mathcal{M}_{t} moves towards the origin, in such a way that if a point $P \in \mathbb{U}$ and the origin are separated by $\mathcal{M}_{t_{1}}$ for $t_{1} \in\left[0, \tau \wedge \tau_{1}\right)$, then the point P and the origin are separated by $\mathcal{M}_{t_{2}}$ for all $t_{2} \in\left[t_{1}, \tau \wedge \tau_{1}\right)$.

Inequalities for the Neumann heat kernel $p_{\mathrm{U}}(t, x, y)$ of the unit ball \mathbb{U}

Theorem 11 (MNP)

For any points $x, y, z \in \overline{\mathbb{U}}$ such that $\|y\| \leq\|x\|$ and $\|x-z\| \leq\|y-z\|$, and any $t>0$ we have:

$$
\begin{equation*}
p_{\mathbb{U}}(t, y, z) \leq p_{\mathbb{U}}(t, x, z) . \tag{5}
\end{equation*}
$$

\square Corollary 12

For any $x \in \mathbb{U}-\{0\}, r \in(0, \min \{\|x\|, 1-\|x\|\})$ and $t>0$ we have:

where σ is the normalized surface measure on ∂U.

Inequalities for the Neumann heat kernel $p_{\mathrm{U}}(t, x, y)$ of the unit ball \mathbb{U}

Theorem 11 (MNP)

For any points $x, y, z \in \overline{\mathbb{U}}$ such that $\|y\| \leq\|x\|$ and $\|x-z\| \leq\|y-z\|$, and any $t>0$ we have:

$$
\begin{equation*}
p_{\mathbb{U}}(t, y, z) \leq p_{\mathbb{U}}(t, x, z) . \tag{5}
\end{equation*}
$$

Corollary 12

For any $x \in \mathbb{U}-\{0\}, r \in(0, \min \{\|x\|, 1-\|x\|\})$ and $t>0$ we have:

$$
\begin{equation*}
\int_{\partial \mathbb{U}} p_{\mathbb{U}}(t, x+r u, x) d \sigma(u) \leq p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x\right) \leq p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x+r \frac{x}{\|x\|}\right) \tag{6}
\end{equation*}
$$

where σ is the normalized surface measure on $\partial \mathbb{U}$.

Resolution of the Laugesen-Morpurgo conjecture

Theorem 13 (MNP)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in \mathbb{U}, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{7}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.

Proof.

Resolution of the Laugesen-Morpurgo conjecture

Theorem 13 (MNP)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in \mathbb{U}, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{7}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.
Proof. $\frac{d}{d\|x\|} p_{\mathbb{U}}(t, x, x)=\lim _{r \searrow 0} \frac{p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x+r \frac{x}{\|x\|}\right)-p_{\mathbb{U}}(t, x, x)}{r}$

Resolution of the Laugesen-Morpurgo conjecture

Theorem 13 (MNP)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in \mathbb{U}, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{7}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.
Proof. $\frac{d}{d\|x\|} p_{\mathbb{U}}(t, x, x)=\lim _{r \searrow 0} \frac{p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x+r \frac{x}{\|x\|}\right)-p_{\mathbb{U}}(t, x, x)}{r}$

$$
\geq \lim _{r \searrow 0} \frac{\int_{\partial \mathbb{U}} p_{\mathbb{U}}(t, x+r u, x) d \sigma(u)-p_{\mathbb{U}}(t, x, x)}{r}
$$

Resolution of the Laugesen-Morpurgo conjecture

Theorem 13 (MNP)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in \mathbb{U}, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{7}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.
Proof. $\frac{d}{d\|x\|} p_{\mathbb{U}}(t, x, x)=\lim _{r \searrow 0} \frac{p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x+r \frac{x}{\|x\|}\right)-p_{\mathbb{U}}(t, x, x)}{r}$

$$
\begin{aligned}
& \geq \lim _{r \searrow 0} \frac{\int_{\partial \mathbb{U}} p_{\mathbb{U}}(t, x+r u, x) d \sigma(u)-p_{\mathbb{U}}(t, x, x)}{r} \\
& =\int_{\partial \mathbb{U}} r \searrow 0 \\
& \lim _{\mathbb{U}}(t, x+r u, x)-p_{\mathbb{U}}(t, x, x) \\
& r
\end{aligned} \sigma(u)
$$

