
On Green function of subordinate Brownian motion

Panki Kim

Seoul National University

6th International Conference on Stochastic Analysis and Its Applications
Bedlewo, Poland, Sept 10–15 2012



Introduction and motivation Main Results

References

This talk is based on the following papers.

KK Kang and K, On estimate of Poisson kernel for symmetric Lévy process.
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Introduction and motivation Main Results

Symmetric α-stable process

Let X = (Xt ,Px) be a symmetric (rotationally invariant) α-stable process in
Rd , α ∈ (0, 2).

X is a pure jump Lévy process with characteristic exponent: Φ(θ) = |θ|α,
θ ∈ Rd ,

E[exp{iθ(Xt − X0)}] = exp{−tΦ(θ)}

The Lévy density of X is

J(x) := c(d , α)|x |−(d+α).

The infinitesimal generator of a symmetric α-stable process X in Rd is the
fractional Laplacian

∆α/2f (x) := −(−∆)α/2f (x) = lim
t↓0

1

t
(Ex [f (Xt)]− f (x)).

The fractional Laplacian can be written in the form

∆α/2u(x) = lim
ε↓0

∫
{y∈Rd : |y−x|>ε}

(u(y)− u(x))J(x , y)dy .
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Green function for Symmetric α-stable process

For D ⊂ Rd open subset of Rd , τD := inf{t > 0 : Xt /∈ D} and XD is the killed
process.

Let GD(x , y) be the Green function of XD : the density of the occupation
measure

GD(x , dy) = GD(x , y)dy = Ex

∫ τD

0

1(Xt∈dy) dt = Ex

∫ ∞
0

1(XD
t ∈dy)

dt

GD(x , y) =
∫∞
0

pD(t, x , y)dt where pD is the transition density of XD .

Analytically speaking, if ∆α/2|D is the restriction of ∆α/2 to D with zero
exterior condition, then GD(·, y) is the solution of (∆α/2|D)u = −δy .
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C 1,1-open sets

D ⊂ Rd (d ≥ 2) open, is said to be a C 1,1 open set if there exist a localization
radius R and a constant Λ > 0 such that for every z ∈ ∂D, there is a
C 1,1-function ψ = ψz : Rd−1 → R satisfying ψ(0) = 0, ∇ψ(0) = (0, . . . , 0),
‖∇ψ‖∞ ≤ Λ, |∇ψ(x)−∇ψ(w)| ≤ Λ|x − w |, and an orthonormal coordinate
system CSz : y = (y1, · · · , yd−1, yd) := (ỹ , yd) with its origin at z such that

B(z ,R) ∩ D = {y = (ỹ , yd) ∈ B(0,R) in CSz : yd > ψ(ỹ)}.

The pair (R,Λ) is called the characteristics of the C 1,1 open set D.
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Estimates of Green function for Symmetric α-stable processc

δD(x) = dist(x , ∂D) and f � g means that there is a constant c > 0 such that
c−1 ≤ f /g ≤ c.

If d > α and D ⊂ Rd is a bounded C 1,1-open set, then for all x , y ∈ D,

GD(x , y) �
(

1 ∧ δD(x)α/2δD(y)α/2

|x − y |α

)
1

|x − y |d−α

(Chen & Song (1998) and Kulczycki (1997))

For Brownian motion same estimates with α = 2 proved by Widman (1967)
and Zhao (1986) (in case d ≥ 3)
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Relativistic α-stable process and its Green function estimates

Relativistic α-stable process is a Lévy process with characteristic exponent

Φ(θ) = (|θ|2 + m2/α)α/2 −m , θ ∈ Rd , m > 0 ,

and infinitesimal generator m − (−∆ + m2/α)α/2.

When α = 1, the infinitesimal generator reduces to the free relativistic
Hamiltonian

m −
√
−∆ + m2.

Here the kinetic energy of a relativistic particle is
√
−∆ + m2 −m, instead of

−∆ for a nonrelativistic particle.

Green function estimates in C 1,1 bounded open sets – Ryznar (2002), Chen and
Song (2003):

GD(x , y) �
(

1 ∧ δD(x)α/2δD(y)α/2

|x − y |α

)
1

|x − y |d−α
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Mixtures and its Green function estimates

Mixtures X is a Lévy process with characteristic exponent

Φ(θ) = |θ|α + |θ|β , θ ∈ Rd , 0 < β < α ≤ 2 ,

and infinitesimal generator −(−∆)β/2 − (−∆)α/2. X is sum of independent
symmetric α and β stable.

When 0 < β < α < 2, Green function estimates in C 1,1 bounded opens sets –
Chen, K & Song (2009)

GD(x , y) �
(

1 ∧ δD(x)α/2δD(y)α/2

|x − y |α

)
1

|x − y |d−α

Case α = 2 - sum of independent Brownian motion and symmetric β-stable.
Same Green function estimates (d ≥ 3), Chen, K, Song, Vondraček (2010)

Same Green function estimates for BM, stable, relativistic stable and mixtures.
What is common?
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Same Green function estimates for BM, stable, relativistic stable and mixtures.
What is common?



