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A standard construction...

Given a metric measure space (X ,d ,m) and p ∈ (1,∞) there are
various (equivalent) definitions of the Sobolev space W 1,p(X ,d ,m) of
real valued functions on X .

The common feature of these definitions is that for f ∈ W 1,p(X ,d ,m)
it is not defined the distributional gradient, but only ‘its modulus’.



...the goal of this talk

To show that despite the lack of a smooth structure it is possible to
speak about differentials and gradients of Sobolev functions.

More precisely, we will define the action of differentials on gradients.
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Variational definition of |∇f | on Rd

Let f : Rd → R be smooth.

Then |∇f | is the minimum continuous function G for which

|f (γ1)− f (γ0)| ≤
∫ 1

0
G(γt )|γ̇t |dt

holds for any smooth curve γ



Test plans

Let (X ,d) be complete and separable and m a Radon measure on it.

For t ∈ [0,1] the evaluation map et : C([0, 1],X)→ X is defined by

et(γ) := γt

Let π ∈P(C([0,1],X )). We say that π is a test plan provided:
I for some C > 0 it holds

et ]π ≤ Cm, ∀t ∈ [0, 1].

I it holds ∫∫ 1

0
|γ̇t |2 dt dπ <∞
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The Sobolev class S2(X ,d ,m)

We say that f : X → R belongs to S2(X ,d ,m) provided there exists
G ∈ L2(X ,m) such that∫ ∣∣f (γ1)− f (γ0)

∣∣dπ(γ) ≤
∫∫ 1

0
G(γt )|γ̇t |dt dπ(γ)

for any test plan π.

Any such G is called ‘weak upper gradient’ of f .

It turns out that there exists a minimal G in the m-a.e. sense. We will
denote it by |Df |w
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Differentials

Given f : Rd → R smooth, its differential Df : Rd → T ∗Rd is
intrinsically defined by

Df (x)(v) := lim
t→0

f (x + tv)− f (x)

t
, ∀x ∈ Rd , v ∈ TxRd



Gradients

To define the gradient of a smooth f we need more structure: a norm.

Assume for a moment that the norm is strictly convex.

A way to get it is starting from the observation that for any tangent
vector w it holds

Df (x)(w) ≤ ‖Df (x)‖∗‖w‖ ≤
1
2
‖Df (x)‖2

∗ +
1
2
‖w‖2.

Then we can say that v = ∇f (x) provided = holds, or equivalently

Df (x)(v) ≥ 1
2
‖Df (x)‖2

∗ +
1
2
‖v‖2

Rmk. 1 Uniqueness follows by the strict convexity of the norm.
Rmk. 2 ∇f depends linearly on f only if the norm comes from a scalar
product.
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The non strictly convex case

If ‖ · ‖ is not strictly convex, uniqueness of gradients is not anymore
granted.

Example R2 with the L∞ norm and f (x1, x2) := x1. All the vectors
v = (1, v2) with v2 ∈ [−1,1] can be called gradients of f .

Still we can define the multivalued gradient ∇f (x) as the set of v ’s
such that

Df (x)(v) ≥ 1
2
‖Df (x)‖2

∗ +
1
2
‖v‖2

And then the two functions

D+f (∇g) := max
v∈∇g

Df (v), D−f (∇g) := min
v∈∇g

Df (v).
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A useful identity

D+f (∇g)(x) = inf
ε>0

‖D(g + εf )‖2
∗(x)− ‖Dg‖2

∗(x)

2ε

D−f (∇g)(x) = sup
ε<0

‖D(g + εf )‖2
∗(x)− ‖Dg‖2

∗(x)

2ε
.
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The object D±f (∇g)

For f ,g ∈ S2, the functions D±f (∇g) : X → R are defined by

D+f (∇g) := inf
ε>0

|D(g + εf )|2w − |Dg|2w
2ε

D−f (∇g) := sup
ε<0

|D(g + εf )|2w − |Dg|2w
2ε



Calculus rules

Chain rule For f ,g ∈ S2, ϕ : R→ R Lipschitz, m-a.e. it holds

D±(ϕ ◦ f )(∇g) = ϕ′ ◦ f D±sign(ϕ′◦f )f (∇g),

D±f (∇(ϕ ◦ g)) = ϕ′ ◦ g D±sign(ϕ′◦g)f (∇g).

