On the differential structure of metric measure spaces and applications

Nicola Gigli

$6^{\text {th }}$ ICSAA

A standard construction...

Given a metric measure space (X, d, \boldsymbol{m}) and $p \in(1, \infty)$ there are various (equivalent) definitions of the Sobolev space $W^{1, p}(X, d, \boldsymbol{m})$ of real valued functions on X.

The common feature of these definitions is that for $f \in W^{1, p}(X, d, \boldsymbol{m})$ it is not defined the distributional gradient, but only 'its modulus'.

...the goal of this talk

To show that despite the lack of a smooth structure it is possible to speak about differentials and gradients of Sobolev functions.

More precisely, we will define the action of differentials on gradients.

Content

- Reminders on analysis on metric measure spaces
- Differentials and gradients
- The case of normed spaces
- The abstract case
- An application: Laplacian comparison estimate

Content

- Reminders on analysis on metric measure spaces
- Differentials and gradients
- The case of normed spaces
- The abstract case
- An application: Laplacian comparison estimate

Variational definition of $|\nabla f|$ on \mathbb{R}^{d}

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be smooth.

Then $|\nabla f|$ is the minimum continuous function G for which

$$
\left|f\left(\gamma_{1}\right)-f\left(\gamma_{0}\right)\right| \leq \int_{0}^{1} G\left(\gamma_{t}\right)\left|\dot{\gamma}_{t}\right| d t
$$

holds for any smooth curve γ

Test plans

Let (X, d) be complete and separable and \boldsymbol{m} a Radon measure on it.
For $t \in[0,1]$ the evaluation map $\mathrm{e}_{\mathrm{t}}: \mathrm{C}([0,1], \mathrm{X}) \rightarrow \mathrm{X}$ is defined by

$$
\mathrm{e}_{\mathrm{t}}(\gamma):=\gamma_{\mathrm{t}}
$$

Test plans

Let (X, d) be complete and separable and \boldsymbol{m} a Radon measure on it.
For $t \in[0,1]$ the evaluation map $\mathrm{e}_{\mathrm{t}}: \mathrm{C}([0,1], \mathrm{X}) \rightarrow \mathrm{X}$ is defined by

$$
\mathrm{e}_{\mathrm{t}}(\gamma):=\gamma_{\mathrm{t}}
$$

Let $\pi \in \mathscr{P}(C([0,1], X))$. We say that π is a test plan provided:

- for some $C>0$ it holds

$$
\mathrm{e}_{\mathrm{t} \sharp} \boldsymbol{\pi} \leq \mathrm{C} \boldsymbol{m}, \quad \forall \mathrm{t} \in[0,1] .
$$

- it holds

$$
\iint_{0}^{1}\left|\dot{\gamma}_{t}\right|^{2} d t d \pi<\infty
$$

The Sobolev class $S^{2}(X, d, \boldsymbol{m})$

We say that $f: X \rightarrow \mathbb{R}$ belongs to $S^{2}(X, d, \boldsymbol{m})$ provided there exists $G \in L^{2}(X, m)$ such that

$$
\int\left|f\left(\gamma_{1}\right)-f\left(\gamma_{0}\right)\right| d \pi(\gamma) \leq \iint_{0}^{1} G\left(\gamma_{t}\right)\left|\dot{\gamma}_{t}\right| d t d \pi(\gamma)
$$

for any test plan π.

The Sobolev class $S^{2}(X, d, \boldsymbol{m})$

We say that $f: X \rightarrow \mathbb{R}$ belongs to $S^{2}(X, d, \boldsymbol{m})$ provided there exists $G \in L^{2}(X, m)$ such that

$$
\int\left|f\left(\gamma_{1}\right)-f\left(\gamma_{0}\right)\right| d \pi(\gamma) \leq \iint_{0}^{1} G\left(\gamma_{t}\right)\left|\dot{\gamma}_{t}\right| d t d \pi(\gamma)
$$

for any test plan π.

Any such G is called 'weak upper gradient' of f.

