

Local regularity for nonlocal operators - a robust approach

Moritz Kaßmann

Universität Bielefeld

Bedlewo ICSAA

Parabolic Problems - Related Articles

- A new formulation of Harnack's inequality for nonlocal operators,
 C. R. Math. Acad. Sci. Paris, 2011
- (with A. Mimica)
 Analysis of jump processes with nondegenerate jumping kernels, arXiv
- (with M. Felsinger)
 Local regularity for parabolic nonlocal operators, arXiv
- (with B. Dyda)
 Local regularity and comparability for symmetric nonlocal Dirichlet forms, arXiv (new version soon)

Discussion of the title

Discussion of the title I

Nonlocal Operators:

- $(-\Delta)^{\alpha/2}$ or more general generators of Lévy processes
- $(Lu)(x) = p.v. \int_{\mathbb{R}^d} (u(y) u(x))k(x,y)dx$

Local Regularity:

- Given $D \subset \mathbb{R}^d$ we establish properties in $D' \in D$ which hold uniformly for all functions u which satisfy Lu = f or $Lu \leq f$ in D.
- We interpret Lu = f or $Lu \le f$ in D probabilistically if helpful.

Area strongly influenced by Hilbert's 19th problem and the solution by DeGiorgi/Nash. **Problem:** Given $F \in C^{\infty}(\mathbb{R}^d)$ convex with bounded 2nd derivatives, can one prove that every minimizer of $I(v) = \int_{\Gamma} F(\nabla v(x)) \mathrm{d}(x)$ is smooth?

Discussion of the title II

Robust Approach:

Given $\alpha_0 \in (0,2)$ assume

$$\mathcal{L} \subset \left\{ L \;\middle|\; \begin{array}{c} \textit{L} \text{ is an (integro-)} \\ \textit{differentiability order } \alpha \text{ with } \alpha_0 \leq \alpha < 2 \end{array} \right\} \;.$$

A (regularity) result for $\mathcal L$ is called robust if the corresponding estimates for $L \in \mathcal L$ are uniformly continuous for $\alpha \in (\alpha_0, 2)$ where α corresponds to L.

Discussion of the title II

Robust Approach:

Given $\alpha_0 \in (0,2)$ assume

$$\mathcal{L} \subset \left\{ L \;\middle|\; \begin{array}{l} \textit{L is an (integro-)differential operator of}\\ \textit{differentiability order α with $\alpha_0 \leq \alpha < 2$} \end{array} \right\} \;.$$

A (regularity) result for $\mathcal L$ is called robust if the corresponding estimates for $L \in \mathcal L$ are uniformly continuous for $\alpha \in (\alpha_0, 2)$ where α corresponds to L.

Example: Assume
$$\mathcal{L} = \{(-\Delta)^{\alpha/2} | \alpha_0 \leq \alpha < 2\}$$
. Then

$$p(t, x, y) \approx t^{-\alpha/d} \left(\frac{t}{|x - y|^{\alpha + t}} \right)$$
 cannot be robust.

But, for $D \subset \mathbb{R}^3$ a bounded $C^{1,1}$ -domain,

$$G_D(x,y) symp |x-y|^{lpha-d} \Big(1 \wedge rac{\delta_D(x)^{lpha/2} \delta_D(y)^{lpha/2}}{|x-y|^{lpha}} \Big) \quad ext{can be robust} \,.$$

Discussion of the title III

Why are robust results interesting?

- Detection of joint properties of continuous/discontinuous processes or local/nonlocal operators.
- Important for the investigation of operators like $(-\Delta)^{\alpha(x)}$, $\alpha_0 \le \alpha \le 2$.
- ... not necessarily as a tool for the study of the limit case $\alpha = 2$.

What are specific problems?

- Detection of joint properties of continuous/discontinuous processes or local/nonlocal operators.
- Assumptions and technical tools/auxiliary results have to be robust!

Discussion of the title III

Why are robust results interesting?

- Detection of joint properties of continuous/discontinuous processes or local/nonlocal operators.
- Important for the investigation of operators like $(-\Delta)^{\alpha(x)}$, $\alpha_0 \le \alpha \le 2$.
- ... not necessarily as a tool for the study of the limit case $\alpha = 2$.

What are specific problems?

- Detection of joint properties of continuous/discontinuous processes or local/nonlocal operators.
- Assumptions and technical tools/auxiliary results have to be robust!

