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M = d-dim. smooth manifold

(g(t))t∈[0,T ] smooth family of Riemannian metrics on M,

e.g. ∂g
∂t = ± 2 Ric, (backward) Ricci flow

(M,g(t)) complete for all t ∈ [0,T ]



Definition (Arnaudon, Coulibaly, Thalmaier 2008)

A process (Xt )t∈I is a Brownian motion if ∀f ∈ C1,2
b ([0,T ]×M)

df (t ,Xt ) =

[
∂f
∂t

+ ∆g(t)f
]
(t ,Xt )dt + dMt︸︷︷︸

martingale

(The choice of ∆ instead of 1
2 ∆ is better adapted to Ricci flow.)

Let u(t , ·) be the density of Xt , then

∂u
∂t

= ∆g(t)u − 1
2

tr
(

∂g
∂t

)
u︸ ︷︷ ︸

change of volume element



1 Criterion for non-explosion (Kuwada, Philipowski ’11):
If ∃C ∈ R :

∂g
∂t
≤ 2 Ricg(t) +Cg(t),

then Brownian motion does not explode.

2 Application to a new entropy formula
(Guo, Philipowski, Thalmaier ’12)



Idea to prove non-explosion: Fix a point o ∈ M and let

ρ(t , x) := dg(t)(o, x).

Since (M,g(t)) is complete for each t ∈ [0,T ],

X explodes at some time ζ ≤ T ⇔ ρ(t ,Xt ) is unbounded on [0, ζ).

Therefore study the one-dimensional process ρ(t ,Xt ).



For smooth functions f : [0,T ]×M → R we have Itô’s formula

df (t ,Xt ) =

[
∂f
∂t

+ ∆g(t)f
]
(t ,Xt )dt + dMt ,

where M is a local martingale with

d〈M〉t = |∇f (t ,Xt )|2dt .

The function ρ is smooth everywhere except on

{(t , x) ∈ [0,T ]×M | x = o or x ∈ Cutg(t)(o)},

and |∇ρ| = 1.

For all t ∈ [0,T ], Cutg(t) has volume 0, hence

P
[
Xt ∈ Cutg(t)

]
= 0.



Guess:

dρ(t ,Xt ) =

[
∂ρ

∂t
+ ∆g(t)ρ

]
(t ,Xt )dt + d βt︸︷︷︸

1-dim Brownian motion

This is not true!

Counterexample: M = S1, g(t) = standard metric ∀t
⇒ ∆ρ = 0 a.e., so we would expect

dρ(t ,Xt ) = d βt



Guess:

dρ(t ,Xt ) =

[
∂ρ

∂t
+ ∆g(t)ρ

]
(t ,Xt )dt + d βt︸︷︷︸

1-dim Brownian motion

This is not true!

Counterexample: M = S1, g(t) = standard metric ∀t
⇒ ∆ρ = 0 a.e., so we would expect

dρ(t ,Xt )︸ ︷︷ ︸
∈ [0,2π]

= d βt︸︷︷︸
unbounded

Reason: Reflection of the process ρ(t ,Xt ) at o and Cutg(t)(o).
But the formula is true as long as Xt /∈ {o} ∪Cutg(t)(o).



In dimension d ≥ 2, the point o is never hit by Brownian motion, but
Cutg(t)(o) is hit in general, hence we need a correction term.

Theorem (Kendall ’87 fixed metric; Kuwada, Philipowski ’11 general
case)

∃ non-decreasing process L which increases only when
Xt ∈ Cutg(t)(o), such that

dρ(t ,Xt ) =

[
∂ρ

∂t
+ ∆g(t)ρ

]
(t ,Xt )dt + d βt − dLt

Thanks to this Itô formula, it suffices to control the drift term
∂ρ
∂t + ∆g(t)ρ.



Theorem (Kuwada, Philipowski ’11)

If
∂g
∂t
≤ 2 Ricg(t) +Cg(t),

then ∃K < ∞ : ∀(t , x) ∈ [0,T ]×M
such that x /∈ Cutg(t)(o) and ρ(t , x) ≥ 1,[

∂ρ

∂t
+ ∆g(t)ρ

]
(t , x) ≤ K + Cρ(t , x).

Consequently, Brownian motion cannot explode.



Ricci flow and entropy formulae

Let M be compact,
∂g
∂t

= −2 Ric

and u a non-negative solution of

∂u
∂t

= −∆u + Ru.