It turns out that there exists a minimal G in the m-a.e. sense. We will denote it by $|D f|_{w}$

Content

- Reminders on analysis on metric measure spaces
- Differentials and gradients
- The case of normed spaces
- The abstract case
- An application: Laplacian comparison estimate

Differentials

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ smooth, its differential Df: $\mathbb{R}^{d} \rightarrow T^{*} \mathbb{R}^{d}$ is intrinsically defined by

$$
D f(x)(v):=\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t}, \quad \forall x \in \mathbb{R}^{d}, v \in T_{x} \mathbb{R}^{d}
$$

Gradients

To define the gradient of a smooth f we need more structure: a norm.
Assume for a moment that the norm is strictly convex.

Gradients

To define the gradient of a smooth f we need more structure: a norm.
Assume for a moment that the norm is strictly convex.
A way to get it is starting from the observation that for any tangent vector w it holds

$$
D f(x)(w) \leq\|D f(x)\|_{*}\|w\| \leq \frac{1}{2}\|D f(x)\|_{*}^{2}+\frac{1}{2}\|w\|^{2}
$$

Gradients

To define the gradient of a smooth f we need more structure: a norm.
Assume for a moment that the norm is strictly convex.
A way to get it is starting from the observation that for any tangent vector w it holds

$$
D f(x)(w) \leq\|D f(x)\| *\|w\| \leq \frac{1}{2}\|D f(x)\|_{*}^{2}+\frac{1}{2}\|w\|^{2}
$$

Then we can say that $v=\nabla f(x)$ provided $=$ holds, or equivalently

$$
D f(x)(v) \geq \frac{1}{2}\|D f(x)\|_{*}^{2}+\frac{1}{2}\|v\|^{2}
$$

Gradients

To define the gradient of a smooth f we need more structure: a norm.
Assume for a moment that the norm is strictly convex.
A way to get it is starting from the observation that for any tangent vector w it holds

$$
D f(x)(w) \leq\|D f(x)\|_{*}\|w\| \leq \frac{1}{2}\|D f(x)\|_{*}^{2}+\frac{1}{2}\|w\|^{2}
$$

Then we can say that $v=\nabla f(x)$ provided $=$ holds, or equivalently

$$
D f(x)(v) \geq \frac{1}{2}\|D f(x)\|_{*}^{2}+\frac{1}{2}\|v\|^{2}
$$

Rmk. 1 Uniqueness follows by the strict convexity of the norm.
Rmk. $\mathbf{2} \nabla f$ depends linearly on f only if the norm comes from a scalar product.

The non strictly convex case

If $\|\cdot\|$ is not strictly convex, uniqueness of gradients is not anymore granted.

Example \mathbb{R}^{2} with the L^{∞} norm and $f\left(x_{1}, x_{2}\right):=x_{1}$. All the vectors $v=\left(1, v_{2}\right)$ with $v_{2} \in[-1,1]$ can be called gradients of f.

The non strictly convex case

If $\|\cdot\|$ is not strictly convex, uniqueness of gradients is not anymore granted.

Example \mathbb{R}^{2} with the L^{∞} norm and $f\left(x_{1}, x_{2}\right):=x_{1}$. All the vectors $v=\left(1, v_{2}\right)$ with $v_{2} \in[-1,1]$ can be called gradients of f.

Still we can define the multivalued gradient $\nabla f(x)$ as the set of v 's such that

$$
D f(x)(v) \geq \frac{1}{2}\|D f(x)\|_{*}^{2}+\frac{1}{2}\|v\|^{2}
$$

The non strictly convex case

If $\|\cdot\|$ is not strictly convex, uniqueness of gradients is not anymore granted.

Example \mathbb{R}^{2} with the L^{∞} norm and $f\left(x_{1}, x_{2}\right):=x_{1}$. All the vectors $v=\left(1, v_{2}\right)$ with $v_{2} \in[-1,1]$ can be called gradients of f.