Resolution of the Laugesen-Morpurgo conjecture

Theorem 13 (MNP)

For any $t>0, p_{\mathbb{U}}(t, x, x)$ is a strictly increasing radial function in \mathbb{U}, that is

$$
\begin{equation*}
p_{\mathbb{U}}(t, x, x)<p_{\mathbb{U}}(t, y, y), \tag{7}
\end{equation*}
$$

for all $x, y \in \overline{\mathbb{U}}$ with $\|x\|<\|y\|$.
Proof. $\frac{d}{d\|x\|} p_{\mathbb{U}}(t, x, x)=\lim _{r \searrow 0} \frac{p_{\mathbb{U}}\left(t, x+r \frac{x}{\|x\|}, x+r \frac{x}{\|x\|}\right)-p_{\mathbb{U}}(t, x, x)}{r}$

$$
\geq \lim _{r \searrow 0} \frac{\int_{\partial \mathbb{U}} p_{\mathbb{U}}(t, x+r u, x) d \sigma(u)-p_{\mathbb{U}}(t, x, x)}{r}
$$

$$
=\int_{\partial \mathbb{U}} \lim _{r \searrow 0} \frac{p_{\mathbb{U}}(t, x+r u, x)-p_{\mathbb{U}}(t, x, x)}{r} d \sigma(u)
$$

$$
=\int_{\partial \mathbb{U}} \nabla p_{\mathbb{U}}(t, x, x) \cdot u d \sigma(u)
$$

$$
=0
$$

- Are we going to be warmer or colder in a bigger apartment??

Chavel's conjecture on domain monotonicity of Neumann heat kernel

Conjecture 14 (I. Chavel, 1986)

If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{1}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

> I. Chavel: TRUE, if D_{2} is a ball centered at x (or y) and D_{1} is convex (integration by parts). W. S. Kendall: TRUE, if D_{1} is a ball centered at x (or y) and D_{2} is convex (coupling arguments).
Theorem 15 (Chavel + Kendall)
If $D_{1} \subset D_{2}$ are convex domains the for all $t>0$ and $x, y \in D_{1}$ we have
$p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y)$
whenever there exists a ball B centered at either x or y such that

Chavel's conjecture on domain monotonicity of Neumann heat kernel

Conjecture 14 (I. Chavel, 1986)

If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{1}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

I. Chavel: TRUE, if D_{2} is a ball centered at x (or y) and D_{1} is convex (integration by parts).
W. S. Kendall: TRUE, if D_{1} is a ball centered at x (or y) and D_{2} is convex (coupling arguments).

Theorem 15 (Chavel + K endall)
 If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{1}$ we have

Chavel's conjecture on domain monotonicity of Neumann heat kernel

Conjecture 14 (I. Chavel, 1986)

If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{1}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

I. Chavel: TRUE, if D_{2} is a ball centered at x (or y) and D_{1} is convex (integration by parts).
W. S. Kendall: TRUE, if D_{1} is a ball centered at x (or y) and D_{2} is convex (coupling arguments).

Chavel's conjecture on domain monotonicity of Neumann heat kernel

Conjecture 14 (I. Chavel, 1986)
If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{1}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

I. Chavel: TRUE, if D_{2} is a ball centered at x (or y) and D_{1} is convex (integration by parts).
W. S. Kendall: TRUE, if D_{1} is a ball centered at x (or y) and D_{2} is convex (coupling arguments).

Theorem 15 (Chavel + Kendall)

If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{1}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y),
$$

whenever there exists a ball B centered at either x or y such that $D_{1} \subset B \subset D_{2}$.