Introduction and motivation Main Results

Mixtures and its Green function estimates
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subordinate Brownian motions

All processes are subordinate Brownian motions:
W = (Wt ,Px) d-dimensional Brownian motion, S = (St) an independent
subordinator with the Laplace exponent

φ(λ) = bλ+

∫
(0,∞)

(1− e−λt)µ(dt) ,

where b ≥ 0 and µ is called Lévy measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ t)µ(dt) <∞

Then Xt := WSt is called a subordinate Brownian motion.

– a Lévy process with characteristic exponent Φ(θ) = φ(|θ|2) and infinitesimal
generator −φ(−∆).
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Bernstein and complete Bernstein function

A C∞ function φ : (0,∞)→ [0,∞) is called a Bernstein function if
(−1)nDnφ ≤ 0 for every positive integer n.

Every Bernstein function has a representation
φ(λ) = a + bλ+

∫
(0,∞)

(1− e−λt)µ(dt) where a, b ≥ 0 and µ is called Lévy

measure on (0,∞) satisfying
∫
(0,∞)

(1 ∧ t)µ(dt) <∞.

Thus, Laplace exponent of a subordinator is a a Bernstein function. Conversely,
for every Bernstein function φ satisfying φ(0+) = 0, there exists a subordinator
with the Laplace exponent φ .

A Bernstein function φ is called a complete Bernstein function if µ has a
completely monotone density µ(t), i.e., (−1)nDnµ ≥ 0 for every non-negative
integer n.

The class of complete Bernstein functions has been used throughout the
literature in many branches of mathematics but under various names and for
very different reasons, e.g. as Pick or Nevanlinna functions in (complex)
interpolation theory, Löwner or operator monotone function in functional
analysis, or as class (S) in the Russian literature on complex function theory in
a half-plane.
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interpolation theory, Löwner or operator monotone function in functional
analysis, or as class (S) in the Russian literature on complex function theory in
a half-plane.



Introduction and motivation Main Results

Bernstein and complete Bernstein function

A C∞ function φ : (0,∞)→ [0,∞) is called a Bernstein function if
(−1)nDnφ ≤ 0 for every positive integer n.

Every Bernstein function has a representation
φ(λ) = a + bλ+

∫
(0,∞)

(1− e−λt)µ(dt) where a, b ≥ 0 and µ is called Lévy
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What is common?

Stable: φ(λ) = λα/2, relativistic stable: φ(λ) = (λ+ m2/α)α/2 −m, mixtures:
φ(λ) = λβ/2 + λα/2.
In all cases φ is a complete Bernstein function (i.e., µ has a CM density,
µ(dt) = µ(t)dt), and

lim
λ→∞

φ(λ)

λα/2
= 1.

Throughout the talk we use notation f (t) � g(t) as t →∞ (resp. t → 0+) if
the quotient f (t)/g(t) stays bounded between two positive constants as
t →∞ (resp. t → 0+).
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Result of K, Song & Vondraček (Proc. London Math. Soc. 2012)

Recall that X = (Xt ,Px) is a subordinate Brownian motion in Rd determined
by the Laplace exponent φ of the subordinator S .

Assumptions in K, Song & Vondraček (12)

φ is a complete Bernstein function of the form

φ(λ) � λα/2`(λ) , λ→∞, 0 < α < 2 ,

where ` is a slowly varying at ∞, and additional hypothesis in case d ≤ 2
(which implies that X is transient).

Examples:

Stables, relativistic stables, mixtures: limλ→∞ `(λ) = 1;

λα/2(log(1 + log(1 + λγ/2)δ/2))β/2, α, γ, δ ∈ (0, 2), β ∈ (0, 2− α];

λα/2(log(1 + log(1 + λγ/2)δ/2))−β/2, α, γ, δ ∈ (0, 2), β ∈ (0, α].
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A Lemma on Laplace transform

Suppose that

ψ(λ) =

∫ ∞
0

e−λt f (t) dt,

where f is a nonnegative decreasing function. Then

f (t) ≤
(

1− e−1
)−1

t−1ψ(t−1), t > 0.

If, furthermore, there exist δ ∈ (0, 1) and a, t0 > 0 such that

ψ(rλ) ≤ ar−δψ(λ), r ≥ 1, t ≥ 1/t0,

then there exists c = c(w , f , a, t0, δ) > 0 such that

f (t) ≥ ct−1ψ(t−1), t ≤ t0.
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φ(λ) � λα/2`(λ) , λ→∞, 0 < α < 2 ,

potential density of S

The potential measure U of S has a completely monotone density u and

1

φ(λ)
=

∫
(0,∞)

e−λtu(t) dt.

Thus

u(t) � t−1φ(t−1)−1 � tα/2−1

`(t−1)
, t → 0 + .

the potential measure of a subordinator with Laplace exponent
ψ(λ) := λ/φ(λ), which is also complete Bernstein, has a completely monotone
density v given by

v(t) = µ(t,∞).

Thus

φ(λ)

λ
=

1

ψ(λ)
=

∫
(0,∞)

e−λtv(t) dt =

∫
(0,∞)

e−λtµ(t,∞) dt.
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The process

Lévy measure of S

µ(t,∞) � φ(t−1) and

µ(t) � t−1φ(t−1) � `(t−1)

t1+α/2
, t → 0.