Still we can define the multivalued gradient $\nabla f(x)$ as the set of v 's such that

$$
D f(x)(v) \geq \frac{1}{2}\|D f(x)\|_{*}^{2}+\frac{1}{2}\|v\|^{2}
$$

And then the two functions

$$
D^{+} f(\nabla g):=\max _{v \in \nabla g} D f(v), \quad D^{-} f(\nabla g):=\min _{v \in \nabla g} D f(v)
$$

A useful identity

$$
\begin{aligned}
& D^{+} f(\nabla g)(x)=\inf _{\varepsilon>0} \frac{\|D(g+\varepsilon f)\|_{*}^{2}(x)-\|D g\|_{*}^{2}(x)}{2 \varepsilon} \\
& D^{-} f(\nabla g)(x)=\sup _{\varepsilon<0} \frac{\|D(g+\varepsilon f)\|_{*}^{2}(x)-\|D g\|_{*}^{2}(x)}{2 \varepsilon} .
\end{aligned}
$$

Content

- Reminders on analysis on metric measure spaces
- Differentials and gradients
- The case of normed spaces
- The abstract case
- An application: Laplacian comparison estimate

The object $D^{ \pm} f(\nabla g)$

For $f, g \in S^{2}$, the functions $D^{ \pm} f(\nabla g): X \rightarrow \mathbb{R}$ are defined by

$$
\begin{aligned}
& D^{+} f(\nabla g):=\inf _{\varepsilon>0} \frac{|D(g+\varepsilon f)|_{w}^{2}-|D g|_{w}^{2}}{2 \varepsilon} \\
& D^{-} f(\nabla g):=\sup _{\varepsilon<0} \frac{|D(g+\varepsilon f)|_{W}^{2}-|D g|_{w}^{2}}{2 \varepsilon}
\end{aligned}
$$

Calculus rules

Chain rule For $f, g \in S^{2}, \varphi: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz, m-a.e. it holds

$$
\begin{aligned}
& D^{ \pm}(\varphi \circ f)(\nabla g)=\varphi^{\prime} \circ f D^{ \pm \operatorname{sign}\left(\varphi^{\prime} \circ f\right)} f(\nabla g) \\
& D^{ \pm} f(\nabla(\varphi \circ g))=\varphi^{\prime} \circ g D^{ \pm \operatorname{sign}\left(\varphi^{\prime} \circ g\right)} f(\nabla g)
\end{aligned}
$$

Calculus rules

Chain rule For $f, g \in S^{2}, \varphi: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz, m-a.e. it holds

$$
\begin{aligned}
& D^{ \pm}(\varphi \circ f)(\nabla g)=\varphi^{\prime} \circ f D^{ \pm \operatorname{sign}\left(\varphi^{\prime} \circ f\right)} f(\nabla g) \\
& D^{ \pm} f(\nabla(\varphi \circ g))=\varphi^{\prime} \circ g D^{ \pm \operatorname{sign}\left(\varphi^{\prime} \circ g\right)} f(\nabla g)
\end{aligned}
$$

Leibniz rule For $f_{1}, f_{2} \in S^{2} \cap L^{\infty}$, and $g \in S^{2}$ it holds

$$
\begin{aligned}
& D^{+}\left(f_{1} f_{2}\right)(\nabla g) \leq f_{1} D^{\operatorname{sign}\left(f_{1}\right)} f_{2}(\nabla g)+f_{2} D^{\operatorname{sign}\left(f_{2}\right)} f_{1}(\nabla g), \\
& D^{-}\left(f_{1} f_{2}\right)(\nabla g) \geq f_{1} D^{-\operatorname{sign}\left(f_{1}\right)} f_{2}(\nabla g)+f_{2} D^{-\operatorname{sign}\left(f_{2}\right)} f_{1}(\nabla g) .
\end{aligned}
$$

Special situations

(X, d, \boldsymbol{m}) is infinitesimally strictly convex provided

$$
D^{+} f(\nabla g)=D^{-} f(\nabla g) \quad \boldsymbol{m}-\text { a.e. }
$$

for any $f, g \in S^{2}$. In this case the common value will be denoted by $D f(\nabla g)$. For $g \in S^{2}$ the map

$$
S^{2} \ni f \quad \mapsto \quad D f(\nabla g)
$$

is linear.