Let
Ent(t) :=

∫
M
(u log u)(t , y) volg(t)(dy)

be the Boltzmann-Shannon entropy of u(t , ·) with respect to the
measure volg(t).



Ent(t) =
∫

M
(u log u)(t , y) volg(t)(dy)

Ent′(t) =
∫

M

((
|∇(log u)|2 + R

)
u
)
(t , y) volg(t)(dy)

= Perelman’s F -functional,

Ent′′(t) = 2
∫

M

(
|Ric+Hess(log u)|2 u

)
(t , y) volg(t)(dy)

≥ 0.

Proof: Integration by parts (M is compact).

Moreover,

Ent′′(t) = 0 ⇔ Ric = −Hess(log u),
i.e. g is a gradient steady soliton
(constant up to diffeomorphism)

Consequence (Perelman): Any periodic (up to diffeomorphism)
solution (steady breather) is a gradient steady soliton.



Problem: If M is not compact, all this does not work (integrals may
not exist; even if they exist, integration by parts need not be feasible).

Idea: (Guo, Philipowski, Thalmaier (2012)): Instead of

∂g
∂t

= −2 Ric

∂u
∂t

= −∆u + Ru

Ent(t) =
∫

M
(u log u)(t , y) volg(t)(dy)

consider
∂g
∂t

≤ 2 Ric

∂u
∂t

= −∆u

E(t) := E [(u log u)(t ,Xt )] ,

where (Xt )t≥0 is a (g(t)t≥0-Brownian motion.



∂g
∂t

≤ 2 Ric

∂u
∂t

= −∆u

E(t) := E [(u log u)(t ,Xt )]

Advantages:

E(t) is always well-defined (possibly +∞), and finite in most
cases

Instead of integration py parts, use Itô’s formula to compute
E ′(t) and E ′′(t)



To compute E ′(t) and E ′′(t) using Itô’s formula, we need:(
∂

∂t
+ ∆g(t)

)
(u log u) =

|∇u|2
u(

∂

∂t
+ ∆g(t)

)(
|∇u|2

u

)
= 2u|Hess log u|2

+ u
(

2 Ric−∂g
∂t

)
(∇ log u,∇ log u)

≥ 0 if
∂g
∂t
≤ 2 Ric



Theorem (Guo, Philipowski, Thalmaier ’12)

Under mild assumptions (which guarantee that certain local
martingales are true martingales),

E ′(t) = E
[
|∇u|2

u (t ,Xt )
]
≥ 0,

E ′′(t) = E [(A + B)(t ,Xt )] , where

A = 2u|Hess log u|2 ≥ 0,

B = u
(

2 Ric− ∂g
∂t

)
(∇ log u,∇ log u)

≥ 0 in the case of backward super Ricci flow

Hence, under backward super Ricci flow E is non-decreasing and
convex.



Proof: By Itô’s formula,

d(u log u)(t ,Xt )
m
=

(
∂

∂t
+ ∆g(t)

)
(u log u)(t ,Xt )dt

=
|∇u|2

u
(t ,Xt )dt ,

so that

E ′(t) =
d
dt

E [(u log u)(t ,Xt )]

= E
[
|∇u|2

u (t ,Xt )
]
.

Same argument for E ′′(t).



Application to ancient solutions of the heat equation

Suppose a solution u of the backward heat equation

∂u
∂t

= −∆g(t)u

is defined for all t ≥ 0. Then it can be regarded as an ancient solution
of the forward heat equation, and the monotonicity and convexity of E
imply:

1 If E(t) grows sublineary, i.e. if limt→∞
E(t)

t = 0, u must be
constant.

2 If E(t) is exactly linear, i.e. if E ′′(t) ≡ 0, then u has the form
u(t , x) = ψ(x)ϕ(t).



Proof (1): Since E is convex, the condition limt→∞
E(t)

t = 0 implies
that E is constant. Therefore

E ′(t) = E

[
|∇u|2

u
(t ,Xt )

]
≡ 0,

so that u is constant.



Proof (2): If E ′′(t) ≡ 0, we have

Hess(log u) ≡ 0,

so that

∂ log u
∂t

=
1
u

∆u

= ∆(log u) +
1
u2 |∇u|2

= |∇ log u|2.

This implies

log u(t , y)− log u(0, y) = −
∫ t

0
|∇ log u|2(s)︸ ︷︷ ︸

does not depend on y

ds,

so that

u(t , y) = u(0, y) exp
(
−
∫ t

0
|∇ log u|2(s)ds

)
.