This and the fact that µ(t) completely monotone imply that there exists c > 0
such that

µ(t) ≤ cµ(2t) , t ∈ (0, 2) and µ(t) ≤ cµ(t + 1) , t > 1
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Lévy density of X

The Lévy measure of X has a density J(x) = j(|x |) with

j(r) =

∫ ∞
0

(4πt)−d/2e−r2/(4t)µ(t) dt

There exists a constant c > 0 such that

j(r) ≤ cj(2r) , r ∈ (0, 2)

j(r) ≤ cj(r + 1) , r > 1

j(r) � φ(r−2)

rd
as r → 0.
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The Lévy measure of X has a density J(x) = j(|x |) with

j(r) =

∫ ∞
0

(4πt)−d/2e−r2/(4t)µ(t) dt

There exists a constant c > 0 such that

j(r) ≤ cj(2r) , r ∈ (0, 2)

j(r) ≤ cj(r + 1) , r > 1

j(r) � φ(r−2)

rd
as r → 0.



Introduction and motivation Main Results
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Green function of X in Rd

g(r) =

∫ ∞
0

(4πt)−d/2 exp
(
− r2

4t

)
u(t) dt .

Green function estimates for the free process.

G(x , y) = g(|x − y |) and

G(x , y) � 1

|x − y |d φ(|x − y |−2)
� 1

|x − y |d−α`(|x − y |−2)

as |x − y | → 0
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Green function of XD

The transition density and the Green function of XD are given by

pD(t, x , y) = p(t, x , y)− Ex [p(t − τD ,X (τD), y); τD < t]

and GD(x , y) =
∫∞
0

pD(t, x , y) dt.

Since X is transient, we have the following formula

GD(x , y) = G(x , y)− Ex [G(X (τD), y)] .

Also, GD(x , y) is symmetric and, for fixed y ∈ D, GD(·, y) is harmonic for X in
D \ {y}.
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Result of K, Song and Vondraček (2012)

Theorem: Let D ⊂ Rd be a bounded C 1,1 open set with characteristics (R,Λ).
Then the Green function GD(x , y) of XD satisfies the following estimates:

GD(x , y)

�

(
1 ∧ φ(|x − y |−2)√

φ(δD(x)−2)φ(δD(x)−2)

)
1

|x − y |d φ(|x − y |−2)

=

(
1 ∧ (φ(δD(x)−2))−1/2(φ(δD(x)−2))−1/2

(φ(|x − y |−2))−1

)
1

|x − y |d φ(|x − y |−2)

Theorem: (BHP) Let u be a nonnegative function in Rd that is harmonic in
D ∩ B(Q, r) with respect to X and vanishes continuously on Dc ∩ B(Q, r) (D
not necessarily bounded). Then

u(x)

u(y)
≤ c

φ(δD(x)−2)−1/2

φ(δD(y)−2)−1/2
for every x , y ∈ D ∩ B(z , r/2).
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Conjecture in K, Song and Vondraček (2012)

it is implicitly conjectured in [KSV] that for a large class of transient
subordinate Brownian motions, Green function GD(x , y) in D enjoys the
following two-sided estimates in terms of φ and Green function G(x , y) in Rd ;

c−1

(
1 ∧ φ(|x − y |−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
G(x , y)

≤ GD(x , y) ≤ c

(
1 ∧ φ(|x − y |−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
G(x , y) .

Goal

Prove this conjecture for larger class of transient subordinate Brownian motions
than ones in [KSV].
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Assumption

For simplicity, we state assumptions for d ≥ 3.

(A-1) φ is a complete Bernstein function with the infinite Lévy measure.

(A-2) there exist constants σ > 0, λ0 > 0 and δ ∈ (0, 1] such that

φ′(λx)

φ′(λ)
≤ σ x−δ for all x ≥ 1 and λ ≥ λ0.
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Remark

(i) (A-1) implies that the potential measure of U of S has a decreasing
density, i.e., there is a decreasing function u : (0,∞)→ (0,∞) so that
U(dt) = u(t) dt .

(ii) Since φ is a complete Bernstein function,

φ(λ) = γλ+

∫ ∞
0

(1− e−λt)µ(t) dt .

Note that (A-2) implies γ = 0, by letting λ→ +∞ .
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Remark

(iii)

If δ1 ∈ (0, 1) and
φ(λx)

φ(λ)
≥ σ x1−δ1 for all x ≥ 1 and λ ≥ λ0,

then there exists a constant c > 0 such that

cφ(λ) ≤ λφ′(λ) ≤ φ(λ) for all λ ≥ λ0.

Thus, if δ, δ1 ∈ (0, 1) and

σ x1−δ ≥ φ(λx)

φ(λ)
≥ σ1 x1−δ1 for all x ≥ 1, λ ≥ λ0

then (A-2) hold with δ ∈ (0, 1)

Thus the condition (A-2) is more general than assuming that φ is the
class OR of O-regularly varying functions with its Matuszewska indices
contained in (0, 1).
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Examples

Assume that φ complete Bernstain and

φ(λ) � λα/2`(λ), λ→∞ (0 < α < 2)

where ` varies slowly at infinity, For example, `(λ) = log(1 + λ) or
`(λ) = log(1 + log(1 + λ)).