Special situations

(X, d, \boldsymbol{m}) is infinitesimally strictly convex provided

$$
D^{+} f(\nabla g)=D^{-} f(\nabla g) \quad \boldsymbol{m}-\text { a.e. }
$$

for any $f, g \in S^{2}$. In this case the common value will be denoted by $D f(\nabla g)$. For $g \in S^{2}$ the map

$$
S^{2} \ni f \quad \mapsto \quad D f(\nabla g)
$$

is linear.
(X, d, \boldsymbol{m}) is infinitesimally Hilbertian provided

$$
f \mapsto \int|D f|_{w}^{2} d m \quad \text { is a quadratic form on } S^{2}
$$

In this case it holds

$$
D^{+} f(\nabla g)=D^{-} f(\nabla g)=D^{+} g(\nabla f)=D^{-} g(\nabla f), \quad \boldsymbol{m}-\text { a.e. }
$$

and we denote these quantities by $\nabla f \cdot \nabla g$.

Gradient vector fields

Gradient vector fields

For $g \in S^{2}$ and $\pi \in \mathscr{P}(C([0,1], X))$ test plan it holds

$$
\overline{\lim _{t \downarrow 0}} \int \frac{g\left(\gamma_{t}\right)-g(\gamma)}{t} d \pi \leq \frac{1}{2} \int|D g|_{w}^{2}\left(\gamma_{0}\right) d \pi+\overline{\lim _{t \downarrow 0}} \frac{1}{2 t} \iint_{0}^{t}\left|\dot{\gamma}_{s}\right|^{2} d s d \pi
$$

Gradient vector fields

For $g \in S^{2}$ and $\pi \in \mathscr{P}(C([0,1], X))$ test plan it holds

$$
\overline{\lim _{t \downarrow 0}} \int \frac{g\left(\gamma_{t}\right)-g(\gamma)}{t} d \pi \leq \frac{1}{2} \int|D g|_{w}^{2}\left(\gamma_{0}\right) d \pi+\overline{\lim _{t \downarrow 0}} \frac{1}{2 t} \iint_{0}^{t}\left|\dot{\gamma}_{s}\right|^{2} d s d \pi
$$

We say that π represents ∇g, provided it holds

$$
\frac{\lim }{t \downarrow 0} \int \frac{g\left(\gamma_{t}\right)-g(\gamma)}{t} d \pi \geq \frac{1}{2} \int|D g|_{w}^{2}\left(\gamma_{0}\right) d \pi+\overline{\lim _{t \downarrow 0}} \frac{1}{2 t} \iint_{0}^{t}\left|\dot{\gamma}_{s}\right|^{2} d s d \pi
$$

Gradient vector fields

For $g \in S^{2}$ and $\pi \in \mathscr{P}(C([0,1], X))$ test plan it holds

$$
\overline{\lim _{t \downarrow 0}} \int \frac{g\left(\gamma_{t}\right)-g(\gamma)}{t} d \pi \leq \frac{1}{2} \int|D g|_{w}^{2}\left(\gamma_{0}\right) d \pi+\overline{\lim _{t \downarrow 0}} \frac{1}{2 t} \iint_{0}^{t}\left|\dot{\gamma}_{s}\right|^{2} d s d \pi
$$

We say that π represents ∇g, provided it holds

$$
\frac{\lim }{t \downarrow 0} \int \frac{g\left(\gamma_{t}\right)-g(\gamma)}{t} d \pi \geq \frac{1}{2} \int|D g|_{w}^{2}\left(\gamma_{0}\right) d \pi+\overline{\lim }_{t \downarrow 0} \frac{1}{2 t} \iint_{0}^{t}\left|\dot{\gamma}_{s}\right|^{2} d s d \pi
$$

Theorem (G. '12, Ambrosio-G.-Savaré, '11). For $g \in S^{2}$ and $\mu \in \mathscr{P}(X)$ such that $\mu \leq C m$, a plan π representing ∇g and such that $\mathrm{e}_{0 \sharp} \pi=\mu$ exists.