Extension of the mirror coupling

Question: can one define a mirror coupling of Brownian motions living in different domains D_{1} and D_{2} ?
Answer: YES, for example if $D_{1}=\mathbb{R}$ and $D_{2}=(0, \infty)$:
Construction (Tanaka formula): $X_{t} \mathrm{BM}$ in $\mathbb{R}, Y_{t}=\left|X_{t}\right| \mathrm{RBM}$ on $(0, \infty)$ and

YES, if:

- $D_{1}=\mathbb{R}^{2}$ and D_{2} half plane
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex polygonal domain
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex domain
- D_{2} convex and $D_{2} \subset \subset D_{1}$

Extension of the mirror coupling

Question: can one define a mirror coupling of Brownian motions living in different domains D_{1} and D_{2} ?
Answer: YES, for example if $D_{1}=\mathbb{R}$ and $D_{2}=(0, \infty)$:

YES, if:

- $D_{1}=\mathbb{R}^{2}$ and D_{2} half plane
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex polygonal domain
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex domain
- D_{2} convex and $D_{2} \subset \subset D_{1}$

Extension of the mirror coupling

Question: can one define a mirror coupling of Brownian motions living in different domains D_{1} and D_{2} ?
Answer: YES, for example if $D_{1}=\mathbb{R}$ and $D_{2}=(0, \infty)$:
Construction (Tanaka formula): X_{t} BM in $\mathbb{R}, Y_{t}=\left|X_{t}\right|$ RBM on $(0, \infty)$ and

$$
\begin{equation*}
d Y_{t}=\operatorname{sgn}\left(X_{t}\right) d X_{t}+d L_{t}^{X}, \quad t \geq 0 . \tag{8}
\end{equation*}
$$

- $D_{1}=\mathbb{R}^{2}$ and D_{2} half plane
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex nolyg onal domain
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex domain
- D_{2} convex and $D_{2} \subset \subset D_{1}$

Extension of the mirror coupling

Question: can one define a mirror coupling of Brownian motions living in different domains D_{1} and D_{2} ?
Answer: YES, for example if $D_{1}=\mathbb{R}$ and $D_{2}=(0, \infty)$:
Construction (Tanaka formula): X_{t} BM in $\mathbb{R}, Y_{t}=\left|X_{t}\right|$ RBM on $(0, \infty)$ and

$$
\begin{equation*}
d Y_{t}=\operatorname{sgn}\left(X_{t}\right) d X_{t}+d L_{t}^{X}, \quad t \geq 0 . \tag{8}
\end{equation*}
$$

YES, if:

- $D_{1}=\mathbb{R}^{2}$ and D_{2} half plane
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex polygonal domain
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex domain
- D_{2} convex and $D_{2} \subset \subset D_{1}$

Extension of the mirror coupling

Question: can one define a mirror coupling of Brownian motions living in different domains D_{1} and D_{2} ?
Answer: YES, for example if $D_{1}=\mathbb{R}$ and $D_{2}=(0, \infty)$:
Construction (Tanaka formula): X_{t} BM in $\mathbb{R}, Y_{t}=\left|X_{t}\right|$ RBM on $(0, \infty)$ and

$$
\begin{equation*}
d Y_{t}=\operatorname{sgn}\left(X_{t}\right) d X_{t}+d L_{t}^{X}, \quad t \geq 0 . \tag{8}
\end{equation*}
$$

YES, if:

- $D_{1}=\mathbb{R}^{2}$ and D_{2} half plane
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex polygonal domain
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex domain
- D_{2} convex and $D_{2} \subset \subset D_{1}$

Extension of the mirror coupling

Question: can one define a mirror coupling of Brownian motions living in different domains D_{1} and D_{2} ?
Answer: YES, for example if $D_{1}=\mathbb{R}$ and $D_{2}=(0, \infty)$:
Construction (Tanaka formula): X_{t} BM in $\mathbb{R}, Y_{t}=\left|X_{t}\right|$ RBM on $(0, \infty)$ and

$$
\begin{equation*}
d Y_{t}=\operatorname{sgn}\left(X_{t}\right) d X_{t}+d L_{t}^{X}, \quad t \geq 0 . \tag{8}
\end{equation*}
$$