Example:(Poincaré Inequality) Given $\alpha \in (\alpha_0, 2)$, $p \ge 1$, ϕ some admissible weight, there is $C = C(\alpha_0, p, d, \phi) > 0$ such that for $u \in L^p(B_1)$

$$\int\limits_{B_1} |u(x) - u^\phi_{B_1}|^p \phi(x) \, dx \leq C(2 - \alpha) \iint\limits_{B_1 B_1} \frac{|u(x) - u(y)|^p}{|x - y|^{d + p\alpha/2}} \left(\phi(y) \wedge \phi(x) \right) dy \, dx$$

Elliptic Problems - Symmetric Nonlocal Dirichlet Forms

Elliptic Problems I

For $k : \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$ and $\alpha \in (0, 2)$ we consider the following quadratic forms on $L^2(D) \times L^2(D)$:

$$\mathcal{E}_{D}^{k}(u,u) = \int_{D} \int_{D} (u(y) - u(x))^{2} k(x,y) \, dx \, dy, \tag{1}$$

$$\mathcal{E}_D^{\alpha}(u,u) = \alpha(2-\alpha) \int_D \int_D (u(y)-u(x))^2 |x-y|^{-d-\alpha} dx dy, \qquad (2)$$

where $D \subset \mathbb{R}^d$ is some open set.

Given a kernel $k: \mathbb{R}^d \times \mathbb{R}^d \to [0, \infty)$ and functions $u, v: \mathbb{R}^d \to \mathbb{R}$ we define the quantity

$$\mathcal{E}^{k}(u,v) = \iint_{\mathbb{R}^{d}\mathbb{R}^{d}} (u(y) - u(x)) (v(y) - v(x)) k(x,y) \, dy \, dx,$$

if it is finite.

Elliptic Problems II

Assume $\alpha \in (0,2)$, $A, B \ge 1$ and $k : \mathbb{R}^d \times \mathbb{R}^d \to [0,\infty)$ be measurable.

For all balls $B\subset\mathbb{R}^d$ with radius smaller or equal one and all functions $u\in C_c^\infty(B): A^{-1}\mathcal{E}_B^k(u,u)\leq \mathcal{E}_B^\alpha(u,u)\leq A\mathcal{E}_B^k(u,u)$. (A)

For every
$$R, \rho \in (0,1)$$
 there is a nonnegative function $\tau \in C^1(\mathbb{R}^d)$ with $\operatorname{supp}(\tau) \subset \overline{B_{R+\rho}}, \tau(x) \equiv 1$ on B_R and
$$\sup_{x \in \mathbb{R}^d} \int \left(\tau(y) - \tau(x)\right)^2 k(x,y) \, dy \leq B \rho^{-\alpha} \, . \tag{B}$$

Elliptic Problems III

Fix $\alpha_0 \in (0,2)$, $A \ge 1$, $B \ge 1$. Let $\mathcal{K}(\alpha_0,A,B)$ denote the set of all measurable kernels $k : \mathbb{R}^d \times \mathbb{R}^d \to [0,\infty)$ with the property that for each kernel k there is $\alpha \in (\alpha_0,2)$ such that (A) and (B) hold.

Theorem (Weak Harnack Inequality, MK07, Dyda-MK11)

Let $\alpha_0 \in (0,2)$ and $A \ge 1$, $B \ge 1$. There are positive reals p_0 , c such that for every $k \in \mathcal{K}(\alpha_0,A,B)$ and every $u \in L^\infty(\mathbb{R}^d) \cap H^{\alpha/2}_{loc}(B(1))$ with $u \ge 0$ in B(1) satisfying $\mathcal{E}^k(u,\phi) \ge 0$ for every nonnegative $\phi \in C_c^\infty(B(1))$ the following inequality holds:

$$c\inf_{B(1/4)}u \geq \left(\int_{B(1/2)}u(x)^{p_0}\,dx\right)^{1/p_0}-c\sup_{x\in B(1/2)}\int_{\mathbb{R}^d\setminus B(1)}u^{-}(z)k(x,z)\,dz\,.$$

The constants p_0 , c depend only on d, α_0 , A, B.