First order differentiation formula

Let $f, g \in S^{2}$, and π which represents ∇g.
Then

$$
\begin{aligned}
& \int D^{+} f(\nabla g)\left(\gamma_{0}\right) d \pi \geq \overline{\lim }_{t \downarrow 0} \int \frac{f\left(\gamma_{t}\right)-f\left(\gamma_{0}\right)}{t} d \pi \\
& \geq \lim _{t_{\downarrow} 0} \int \frac{f\left(\gamma_{t}\right)-f\left(\gamma_{0}\right)}{t} d \pi \geq \int D^{-} f(\nabla g)\left(\gamma_{0}\right) d \pi
\end{aligned}
$$

Content

- Reminders on analysis on metric measure spaces
- Differentials and gradients
- The case of normed spaces
- The abstract case
- An application: Laplacian comparison estimate

Laplacian comparison

On a Riemannian manifold M with Ric $\geq 0, \operatorname{dim} \leq N$ it holds

$$
\Delta \frac{1}{2} d^{2}(\cdot, \bar{x}) \leq N
$$

in the sense of distributions.

Laplacian comparison

On a Riemannian manifold M with Ric $\geq 0, \operatorname{dim} \leq N$ it holds

$$
\Delta \frac{1}{2} d^{2}(\cdot, \bar{x}) \leq N
$$

in the sense of distributions.

Does the same hold on abstract spaces?

Definition of distributional Laplacian

Let (X, d, \boldsymbol{m}) be infinitesimally strictly convex. We say that $g \in D(\Delta)$ provided:

- $g \in S^{2}$
- there exists a locally finite Borel measure μ on X such that

$$
-\int D f(\nabla g) d \boldsymbol{m}=\int f d \mu
$$

for every f Lipschitz in $L^{1}(|\mu|)$ with $\boldsymbol{m}(\operatorname{supp}(f))<\infty$.

In this case we put $\Delta g:=\mu$

Calculus rules

Chain rule Let $g \in D(\Delta) \cap S^{2} \cap C(X)$ and $\varphi \in C^{1,1}(\mathbb{R})$.
Then $\varphi \circ g \in D(\Delta)$ and it holds

$$
\Delta(\varphi \circ g)=\varphi^{\prime} \circ g \Delta g+\varphi^{\prime \prime} \circ g|D g|_{w}^{2} \boldsymbol{m}
$$

Calculus rules

Chain rule Let $g \in D(\Delta) \cap S^{2} \cap C(X)$ and $\varphi \in C^{1,1}(\mathbb{R})$.
Then $\varphi \circ g \in D(\Delta)$ and it holds

$$
\Delta(\varphi \circ g)=\varphi^{\prime} \circ g \Delta g+\varphi^{\prime \prime} \circ g|D g|_{w}^{2} \boldsymbol{m}
$$

On inf. Hilb. spaces, the Laplacian is linear and satisfies the Leibniz rule: for $g_{1}, g_{2} \in D(\Delta) \cap S^{2} \cap C(X)$ it holds $g_{1} g_{2} \in D(\Delta)$ and

$$
\Delta\left(g_{1} g_{2}\right)=g_{1} \Delta g_{2}+g_{2} \Delta g_{1}+2 \nabla g_{1} \cdot \nabla g_{2}
$$

Laplacian comparison on nonsmooth setting

Theorem (G. '12) Let (X, d, \boldsymbol{m}) be an infinitesimally strictly convex $C D(0, N)$ space and $\bar{X} \in \operatorname{supp}(\boldsymbol{m})$.

Put $g:=\frac{1}{2} d^{2}(\cdot, \bar{x})$. Then $g \in D(\Delta)$ and $\Delta g \leq N m$.

Thank you