(Geometric stable processes, δ = 1 case)

φ(λ) = log(1 + λβ/2), (0 < β ≤ 2, d > β).

(Iterated geometric stable processes, δ = 1 case)

φ1(λ) = log(1 + λβ/2) (0 < β ≤ 2)

φn+1 = φ1 ◦ φn n ∈ N,

with an additional condition d > 21−nβn.

(Relativistic geometric stable processes, δ = 1 case)

φ(λ) = log

(
1 +

(
λ+ mβ/2

)2/β
−m

)
(m > 0, 0 < β < 2, d > 2).
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Asymptotics of Green function and Lévy density

[KM1] K and Mimica, Electronic Journal of Probability (2012)

Assume that the potential measure of S has a decreasing density and that
(A-2) holds. Then

G(x , y) = g(|x − y |) � φ′(|x − y |−2)

|x − y |d+2φ(|x − y |−2)2
as |x − y | → 0

For geometric stable processes, g(r) � 1
rd (log r)2

as r → 0.

If the Lévy measure µ of S has a deceasing density and (A-2) holds,

J(x , y) = j(|x − y |) � φ′(|x − y |−2)

|x − y |d+2
as |x − y | → 0

For geometric stable processes, j(r) � 1
rd

as r → 0.

For iterated gamma process (φ(λ) = log(1 + log(1 + λ))), j(r) � 1
rd log(1/r)

as
r → 0.
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(Scale invariant) Harnack Inequality

[KM1]

Suppose d ≥ 1 and X is a subordinate Brownian motion satisfying
(A-1)–(A-2). There exists a constant c > 0 such that for all x0 ∈ Rd and
r ∈ (0, 1)

h(x1) ≤ c h(x2) for all x1, x2 ∈ B(x0,
r
2
)

and for every non-negative function h : Rd → [0,∞) which is harmonic in
B(x0, r).
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Remark

A non-scale invariant Harnack inequality was proved for geometric stable
and iterated geometric stable processes by Šikić,Song and Vondraček
(PTRF 2006).

Using theory of fluctuation of one-dimensional Lévy processes, a scale
invariant Harnack inequality was proved for geometric stable process in
d = 1 by Grzywny and Ryznar (2011)
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Remark

A very successful technique for proving Harnack inequality for stable-like
Markov jump processes was developed in Bass & Levin (02). The proof relied

on an estimate of Krylov and Safonov type: Px(TA < τB(0,r)) ≥ c |A|
|B(0,r)| for

any r ∈ (0, 1), x ∈ B(0, r
2
) where TA = τAc denotes the first hitting time of the

set A.

Although this technique is quite general and can be applied to a much larger
class of Markov jump processes, there are situations when it is not applicable
even to a rotationally invariant Lévy process.

The Krylov-Safonov type estimate was indispensable in the proof of the
Harnack inequality in Šikić and Song and Vondraček (PTRF 2006). Contrary
to the case of stable-like processes, this estimate is not uniform in r ∈ (0, 1).
For example, for a geometric stable process it is possible to find a sequence of
radii (rn) and closed sets An ⊂ B(0, rn) such that rn → 0, |An|

|B(0,rn)| ≥
1
4

and

P0(TAn < τB(0,rn))→ 0, as n→∞ .
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The Krylov-Safonov type estimate was indispensable in the proof of the
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Uniform Boundary Harnack Principle

[KM2]

Suppose d ≥ 1. There exists a constant c = c(φ, d) > 0 such that For every
z0 ∈ Rd , every open set D ⊂ Rd , every r ∈ (0, 1) and for any nonnegative
functions u, v in Rd which are regular harmonic in D ∩ B(z0, r) with respect to
X and vanish in Dc ∩ B(z0, r), we have

u(x)

v(x)
≤ c

u(y)

v(y)
for all x , y ∈ D ∩ B(z0, r/2).
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Remark

(i) The proof is similar to the one of

P. Kim, R. Song, and Z. Vondraček, Uniform boundary Harnack principle
for rotationally symmetric Lévy processes in general open sets, to appear
in Science in China (2012),

which is motived by a earlier work by Bogdan, Kulczycki and Kwaśnicki
(2008).

(ii) Very recently, the uniform boundary Harnack principle is obtained for a
large class of Markov processes in

Bogdan, Kumagai and Kwaśnicki Boundary Harnack inequality for Markov
processes with jumps

In this paper, they give conditions when the scale invariant version of
boundary Harnack principle holds. In the case φ is slowly varying at ∞
they mention that their conditions can be checked.
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The role of fluctuation theory

B = (Bt) one-dimensional Brownian motion, S independent subordinator with
Laplace exponent φ, Zt := B(St) 1-dim SBM. Z is a symmetric Lévy process.

Z t := sup{Zs : 0 ≤ s ≤ t}, L the local time at zero of the reflected process
Z − Z , Ht := Z(L−1

t ) the ladder height process of Z :

H is a subordinator with Laplace exponent

χ(λ) = exp

(
1

π

∫ ∞
0

log(φ(λ2θ2))

1 + θ2
dθ

)
(Fristedt 1974)

Proposition: If φ is a complete BF, then χ is a complete BF
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The role of fluctuation theory

Let V be the renewal function of the ladder height process: V (t) = V (0, t).
Since χ is a complete BF, V has a CM (potential) density v . In particular, V is
C∞ on (0,∞).