Parabolic Problems

Parabolic Problems - Setup

Fix an open domain $\Omega \subset \mathbb{R}^d$, $d \geq 3$, $I \subset \mathbb{R}$, $\alpha_0 \in (0,2)$ and $\gamma, M, \lambda, \Lambda > 0$. For $t \in I$, $\alpha \in (\alpha_0, 2)$ and $x, y \in \mathbb{R}^d$ assume $k_t(x, y) = k_t(y, x)$ and

$$\frac{\lambda \left(2-\alpha\right)}{\left|x-y\right|^{d+\alpha}} \leq k_{t}(x,y) \leq \frac{\Lambda \left(2-\alpha\right)}{\left|x-y\right|^{d+\alpha}} \qquad \text{if } |x-y| \leq 1, \tag{K1}$$

$$0 \le k_t(x,y) \le \frac{M(2-\alpha)}{|x-y|^{d+\gamma}} \quad \text{if } |x-y| > 1.$$
 (K2)

We study (super-)solutions $u \colon I \times \mathbb{R}^d \to \mathbb{R}$ of

$$\partial_t u - L u = f \qquad ext{in } I imes \Omega,$$
 where $(Lu)(t,x) = p.v. \int_{\mathbb{D}^d} \left(u(t,y) - u(t,x) \right) k_t(x,y) \, \mathrm{d}y.$

Parabolic Problems - Special case: $L = -(-\Delta)^{\alpha/2}$

Let
$$\mathcal{A}_{d,-lpha}=rac{2^{lpha} \Gamma\left(rac{d+lpha}{2}
ight)}{\pi^{d/2} \left|\Gamma\left(rac{-lpha}{2}
ight)
ight|}.$$
 Note that

$$\mathcal{A}_{d,-\alpha} \sim \alpha (2-\alpha)$$
 for $\alpha \in (0,2)$.

If
$$k_t(x,y) = \mathcal{A}_{d,-\alpha} |x-y|^{-d-\alpha}$$
, then for $u \in C_c^{\infty}(\mathbb{R}^d)$

$$(Lu)(x) = \mathcal{A}_{d,-\alpha} \lim_{\varepsilon \to 0} \int\limits_{|y-x| > \varepsilon} \frac{u(y) - u(x)}{|y-x|^{d+\alpha}} \, \mathrm{d}y$$

$$\widehat{Lu}(\xi) = |\xi|^{\alpha} \, \widehat{u}(\xi).$$

Think:
$$k_t(x, y) = (2 - \alpha)g(t, x, y) |x - y|^{-d - \alpha}$$
 with $\lambda \leq g(t, x, y) \leq \Lambda$.

Parabolic Problems - Main Theorems I

Theorem (Weak Harnack inequality, MF/MK 2012)

There is a constant $C = C(d, \alpha_0, \lambda, \Lambda, \gamma, M)$ such that for every supersolution u on $Q = (-1, 1) \times B_2(0)$ which is nonnegative in $(-1, 1) \times \mathbb{R}^d$ the following inequality holds:

$$||u||_{L^1(U_{\ominus})} \le C \left(\inf_{U_{\oplus}} u + ||f||_{L^{\infty}(Q)} \right), \tag{HI}$$

where
$$U_\oplus = \left(1-(\frac{1}{2})^{\alpha},1\right) \times B_{1/2}(0), \ U_\ominus = \left(-1,-1+(\frac{1}{2})^{\alpha}\right) \times B_{1/2}(0).$$

Parabolic Problems - Main Theorems I

Theorem (Weak Harnack inequality, MF/MK 2012)

There is a constant $C = C(d, \alpha_0, \lambda, \Lambda, \gamma, M)$ such that for every supersolution u on $Q = (-1, 1) \times B_2(0)$ which is nonnegative in $(-1, 1) \times \mathbb{R}^d$ the following inequality holds:

$$||u||_{L^1(U_{\ominus})} \le C \left(\inf_{U_{\oplus}} u + ||f||_{L^{\infty}(Q)} \right), \tag{HI}$$

where
$$U_{\oplus} = \left(1 - (\frac{1}{2})^{\alpha}, 1\right) \times B_{1/2}(0)$$
, $U_{\ominus} = \left(-1, -1 + (\frac{1}{2})^{\alpha}\right) \times B_{1/2}(0)$.

