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A standard construction...

Given a metric measure space (X,d,m) and p € (1,00) there are
various (equivalent) definitions of the Sobolev space W'P(X, d, m) of
real valued functions on X.

The common feature of these definitions is that for f € W'P(X,d, m)
it is not defined the distributional gradient, but only ‘its modulus’.



...the goal of this talk

To show that despite the lack of a smooth structure it is possible to
speak about differentials and gradients of Sobolev functions.

More precisely, we will define the action of differentials on gradients.
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Variational definition of |[Vf| on R

Let f: R? — R be smooth.

Then |Vf| is the minimum continuous function G for which

1
(1) — F(0)] < /0 G() el ot

holds for any smooth curve



Test plans

Let (X, d) be complete and separable and m a Radon measure on it.
For t € [0, 1] the evaluation map e, : C([0, 1], X) — X is defined by
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Test plans

Let (X, d) be complete and separable and m a Radon measure on it.

For t € [0, 1] the evaluation map e, : C([0, 1], X) — X is defined by

e(7) =m

Let w € 22(C([0,1], X)). We say that = is a test plan provided:
» for some C > 0 it holds

eym™ < Cm, vt € [0, 1].

1
// |2 dt dm < o0
0

» it holds



The Sobolev class S?(X, d, m)

We say that f : X — R belongs to S?(X, d, m) provided there exists
G € L3(X, m) such that

1
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The Sobolev class S?(X, d, m)

We say that f : X — R belongs to S?(X, d, m) provided there exists
G € L3(X, m) such that

1
/ (1) = f(70)| dm(7) < / /0 G(7o) | dt de ()

for any test plan .
Any such G is called ‘weak upper gradient’ of f.

It turns out that there exists a minimal G in the m-a.e. sense. We will
denote it by |Df|,,
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Differentials

Given f : R? — R smooth, its differential Df : R — T*R% is
intrinsically defined by

DA(x)(v) = lim X+ W) =100

, vx e RY, v e T,RY
t—0 t
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To define the gradient of a smooth f we need more structure: a norm.

Assume for a moment that the norm is strictly convex.
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Gradients

To define the gradient of a smooth f we need more structure: a norm.
Assume for a moment that the norm is strictly convex.

A way to get it is starting from the observation that for any tangent
vector w it holds

DI(x)(w) < D). W] < JIDIOI + 3 WP

Then we can say that v = Vf(x

~

provided = holds, or equivalently

Df(x)(v) = HD"(X)HiJr%IIVII2

N —

Rmk. 1 Uniqueness follows by the strict convexity of the norm.

Rmk. 2 V{ depends linearly on f only if the norm comes from a scalar
product.



The non strictly convex case

If || - || is not strictly convex, uniqueness of gradients is not anymore
granted.

Example R? with the L> norm and f(xi, x2) := xy. All the vectors
v = (1, v2) with v» € [—-1, 1] can be called gradients of f.
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The non strictly convex case

If || - || is not strictly convex, uniqueness of gradients is not anymore
granted.

Example R? with the L> norm and f(xi, x2) := xy. All the vectors
v = (1, v2) with v» € [—-1, 1] can be called gradients of f.

Still we can define the multivalued gradient Vf(x) as the set of v’s
such that

DI(X)(v) > LIDII2 + 4 vIP

And then the two functions

+ o — . H
DT f(Vg) = ‘rg%); Df(v), D= f(Vg) = Vrg% Df(v).



A useful identity

D*f(Vg)(x) = inf “D(9+ef>\|£(2x€> — ||Dg|3(x)

D1(Vg)(x) = sup 1D(g + ef)||*(2>;) — |[Dg|2(x)
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The object D*f(Vg)

For f, g € S?, the functions D¥f(Vg) : X — R are defined by
|D(g +£f)[5 — 1Dgl3,
2¢e

2 2
D f(vg) - sup |28+ N5 ~ |DaiE
e<0 2e

+ L
0*1(v) = i




Calculus rules

Chain rule For f,g € 82, v : R — R Lipschitz, m-a.e. it holds

D*(po f)(Vg) = ¢ o f D Nf(vg),
D*f(V(pog)) = ¢' 0 g DFE 9 f(vg).



Calculus rules

Chain rule For f,g € 82, v : R — R Lipschitz, m-a.e. it holds

D*(po f)(Vg) = ¢ o f D Nf(vg),
D*f(V(pog)) = ¢' 0 g DFE 9 f(vg).

Leibniz rule For fy, , € SN L>, and g € S? it holds

D*(fik)(Vg) < h D " Wk(Vg) + £ D e ®f(Vg),
D™ (fiR)(Vg) > fi DM h(Vg) + £ D@ (V).



Special situations
(X, d, m) is infinitesimally strictly convex provided

D*f(Vg) = D f(Vg) m-— ae.

for any f,g € S2. In this case the common value will be denoted by
Df(Vg). For g € S? the map

Ssf = Df(Vg)

is linear.



Special situations
(X, d, m) is infinitesimally strictly convex provided

D*f(Vg)=Df(Vg) m-ae.

for any f,g € S2. In this case the common value will be denoted by
Df(Vg). For g € S? the map

Ssf - Df(Vg)
is linear.
(X, d, m) is infinitesimally Hilbertian provided
fis / |Dfi2,dm is a quadratic form on S?
In this case it holds
D" f(Vg) = D~ f(Vg) = Dtg(Vf) = D~ g(Vf), m-— ae.

and we denote these quantities by Vf - Vg.
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Gradient vector fields

For g € S?2 and m € 22(C([0, 1], X)) test plan it holds
m/Q(%);Q(V)

1 2 —1 ('
< _ _
i dr < 5 [ gl o +Tim 5 [ [ 5sf dsdn

We say that = represents Vg, provided it holds

: 9(v) —9(v) 1/ 2 -1//t g2
@/ P2 am =5 [ 0ok oy am+Tm 5 [[ o asan

Theorem (G. '12, Ambrosio-G.-Savaré, '11). For g € S? and
u € 2(X) such that © < Cm, a plan & representing Vg and such that
eoyT = p exists.



First order differentiation formula

Let f,g € S?, and 7 which represents Vg.
Then

/D+f(vg)(70) dr > @/ f('Yt) _t f(’YO) dmr

i / Ltf(vo) dr > / D=H(Vg)(r0) dm

> lim
tl0
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Laplacian comparison

On a Riemannian manifold M with Ric > 0, dim < N it holds

A%dz(j) <N
in the sense of distributions.

Does the same hold on abstract spaces?



Definition of distributional Laplacian

Let (X, d, m) be infinitesimally strictly convex. We say that g € D(A)
provided:

» gec S?
» there exists a locally finite Borel measure p on X such that

—/Df(Vg) dm= /fdu.

for every f Lipschitz in L'(|u|) with m(supp(f)) < oc.

In this case we put Ag :=p
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Calculus rules

Chain rule Let g € D(A)N 82N C(X) and ¢ € C"1(R).
Then p o g € D(A) and it holds

A(pog)=¢ og Ag+¢” og|Dgl5m

On inf. Hilb. spaces, the Laplacian is linear and satisfies the Leibniz
rule: for g1, g2 € D(A) N S2 N C(X) it holds g1g» € D(A) and

A(g192) = 91Ag2 + 924091 +2V gy - Vgo.



Laplacian comparison on nonsmooth setting

Theorem (G. ’12) Let (X, d, m) be an infinitesimally strictly convex
CD(0, N) space and x € supp(m).

Put g := }d?(-,X). Then g € D(A) and Ag < Nm.



Thank you