The key fact (Silverstein 1980): V is invariant, hence harmonic, for the killed
process Z (0,∞).

Asymptotic behavior of V at zero follows from the asymptotic behavior of χ at
infinity: Using

χ(λ) �
√
φ(t2) , λ→∞

we get

V (t) � φ(t−2)−1/2, t → 0 + .
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A technical assumption

(A-3) If 0 < δ ≤ 1/2, we further assume that there exist constants σ1 > 0 and
δ1 ∈ [δ, 2δ) such that

φ(λx)

φ(λ)
≥ σ1 x1−δ1 for all x ≥ 1 and λ ≥ λ0 .

Remark:

This condition is only for 0 < δ ≤ 1/2.

(A-2) implies that for every ε > 0 there is a constant c = c(ε) > 0 so that

φ(λx)

φ(λ)
≤ c x1−δ+ε for all λ ≥ λ0 and x ≥ 1 .

Thus (A-2)–(A-3) imply that for 0 < δ ≤ 1/2

σ1 x1−δ1 ≤ φ(λx)

φ(λ)
≤ c x1−δ+ε for all λ ≥ λ0 and x ≥ 1 .
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Green function estimates [KM2]

Suppose that X = (Xt : t ≥ 0) is a transient subordinate Brownian motion
whose characteristic exponent is given by Φ(θ) = φ(|θ|2), θ ∈ Rd satisfying
(A-1)–(A-3) (with some additional assumption when d ≤ 2).

Then for every bounded C 1,1 open set D in Rd with characteristics (R,Λ), the
Green function GD(x , y) of X in D satisfies the following estimates:

GD(x , y)

�

(
1 ∧ φ(|x − y |−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
φ′(|x − y |−2)

|x − y |d+2φ(|x − y |−2)2

�

(
1 ∧ φ(|x − y |−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
G(x , y).
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Corollary [KM2]

Suppose that X = (Xt : t ≥ 0) is a transient subordinate Brownian motion
whose characteristic exponent is given by Φ(θ) = φ(|θ|2), θ ∈ Rd , where
φ : (0,∞)→ [0,∞) is a complete Bernstein function such that

c1 xα/2 ≤ φ(λx)

φ(λ)
≤ c2 xβ/2 for all x ≥ 1 and λ ≥ λ1 .

for some constants c1, c2, λ1 > 0, α, β ∈ (0, 2) and α ≤ β. We further assume
that 2β − α < 1 (with some additional assumption when d ≤ 2). .

Then for every bounded C 1,1 open set D in Rd with characteristics (R,Λ),
there exists c = c(diam(D),R,Λ, φ, d) > 1 such that the Green function
GD(x , y) of X in D satisfies the following estimates:

GD(x , y) �

(
1 ∧ φ(|x − y |−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
1

|x − y |d φ(|x − y |−2)
.

This extends the main result of [KSV].
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Green function estimates – conclusion

GD(x , y) �
(

1 ∧ V (δD(x))

V (|x − y |)

)(
1 ∧ V (δD(y))

V (|x − y |)

)
G(x , y)

�
(

1 ∧ V (δD(x))V (δD(y))

V (|x − y |)2

)
G(x , y)

�

(
1 ∧ φ(|x − y |−2)√

φ(δD(x)−2)φ(δD(x)−2)

)
G(x , y).
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Decay rate of harmonic function near boundary [KM2]

Boundary Haranck inequality with the explicit decay rate

Suppose that d ≥ 1 and that D is a (possibly unbounded) C 1,1 open set in Rd

with characteristics (R,Λ). Then there exists c = c(R,Λ, φ, d) > 0 such that
for r ∈ (0, (R ∧ 1)/4], z ∈ ∂D and any nonnegative function u in Rd that is
harmonic in D ∩ B(z , r) with respect to X and vanishes continuously on
Dc ∩ B(z , r), we have

u(x)

u(y)
≤ c

φ(δD(x)−2)−1/2

φ(δD(y)−2)−1/2
for every x , y ∈ D ∩ B(z , r/2).

In the case of geometric stable process,

u(x)

u(y)
≤ c

(log(δD(x)−1))−1/2

(log(δD(y)−1))−1/2
for every x , y ∈ D ∩ B(z , r/2).
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Poisson Kernel Estimates [KK]: Assumption

D is a bounded open set with dD := diam(D) < M for some M > 0. X is a
purely discontinuous rotationally symmetric Lévy process with Lévy exponent
Φ(|ξ|).
We assume the function Φ : [0,∞)→ [0,∞) satisfies the following properties.
(P1) Φ ∈ C 1 is an increasing function with Φ(0) = 0 and limt→∞ Φ(t) =∞.
(P2) There exists constant C0 ≥ 1 such that

Φ(tλ) ≤ C0λ
2Φ(t) for all λ ≥ 1, t > 0.

(P3) There exists constant C1 > 0 such that

Φ′(tλ) ≤ C1λΦ′(t) for all λ ≥ 1, t > 0.