YES, if:

- $D_{1}=\mathbb{R}^{2}$ and D_{2} half plane
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex polygonal domain
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex domain
- D_{2} convex and $D_{2} \subset \subset D_{1}$

Extension of the mirror coupling

Question: can one define a mirror coupling of Brownian motions living in different domains D_{1} and D_{2} ?
Answer: YES, for example if $D_{1}=\mathbb{R}$ and $D_{2}=(0, \infty)$:
Construction (Tanaka formula): X_{t} BM in $\mathbb{R}, Y_{t}=\left|X_{t}\right|$ RBM on $(0, \infty)$ and

$$
\begin{equation*}
d Y_{t}=\operatorname{sgn}\left(X_{t}\right) d X_{t}+d L_{t}^{X}, \quad t \geq 0 . \tag{8}
\end{equation*}
$$

YES, if:

- $D_{1}=\mathbb{R}^{2}$ and D_{2} half plane
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex polygonal domain
- $D_{1}=\mathbb{R}^{2}$ and D_{2} convex domain
- D_{2} convex and $D_{2} \subset \subset D_{1}$

Extension of the mirror coupling

Question: can one define a mirror coupling of Brownian motions living in different domains D_{1} and D_{2} ?
Answer: YES, if $D_{1,2} \subset \mathbb{R}^{d}$ smooth, with non-tangential boundaries, and $D_{1} \cap D_{2}$ convex

Figure: Typical domains for the extended mirror coupling.

An application of mirror coupling: a unifying proof of Chavel's conjecture

Theorem 16

If $D_{1} \subset D_{2} \subset \mathbb{R}^{d}$ are smooth and D_{1} is a convex domain, then for all $t>0$ and $x, y \in D_{1}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y),
$$

whenever there exists a ball B centered at either x or y such that $D_{1} \subset B \subset D_{2}$.

Sketch of the proof

Consider a mirror coupling of RBM X_{t}, Y_{t} in D_{2}, D_{1}, starting at $X_{0}=Y_{0}=x$. For all $t>0$, the mirror \mathcal{M}_{t} of the coupling cannot separate Y_{t} and y.

Sketch of the proof

Consider a mirror coupling of RBM X_{t}, Y_{t} in D_{2}, D_{1}, starting at $X_{0}=Y_{0}=x$. For all $t>0$, the mirror \mathcal{M}_{t} of the coupling cannot separate Y_{t} and y.

Sketch of the proof

Consider a mirror coupling of RBM X_{t}, Y_{t} in D_{2}, D_{1}, starting at $X_{0}=Y_{0}=x$. For all $t>0$, the mirror \mathcal{M}_{t} of the coupling cannot separate Y_{t} and y.

Sketch of the proof

Consider a mirror coupling of RBM X_{t}, Y_{t} in D_{2}, D_{1}, starting at $X_{0}=Y_{0}=x$. For all $t>0$, the mirror \mathcal{M}_{t} of the coupling cannot separate Y_{t} and y.

$$
\left\|Y_{t}-y\right\| \leq\left\|X_{t}-y\right\|, \quad t>0
$$

Sketch of the proof

Consider a mirror coupling of RBM X_{t}, Y_{t} in D_{2}, D_{1}, starting at $X_{0}=Y_{0}=x$. For all $t>0$, the mirror \mathcal{M}_{t} of the coupling cannot separate Y_{t} and y.

$\left\|Y_{t}-y\right\| \leq\left\|X_{t}-y\right\|, \quad t>0 \quad \Longrightarrow \quad p_{D_{1}}(t, x, y)>p_{D_{2}}(t, x, y) . \quad \square$

Lion and Man problem (R. Rado, 1953)

Given $x, y \in D$, does there exist X, Y with $X_{0}=x, Y_{0}=y,\left|X_{t}^{\prime}\right|=\left|Y_{t}^{\prime}\right|=1$ and

$$
\operatorname{dist}\left(X_{t}, Y_{t}\right)>c, \text { for all } t>0 ?
$$

(Littlewood, Besicovitch, Croft, Bollobas et. al., Nahin, ...)