 α in the domains U_\oplus and U_\ominus can be replaced 2, i.e. the assertion is still true if

$$U_{\oplus} = \left(\frac{3}{4}, 1\right) \times B_{1/2}(0), \quad U_{\ominus} = \left(-1, -\frac{3}{4}\right) \times B_{1/2}(0).$$

"For every supersolution" means

"For every supersolution" means

• for every $\alpha \in (\alpha_0, 2)$

"For every supersolution" means

- for every $\alpha \in (\alpha_0, 2)$
 - for every $k_l(x, y)$ satisfying (K1), (K2)

"For every supersolution" means

- for every $\alpha \in (\alpha_0, 2)$
 - for every $k_t(x, y)$ satisfying (K1), (K2)
 - for every supersolution.

"For every supersolution" means

- for every $\alpha \in (\alpha_0, 2)$
 - for every $k_t(x, y)$ satisfying (K1), (K2)
 - for every supersolution.

Example: For $\alpha_n = 2 - \frac{1}{n}$, $k_t^n(x, y)$ corresponding to α_n and u_n a (super-)solution to

$$\partial_t u_n - L^n u_n = f$$
,

the estimate holds uniformly in $n \in \mathbb{N}$.

Parabolic Problems - Main Theorems II

Theorem (Hölder regularity)

There is a constant $\beta = \beta(d, \lambda, \Lambda, \gamma, M, \alpha_0)$ such that for every solution u in $Q = I \times \Omega$ with f = 0 and every $Q' \in Q$ the following estimate holds:

$$\sup_{(t,x),(s,y)\in Q'}\frac{|u(t,x)-u(s,y)|}{\left(|x-y|+|t-s|^{1/\alpha}\right)^{\beta}}\leq \frac{\|u\|_{L^{\infty}(I\times\mathbb{R}^d)}}{D^{\beta}},$$

with some constant D = D(Q, Q') > 0.

Lemma (Bombieri-Giusti)

Let $(U(r))_{\theta \leq r \leq 1}$ be increasing with $U(r) \subset \mathbb{R}^{d+1}$. Fix $m, c_0 > 0$, $\theta \in [1/2, 1]$, $\eta \in (0, 1)$ and $0 < p_0 \leq \infty$. Assume that $w \colon U(1) \to [0, \infty)$ is measurable and

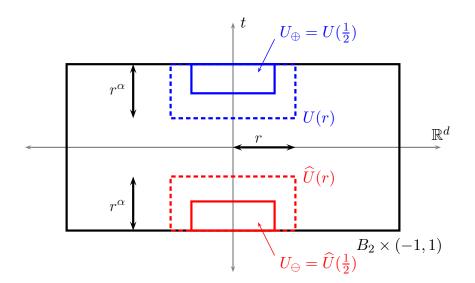
$$\left(\int\limits_{U(r)} w^{\rho_0}\right)^{1/\rho_0} \le \left(\frac{c_0}{(R-r)^m |U(1)|}\right)^{1/\rho - 1/\rho_0} \left(\int\limits_{U(R)} w^{\rho}\right)^{1/\rho} < \infty \tag{BG1}$$

for all $r, R \in [\theta, 1], r < R$ and for all $p \in (0, 1 \land \eta p_0)$. Additionally suppose

$$|\forall s > 0: \quad |U(1) \cap \{\log w > s\}| \le \frac{c_0}{s} |U(1)|.$$
 (BG2)

Then there is a constant $C = C(\theta, \eta, m, c_0, p_0)$ such that

$$\left(\int\limits_{U(\theta)} w^{\rho_0}\right)^{1/\rho_0} \leq C \left| U(1) \right|^{1/\rho_0} \ .$$



Let u be a supersolution and set $\widetilde{u} = u + ||f||_{L^{\infty}(Q)}$.

$$\widetilde{u}^{-1}$$
 satisfies (BG1) with $p_0 = \infty$ and $U(r) = (1 - r^{\alpha}, 1) \times B_r$. \widetilde{u} satisfies (BG1) with $\widehat{p}_0 = 1$ and $\widehat{U}(r) = (-1, -1 + r^{\alpha}) \times B_r$.