(P4) There exists a increasing function Ψ : ((5M)−1,∞)→ (0,∞) and a
constant C2 ≥ 1 such that

C−1
2 Ψ(λ) ≤ λ1+d Φ′(λ)

Φ(λ)
≤ C2Ψ(λ) λ ∈ ((5M)−1,∞).
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Poisson Kernel Estimates [KK]: Assumption (continue)

We assume that Green function GD(x , y) and Lévy density j(|x |) have following
estimation.
(G)

C3

(
1 ∧ Φ(|x − y |−1)√

Φ(δD(x)−1)

)1/2(
1 ∧ Φ(|x − y |−1)√

Φ(δD(y)−1)

)1/2
Φ′(|x − y |−1)

|x − y |d+1Φ(|x − y |−1)2

≤ GD(x , y)

≤ C4

(
1 ∧ Φ(|x − y |−1)√

Φ(δD(x)−1)

)1/2(
1 ∧ Φ(|x − y |−1)√

Φ(δD(y)−1)

)1/2
Φ′(|x − y |−1)

|x − y |d+1Φ(|x − y |−1)2
.

(J1) There exist positive constants C5(M) and C6(M) such that

C5
Φ′(r−1)

rd+1
≤ j(r) ≤ C6

Φ′(r−1)

rd+1
, r ∈ (0, 10M).

(J2) There exists C7 > 0 such that

j(r) ≤ C7j(r + 1), ∀r > 1.
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By the result of Ikeda and Watanabe (Lévy system) we have

Px(XτD ∈ F ) =

∫
F

∫
D

GD(x , y)j(|z − y |) dy dz

for any F ⊂ D
c
. We define the Poisson kernel of the set D by

KD(x , z) =

∫
D

GD(x , y)j(|z − y |) dy ,

so that Px(XτD ∈ F ) =
∫
F

KD(x , z) dz for any F ⊂ D
c
.

Note that if U is a Lipschitz open set

Px(XτU ∈ ∂U) = 0 and Px(XτU ∈ dz) = KU(x , z)dz on Uc .

(Millar (1975), Sztonyk (2000))
In other words, the Poisson kernel is the density of the exit distribution.
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Poisson Kernel Estimates [KK]

Let D be a bounded open set which satisfies cone condition with cone
characteristic constant (R, η) and dD := diam(D) < M for some M > 0. Also,
a function Φ : [0,∞)→ [0,∞) satisfies (P1)-(P4) and (G), (J1) and (J2)
hold. Then, there exists c = c(C0,C1,C2,C3, C4,C5,C6, C7,R/dD , η,M, d) > 1
such that the following inequality holds for every x ∈ D and z ∈ D

c

c−1 Φ(δD(z)−1)1/2

Φ(δD(x)−1)1/2Φ(|x − z |−1)(1 + Φ(d−1
D )1/2Φ(δD(z)−1)−1/2)

j(|x − z |)

≤KD(x , z)

≤c
Φ(δD(z)−1)1/2

Φ(δD(x)−1)1/2Φ(|x − z |−1)(1 + Φ(d−1
D )1/2Φ(δD(z)−1)−1/2)

j(|x − z |)

This gives uniform estimate for KB(0,r)(x , z) for small r from uniform estimate
of GB(0,r)(x , z) for small r .
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Poisson Kernel Estimates [KK]

Poisson Kernel Estimates on bounded C 1,1 open set

Suppose that X = (Xt : t ≥ 0) is a transient subordinate Brownian motion
whose characteristic exponent is given by Φ(θ) = φ(|θ|2), θ ∈ Rd satisfying
(A-1)–(A-3). then for every bounded C 1,1 open set D in Rd with
characteristics (R,Λ)

KD(x , z)

� φ(δD(z)−2)1/2

φ(δD(x)−2)1/2φ(|x − z |−2)(1 + φ(δ(z)−2)−1/2)
j(|x − z |).

α-stable: Chen & Song (97) (Jakubowski (02) for Lipschitz and Michalik
(06) for cone).

1 dimensional SBM : K, Song and Vondraček (00), Grzywny and Ryznar
(01), Grzywny (announced yesterday and on July 2012) .

If α, β ∈ (0, 2) and c1 xα/2 ≤ φ(λx)/φ(λ) ≤ c2 xβ/2 for all x ≥ 1 and
λ ≥ λ1 (2β − α < 1 if d ≥ 2) then for z ∈ D

c
with dD(z) ≤ 2dD

KD(x , z) � c
φ(δD(z)−2)1/2

φ(δD(x)−2)1/2(1 + φ(δD(z)−2)−1/2)
|x − z |−d .
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Remarks on some parts of the proof
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Asymptotical properties [KM1]

We assume that f : (0,∞)→ (0,∞) is a differentiable function satisfying

|f (λ+ ε)− f (λ)| =

∫ ∞
0

(
e−λt − e−(λ+ε)t

)
ν(t) dt , (1)

for all λ > 0, ε ∈ (0, 1) and a decreasing function ν : (0,∞)→ (0,∞).