Shy couplings (Benjamini, Burdzy and Chen - PTRF, 2007)

ε-shy coupling: $P\left(\operatorname{dist}\left(X_{t}, Y_{t}\right)>\varepsilon\right.$ for all $\left.t \geq 0\right)>0$.

RBM case: no co-adapted shy coupling in

- bounded convex nlanar domains with C^{2} boundary, without line segments (BBC, 2007).
- bounded convex domains in \mathbb{R}^{d}, without line segments in the boundary if $d \geq 3$ (Kendall, 2009).
- bounded CAT(0) spaces with boundary satisfying uniform exterior sphere and interior cone conditions, e.g. simply connected bounded planar domains with C^{2} boundary (Bramson, Burdzy \& Kendall, preprint).

Shy couplings (Benjamini, Burdzy and Chen - PTRF, 2007)

ε-shy coupling: $P\left(\operatorname{dist}\left(X_{t}, Y_{t}\right)>\varepsilon\right.$ for all $\left.t \geq 0\right)>0$.

RBM case: no co-adapted shy coupling in

- bounded convex planar domains with C^{2} boundary, without line segments (BBC, 2007).
- bounded convex domains in \mathbb{R}^{d}, without line segments in the boundary if $d \geq 3$ (Kendall, 2009).
- bounded CAT(0) spaces with boundary satisfying uniform exterior sphere and interior cone conditions, e.g. simply connected bounded planar domains with C^{2} boundary (Bramson, Burdzy \& Kendall, preprint).

Shy couplings (Benjamini, Burdzy and Chen - PTRF, 2007)

ε-shy coupling: $P\left(\operatorname{dist}\left(X_{t}, Y_{t}\right)>\varepsilon\right.$ for all $\left.t \geq 0\right)>0$.

RBM case: no co-adapted shy coupling in

- bounded convex planar domains with C^{2} boundary, without line segments (BBC, 2007).
- bounded convex domains in \mathbb{R}^{d}, without line segments in the boundary if $d \geq 3$ (Kendall, 2009).
- bounded CAT(0) spaces with boundary satisfying uniform exterior sphere and interior cone conditions, e.g. simply connected bounded planar domains with C^{2} boundary (Bramson, Burdzy \& Kendall, preprint).

Shy couplings (Benjamini, Burdzy and Chen - PTRF, 2007)

ε-shy coupling: $P\left(\operatorname{dist}\left(X_{t}, Y_{t}\right)>\varepsilon\right.$ for all $\left.t \geq 0\right)>0$.

RBM case: no co-adapted shy coupling in

- bounded convex planar domains with C^{2} boundary, without line segments (BBC, 2007).
- bounded convex domains in \mathbb{R}^{d}, without line segments in the boundary if $d \geq 3$ (Kendall, 2009).
- bounded CAT(0) spaces with boundary satisfying uniform exterior sphere and interior cone conditions, e.g. simply connected bounded planar domains with C^{2} boundary (Bramson, Burdzy \& Kendall, preprint).

BMan and BLion problem on \mathcal{S}^{2} (joint with I. Popescu)

Theorem 17
For any, $X_{0}, Y_{0} \in S^{2}$, there exist couplings of $B M$ on S^{2} s.t. for all $t \geq 0$ we have
a) $\left|X_{t}-Y_{t}\right|=\sqrt{4-|y+x|^{2} e^{-t}} \nearrow_{2} \quad$ (distance-increasing coupling)
b) $\left|X_{t}-Y_{t}\right|=|y-x| e^{-t / 2} \searrow 0 \quad$ (distance-decreasing coupling)
c) $\left|X_{t}-Y_{t}\right|=|y-x|=$ const (fixed-distance coupling="translation coupling").