Proposition 1

Let $\frac{1}{2} \le r < R \le 1$. There are constants $C_1, C_2, \omega > 0$ depending on $d, \alpha_0, \lambda, \Lambda, M, \gamma$ such that for every supersolution u in $Q_R = (-R^\alpha, R^\alpha) \times \Omega$, $\Omega \ni B_R$ with $u \ge \varepsilon > 0$ in Q_R :

$$\forall p > 0: \qquad \sup_{U(r)} \widetilde{u}^{-1} \leq \left(\frac{C_1}{(R-r)^{d+\alpha}}\right)^{1/p} \left(\int\limits_{U(R)} \widetilde{u}^{-p}(t,x) \, \mathrm{d}x \, \mathrm{d}t\right)^{1/p},$$

$$\forall p \in (0,1): \int\limits_{\widehat{U}(r)} \widetilde{u}(t,x) \, \mathrm{d}x \, \mathrm{d}t \leq \left(\frac{C_2}{(R-r)^{\omega}}\right)^{1/p-1} \left(\int\limits_{\widehat{U}(R)} \widetilde{u}^p(t,x) \, \mathrm{d}x \, \mathrm{d}t\right)^{1/p}.$$

$$w := e^{-a}\widetilde{u}^{-1}$$
 satisfies (BG2)

 $\widehat{\mathbf{w}} := \mathbf{e}^{\mathbf{a}}\widetilde{\mathbf{u}}$ satisfies (BG2)

Proposition 2

There is $C = C(d, \alpha_0, \lambda, \Lambda, \gamma, M) > 0$ such that for every supersolution u in $Q = (-1, 1) \times B_2(0)$ which satisfies $u \ge \varepsilon > 0$ in $(-1, 1) \times \mathbb{R}^d$, there is a constant $a = a(\widetilde{u}) \in \mathbb{R}$ such that:

$$orall s>0$$
: $(dt\otimes dx)(Q_{\oplus}(1)\cap\{\log\widetilde{u}<-s-a\})\leq rac{C|B_1|}{s},$ $orall s>0$: $(dt\otimes dx)(Q_{\ominus}(1)\cap\{\log\widetilde{u}>s-a\})\leq rac{C|B_1|}{s}.$

Note $\log \widetilde{u} < -s - a \Leftrightarrow \log w > s$ and $\log \widetilde{u} > s - a \Leftrightarrow \log w > s$.

Both $w = e^{-a}\widetilde{u}^{-1}$ and $\widehat{w} = e^{a}\widetilde{u}$ satisfy the assumptions in the Lemma of Bombieri-Giusti. Hence,

$$\sup_{U(1/2)} w = e^{-a} \sup_{U(1/2)} \widetilde{u}^{-1} \le C, \quad \text{and} \\ \|\widehat{w}\|_{L^1(\widehat{U}(1/2))} = e^a \|\widetilde{u}\|_{L^1(\widehat{U}(1/2))} \le \widehat{C}.$$

This yields

$$\|\widetilde{u}\|_{L^1(\widehat{U}(1/2))} \leq C \,\widehat{C} \left(\sup_{U(1/2)} \widetilde{u}^{-1}\right)^{-1},$$

and finally

$$||u||_{L^{1}(U_{\Theta})} \leq ||\widetilde{u}||_{L^{1}(U_{\Theta})} \leq C \left(\sup_{U_{\Theta}} \widetilde{u}^{-1}\right)^{-1} \leq C \left(\inf_{U_{\Theta}} u + ||f||_{L^{\infty}(Q)}\right).$$

Proof of the Harnack inequality - Final argument

Parabolic Problems - Related Results

- KOMATSU, T.: Uniform estimates for fundamental solutions associated with nonlocal Dirichlet forms. Osaka J. Math. **32**(4):833–850 (1995)
- BASS, R. F. & LEVIN, D. A.: *Transition probabilities for symmetric jump processes.* Trans. Amer. Math. Soc. **354**(7):2933–2953 (2002)
- CHEN, Z.-Q., KIM, P. & KUMAGAI, T.: Global heat kernel estimates for symmetric jump processes. Trans. Amer. Math. Soc. **363**(9):5021–5055 (2011)
- CAFFARELLI, L., CHAN, C. H. & VASSEUR, A.: Regularity theory for parabolic nonlinear integral operators. J. Amer. Math. Soc. **24**(3):849–869 (2011)
- SILVESTRE, L.: On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion. Adv. Math. **226**(2):2020–2039 (2011)
- CHANG LARA, H. & DÁVILA, G.: Regularity for solutions of non local parabolic equations.

 arXiv:1109.3247v1 (2011)