Lemma A

Suppose (1) holds. Then for all t > 0,

ν(t) ≤ (1− 2e−1)−1 t−2|f ′(t−1)| .
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Asymptotical properties [KM1]

|f (λ+ ε)− f (λ)| =

∫ ∞
0

(
e−λt − e−(λ+ε)t

)
ν(t) dt , (1)

Lemma B

Assume that (1) holds and |f ′| is decreasing and there exist c1 > 0, λ0 > 0 and
δ > 0 such that ∣∣∣∣ f ′(λx)

f ′(λ)

∣∣∣∣ ≤ c1x−δ for all λ ≥ λ0 and x ≥ 1 .

Then there is a constant c2 = c2(c1, λ0, δ) > 0 such that

ν(t) ≥ c2t−2|f ′(t−1)| for any t ≤ 1/λ0 .
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Lévy density µ of subordinator S [KM1]

|f (λ+ ε)− f (λ)| =

∫ ∞
0

(
e−λt − e−(λ+ε)t

)
ν(t) dt , (1)

Proposition 1

If If the Lévy measure µ of S has a deceasing density t → µ(t) and (A-2)
holds, then Lévy density µ of subordinator S satisfies

µ(t) � t−2φ′(t−1), t → 0 + .

Proof. Note that

φ(λ+ ε)− φ(ε) =

∫ ∞
0

(
e−λt − e−λ(t+ε)

)
µ(t) dt

for any λ > 0 and ε > 0 and thus the condition (1) holds with f = φ and
ν = µ. Since φ is a Bernstein function, it follows that φ′ ≥ 0 and φ′ is
decreasing. �
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Potential density u of subordinator S [KM1]

Proposition 2

If the potential measure U of S has a decreasing density u and (A-2) holds,
then potential density u of subordinator S satisfies

u(t) � t−2 φ
′(t−1)

φ(t−1)2
, t → 0 + .

Proof. Since
∫∞
0

e−λtu(t) dt = 1
φ(λ)

=: ψ(λ). (1) is satisfied with f = 1
φ

= ψ
and ν = u.
For λ ≥ λ0 and x ≥ 1, (A-2) implies∣∣∣∣ψ′(λx)

ψ′(λ)

∣∣∣∣ =

(
φ(λ)

φ(λx)

)2
φ′(λx)

φ′(λ)
≤ φ′(λx)

φ′(λ)
≤ cx−δ.

Since φ is a Bernstein function, φ′ ≥ 0 and φ′ is a decreasing function. Thus

|f ′| = φ′

φ2 is also a decreasing function. �
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Asymptotical properties for SBM [KM1]

Let η : (0,∞)→ (0,∞) be a decreasing function satisfyng the following
conditions:

(a) there exists a decreasing function ψ : (0,∞)→ (0,∞) such that
λ 7→ λ2ψ(λ) is increasing and satisfies

η(t) � t−2ψ(t−1), t → 0+ ;

(b) ∫ ∞
1

t−d/2η(t) dt <∞.

Lemma A3

If

I (r) =

∫ ∞
0

(4πt)−d/2 exp

(
− r 2

4t

)
η(t) dt

exists for r ∈ (0, 1) small enough, then

I (r) � r−d−2ψ(r−2), r → 0 + .
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Asymptotical properties for j [KM1]

We have
j(r) � r−d−2φ′(r−2), r → 0 + .

Proof. Recall

j(r) =

∫ ∞
0

(4πt)−d/2 exp
(
− r2

4t

)
µ(t) dt .

and µ(t) ∼ t−2φ′(t−1), t → 0+.
Use Lemma A3 with η = µ and ψ = φ′.∫ ∞

1

t−d/2µ(t) dt ≤
∫ ∞
1

µ(t) dt = µ(1,∞) <∞,

since µ is a Lévy measure. �
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Asymptotical properties for g [KM1]

We have

g(r) � r−d−2 φ
′(r−2)

φ(r−2)2
, r → 0 + .

Proof. Recall that

g(r) =

∫ ∞
0

(4πt)−d/2 exp
(
− r2

4t

)
u(t) dt .

and u(t) ∼ t−2 φ′(t−1)

φ(t−1)2
, t → 0+.

Use Lemma A3 with η = u and ψ = φ′

φ2 .
Note that X being transient implies that∫ ∞

1

t−d/2u(t) dt <∞ .

�
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Need a preliminary estimate of the Green function GB(0,r)(x , y) of the ball
B(0, r) when y is near its boundary.

To be more precise, there are a function ξ : (0, 1)→ (0,∞) and constants
c1, c2 > 0 and 0 < κ1 < κ2 < 1 such that for every r ∈ (0, 1),

c1ξ(r)r−d EyτB(0,r) ≤ GB(0,r)(x , y) ≤ c2ξ(r)r−d EyτB(0,r), (2)

for x ∈ B(0, κ1r) and y ∈ B(0, r) \ B(0, κ2r)

The function ξ that appeared in (2) is of the form ξ(r) = r−2φ′(r−2)

φ(r−2)
. Note that

for many cases,
ξ(r) � 1 as r → 0+ ,

while for geometric stable processes

ξ(r) � 1
log(r−1)

as r → 0 + .
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Boundary estimate

D a bounded Lipschitz domain. Fix z0 ∈ D and let

g(x) := GD(x , z0) ∧ c

where c is an appropriate constant. By using the methods of Bogdan (1997)
and Hansen (2005), and the BHP, one proves