BMan and BLion problem on \mathcal{S}^{2} (joint with I. Popescu)

Theorem 17

For any $X_{0}, Y_{0} \in \mathcal{S}^{2}$, there exist couplings of $B M$ on \mathcal{S}^{2} s.t. for all $t \geq 0$ we have
a) $\left|X_{t}-Y_{t}\right|=\sqrt{4-|y+x|^{2} e^{-t}} \nearrow 2$
(distance-increasing coupling)
(distance-decreasing coupling)
c) $\left|X_{t}-Y_{t}\right|=|y-x|=$ const (fixed-distance coupling="translation coupling").

BMan and BLion problem on \mathcal{S}^{2} (joint with I. Popescu)

Theorem 17

For any $X_{0}, Y_{0} \in \mathcal{S}^{2}$, there exist couplings of $B M$ on \mathcal{S}^{2} s.t. for all $t \geq 0$ we have
a) $\left|X_{t}-Y_{t}\right|=\sqrt{4-|y+x|^{2} e^{-t}} \nearrow 2$
b) $\left|X_{t}-Y_{t}\right|=|y-x| e^{-t / 2} \searrow 0$
(distance-increasing coupling)
(distance-decreasing coupling)

BMan and BLion problem on \mathcal{S}^{2} (joint with I. Popescu)

Theorem 17

For any $X_{0}, Y_{0} \in \mathcal{S}^{2}$, there exist couplings of $B M$ on \mathcal{S}^{2} s.t. for all $t \geq 0$ we have
a) $\left|X_{t}-Y_{t}\right|=\sqrt{4-|y+x|^{2} e^{-t}} \nearrow 2$
b) $\left|X_{t}-Y_{t}\right|=|y-x| e^{-t / 2} \searrow 0$
c) $\left|X_{t}-Y_{t}\right|=|y-x|=$ const \quad (fixed-distance coupling= "translation coupling").

Thank you!

References

R. Atar, K. Burdzy, On Neumann eigenfunctions in lip domains, J. Amer. Math. Soc. 17 (2004) , pp. 243 - 265.
R. Atar, K. Burdzy, Mirror couplings and Neumann eigenfunctions, Indiana Univ. Math. J. 57 (2008), No. 3, pp. 1317 - 1351.
K. Burdzy, W. S. Kendall, Efficient Markovian couplings: Examples and counterexamples, Ann. Appl. Probab. 10 (2000), No. 2, pp. $362-409$.
I. Chavel, Heat diffusion in insulated convex domains, J. London Math. Soc. (2) 34 (1986), No. 3, pp. 473 - 478.
M. Cranston, Gradient estimates on manifolds using coupling, J. Funct. Anal. 99 (1991), No.1, 110 - 124.
W. Doeblin, Expose de la Theorie des Chaines simples constantes de Markoff aun nombre fini d'Etats, Rev. Math. de l'Union Interbalkanique 2 (1938), pp. 77 - 105.
B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, Vol. 1150, Springer-Verlag, 1985.
W. S. Kendall, Nonnegative Ricci curvature and the Brownian coupling property, Stochastics 19 (1986), No. 1-2, pp. 111 - 129.
W. S. Kendall, Coupled Brownian motions and partial domain monotonicity for the Neumann heat kernel, J. Funct. Anal. 86 (1989),

No. 2, pp. $226-236$.

References

M. N. Pascu, Scaling coupling of reflecting Brownian motions and the hot spots problem, Trans. Amer. Math. Soc. 354 (2002), No. 11, pp. $4681-4702$.
M. N. Pascu, Monotonicity properties of Neumann heat kernel in the ball, J. Funct. Anal. 260 (2011), No. 2, pp. 490 - 500.

易
M. N. Pascu, Mirror coupling of reflecting Brownian motion and an application to Chavel's conjecture, Electron. J. Probab. 16 (2011), No. 18, pp. $504-530$.