Leibniz rule For f1, f2 ∈ S2 ∩ L∞, and g ∈ S2 it holds

D+(f1f2)(∇g) ≤ f1 D sign(f1)f2(∇g) + f2 D sign(f2)f1(∇g),

D−(f1f2)(∇g) ≥ f1 D−sign(f1)f2(∇g) + f2 D−sign(f2)f1(∇g).
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Special situations
(X ,d ,m) is infinitesimally strictly convex provided

D+f (∇g) = D−f (∇g) m − a.e.

for any f ,g ∈ S2. In this case the common value will be denoted by
Df (∇g). For g ∈ S2 the map

S2 3 f 7→ Df (∇g)

is linear.

(X ,d ,m) is infinitesimally Hilbertian provided

f 7→
∫
|Df |2w dm is a quadratic form on S2

In this case it holds

D+f (∇g) = D−f (∇g) = D+g(∇f ) = D−g(∇f ), m − a.e.

and we denote these quantities by ∇f · ∇g.
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Gradient vector fields

For g ∈ S2 and π ∈P(C([0,1],X )) test plan it holds

lim
t↓0

∫
g(γt )− g(γ)

t
dπ ≤ 1

2

∫
|Dg|2w (γ0) dπ + lim

t↓0

1
2t

∫∫ t

0
|γ̇s|2 ds dπ

We say that π represents ∇g, provided it holds

lim
t↓0

∫
g(γt )− g(γ)

t
dπ ≥ 1

2

∫
|Dg|2w (γ0) dπ + lim

t↓0

1
2t

∫∫ t

0
|γ̇s|2 ds dπ

Theorem (G. ’12, Ambrosio-G.-Savaré, ’11). For g ∈ S2 and
µ ∈P(X ) such that µ ≤ Cm, a plan π representing ∇g and such that
e0 ]π = µ exists.
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First order differentiation formula

Let f ,g ∈ S2, and π which represents ∇g.
Then∫

D+f (∇g)(γ0) dπ ≥ lim
t↓0

∫
f (γt )− f (γ0)

t
dπ

≥ lim
t↓0

∫
f (γt )− f (γ0)

t
dπ ≥

∫
D−f (∇g)(γ0) dπ
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Laplacian comparison

On a Riemannian manifold M with Ric ≥ 0, dim ≤ N it holds

∆
1
2

d2(·, x) ≤ N

in the sense of distributions.

Does the same hold on abstract spaces?
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Definition of distributional Laplacian

Let (X ,d ,m) be infinitesimally strictly convex. We say that g ∈ D(∆)
provided:

I g ∈ S2

I there exists a locally finite Borel measure µ on X such that

−
∫

Df (∇g) dm =

∫
f dµ.

for every f Lipschitz in L1(|µ|) with m(supp(f )) <∞.

In this case we put ∆g := µ



Calculus rules

Chain rule Let g ∈ D(∆) ∩ S2 ∩ C(X ) and ϕ ∈ C1,1(R).

Then ϕ ◦ g ∈ D(∆) and it holds

∆(ϕ ◦ g) = ϕ′ ◦ g ∆g + ϕ′′ ◦ g |Dg|2w m

On inf. Hilb. spaces, the Laplacian is linear and satisfies the Leibniz
rule: for g1,g2 ∈ D(∆) ∩ S2 ∩ C(X ) it holds g1g2 ∈ D(∆) and

∆(g1g2) = g1∆g2 + g2∆g1 + 2∇g1 · ∇g2.
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Laplacian comparison on nonsmooth setting

Theorem (G. ’12) Let (X ,d ,m) be an infinitesimally strictly convex
CD(0,N) space and x ∈ supp(m).

Put g := 1
2 d2(·, x). Then g ∈ D(∆) and ∆g ≤ Nm.



Thank you