Theorem: Let D be a bounded Lipschitz domain. Then

GD(x , y) � g(x)g(y)

g(A)2
φ′(|x − y |−2)

|x − y |d φ(|x − y |−2)2
, A ∈ B(x , y) .

where

B(x , y) :=


{A ∈ D : δD(A) > κ(δD(x) ∨ δD(y) ∨ |x − y |),

|x − A| ∨ |y − A| < 5(δD(x) ∨ δD(y) ∨ |x − y |)}
if δD(x) ∨ δD(y) ∨ |x − y | < ε1

{z0} if δD(x) ∨ δD(y) ∨ |x − y | ≥ ε1.
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
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|x − A| ∨ |y − A| < 5(δD(x) ∨ δD(y) ∨ |x − y |)}
if δD(x) ∨ δD(y) ∨ |x − y | < ε1

{z0} if δD(x) ∨ δD(y) ∨ |x − y | ≥ ε1.
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Harmonic function in the half-space

Af (x) := lim
ε→0

∫
|x−y|>ε

(f (y)− f (x))j(|x − y |) dy

A|C2
0

coincides with the infinitesimal generator of X .

Let Rd
+ := {x = (x̃ , xd) ∈ Rd : xd > 0} be the half-space, and define

w(x) := V ((xd)+) = V (δRd
+

(x)) .

Theorem: w is harmonic w.r.t. X in Rd
+ and, for any r > 0, regular harmonic in

Rd−1 × (0, r) w.r.t. X .

Theorem: Aw(x) is well defined for all x ∈ Rd
+ and Aw(x) = 0 for all x ∈ Rd

+.
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“Test function” method

D ⊂ Rd a bounded C 1,1 open set with characteristics (R,Λ). Fix Q ∈ ∂D and
define

h(y) := V (δD(y))1D∩B(Q,R)(y) .

Key technical lemma:

There exist C = C(α,Λ,R) and R2 ≤ R/4 (independent of Q ∈ ∂D) such that
Ah is well defined in D ∩ B(Q,R2) and

|Ah(x)| ≤ C , for all x ∈ D ∩ B(Q,R2) .

Here the assumption (A-3) is used.



Introduction and motivation Main Results

“Test function” method

D ⊂ Rd a bounded C 1,1 open set with characteristics (R,Λ). Fix Q ∈ ∂D and
define

h(y) := V (δD(y))1D∩B(Q,R)(y) .

Key technical lemma:

There exist C = C(α,Λ,R) and R2 ≤ R/4 (independent of Q ∈ ∂D) such that
Ah is well defined in D ∩ B(Q,R2) and

|Ah(x)| ≤ C , for all x ∈ D ∩ B(Q,R2) .

Here the assumption (A-3) is used.



Introduction and motivation Main Results

“Test function” method

D ⊂ Rd a bounded C 1,1 open set with characteristics (R,Λ). Fix Q ∈ ∂D and
define

h(y) := V (δD(y))1D∩B(Q,R)(y) .

Key technical lemma:

There exist C = C(α,Λ,R) and R2 ≤ R/4 (independent of Q ∈ ∂D) such that
Ah is well defined in D ∩ B(Q,R2) and

|Ah(x)| ≤ C , for all x ∈ D ∩ B(Q,R2) .

Here the assumption (A-3) is used.



Introduction and motivation Main Results

Exit time probability and expectation

Define ρQ(x) := xd − ψQ(x) where (x̃ , xd) are the coordinates of x in CSQ .
For a, b > 0 define the “box”

DQ(a, b) := {y ∈ D : 0 < ρQ(y) < a, |ỹ | < b} .

Explanations and outline of the proof
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Lemma: ∃ C1,C2 and R3 such that for every r ≤ R3 and every x ∈ DQ(r , r)

Px(XτDQ (r,r)
∈ D) ≥ C1V (δD(x))

and
Ex

[
τDQ (r,r)

]
≤ C2V (δD(x)) .

Explanations and outline of the proof

Exit time probability and expectation

Define ρQ(x) := xd −ψQ(x) where (�x , xd) are the coordinates of x in CSQ .
For a, b > 0 define the “box”

DQ(a, b) := {y ∈ D : 0 < ρQ(y) < a, |�y | < b} .

Zoran Vondraček (Univ. of Zagreb) Green function estimates
Osaka, August 30 - September 3 29 /

37



Introduction and motivation Main Results

Recall the function g(x) = GD(x , z0) ∧ c and the estimate

GD(x , y) � g(x)g(y)

g(A)2|x − y |dφ(|x − y |−2)
, A ∈ B(x , y) .

By applying the BHP to harmonic functions x 7→ GD(x , z0) and
x 7→ Px(XτD(r,r)

∈ B(z0, ε1/4)) (for appropriate r > 0 and ε1 > 0) and by use of
previous lemma one proves

Theorem: Suppose that D is a bounded C 1,1 open set in Rd with characteristics
(R,Λ). Then there exists C = C(R,Λ, α, diam(D)) > 0 such that

C−1 (V (δD(x)) ∧ 1) ≤ g(x) ≤ C (V (δD(x)) ∧ 1) , x ∈ D .
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Thank you!
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