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@ M = d-dim. smooth manifold

@ (9(1))tefo,7) smooth family of Riemannian metrics on M,

e.9. % = +2Ric, (backward) Ricci flow

@ (M, g(t)) complete for all t € [0, T]




Definition (Arnaudon, Coulibaly, Thalmaier 2008)

A process (X;)tc; is a Brownian motion ifVf € C;'z([o, T] x M)

of
df(t, X;) = [at +Ag(nf

(f, Xt)df—f— aM;
Ny

martingale

(The choice of A instead of %A is better adapted to Ricci flow.)

Let u(t, -) be the density of X, then

ou ag

change of volume element




@ Criterion for non-explosion (Kuwada, Philipowski '11):
fdC e R:
og .
ot < 2Ricg ) +Cg(1),

then Brownian motion does not explode.

@ Application to a new entropy formula
(Guo, Philipowski, Thalmaier '12)




Idea to prove non-explosion: Fix a point o € M and let
p(t, X) = dg(t)(o, X).
Since (M, g(t)) is complete for each t € [0, T,

X explodes at some time { < T < p(t, X;) is unbounded on [0, 7).

Therefore study the one-dimensional process p(t, X;).




For smooth functions f : [0, T] x M — R we have It6’s formula

af
di(t, X;) = [at + Ag(s f} (t, X;) ot + dM,

where M is a local martingale with
d(M); = |V(t, X;)|2at.
The function p is smooth everywhere except on
{(t.x) €[0, T] x M|x = oorx € Cuty(0)},
and |[Vp| = 1.

Forall t € [0, T], Cutgy(; has volume 0, hence

P | X € Cuty(y| =0.



Guess:

0
an(t, X) = | % + Bqe | (. Xt + dp
1-dim Brownian motion

This is not true!

Counterexample: M = S, g(t) = standard metric V't
= Ap = 0 a.e., so we would expect

do(t, Xt) = dB:




Guess:

9
dp(t, Xt) = |:P +Ag(t)p:| (t, Xt)dt—l-

at 9Pt

1-dim Brownian motion

This is not true!

Counterexample: M = S', g(t) = standard metric Vt
= Ap = 0 a.e., so we would expect

do(t, X)) = dpi
—— ~—
€ [0,27r]  unbounded

Reason: Reflection of the process p(t, X;) at 0 and Cutg ) (0).
But the formula is true as long as X; ¢ {o} U Cuty ) (0).



In dimension d > 2, the point o is never hit by Brownian motion, but
Cuty(s)(0) is hit in general, hence we need a correction term.

Theorem (Kendall ‘87 fixed metric; Kuwada, Philipowski '11 general

case)

3 non-decreasing process L which increases only when
Xt € Cuty(y(0), such that

0
dp(t, Xt) = |:P + Ag(t)p:| (t, Xt)dt+ dﬁt —dL;

Thanks to this It6 formula, it suffices to control the drift term
dp
at T Bg(n)p-




Theorem (Kuwada, Philipowski '11)
If
99
ot
then 3K < oo : Y(t,x) € [0, T] x
such that x ¢ Cuty(; (0) and p(t, x) >1,

< 2Ric a(t) +Cg(t),

ap

Consequently, Brownian motion cannot explode.




Ricci flow and entropy formulae

Let M be compact,

og .
3 —2Ric
and u a non-negative solution of
ou
— = —Au+ Ru.
T; u+ Ru

Let

Ent(t) := ./,;/’(ulog U)(t, y) Vol (dly)

be the Boltzmann-Shannon entropy of u(t, -) with respect to the
measure Volg4).




Ent(f) — '/M(ulogu)(t,y)volg(t)(dy)

Ent/(t)

/. ((IVtog ) 2+ R)u)(t. ) volyrcly)
Perelman’s F-functional,

Ent’(t) = 2/M <|Ric+ Hess (log u)|? u)(t, y) volgp(dy)
>0.

Proof: Integration by parts (M is compact).
Moreover,
Ent’(t) =0 < Ric = —Hess(log u),

i.e. g is a gradient steady soliton
(constant up to diffeomorphism)

Consequence (Perelman): Any periodic (up to diffeomorphism)
solution (steady breather) is a gradient steady soliton.



Problem: If M is not compact, all this does not work (integrals may
not exist; even if they exist, integration by parts need not be feasible).

Idea: (Guo, Philipowski, Thalmaier (2012)): Instead of

99
ot
au
ot
Ent(t) =

consider
a9

ot
Jau
ot
(1)

—2Ric
—Au+ Ru

| (wlogu)(t.y) volg )

< 2Ric

= —Au

== E[(ulogu)(t, Xp)],

where (X;):>o is a (g(t)¢>0-Brownian motion.



ag

5 < 2Ric

ou

M = —Au

E(t) = E[(ulogu)(t, Xt)]

Advantages:

@ £(t) is always well-defined (possibly +o0), and finite in most
cases

@ Instead of integration py parts, use It6’s formula to compute
E'(t)and £ (1)




To compute £’(t) and £(t) using Ito’s formula, we need:

0 |Vul?
<3t+Ag(t)> (ulogu) = —=
J [Vul? _ 2
(at+A ()> < U ) = 2u|Hesslogu|
a9
(2 RIC_E)) (Vlogu, Vlog u)
> 0 ifa—g < 2Ric

- ot




Theorem (Guo, Philipowski, Thalmaier '12)

Under mild assumptions (which guarantee that certain local
martingales are true martingales),

gty = E[ELtx)] >0,
E"(t)y = E[(A+B)(t,X;)], where
A = 2ulHesslogul? >0,

B = u(2Ricf%—?) (Vlogu, Viogu)

> 0 inthe case of backward super Ricci flow

Hence, under backward super Ricci flow £ is non-decreasing and
convex.




Proof: By It6’s formula,
d(ulogu)(t, X;) = (aat+A()) (ulogu)(t, X;)dt
2
- |v:| (t, X;)dft,
so that
p d
E'(t) = = El(ulogu)(t.X)]
2
= E[ME @ x)].

Same argument for £”(t).




Application to ancient solutions of the heat equation

Suppose a solution u of the backward heat equation

ou
ot = el

is defined for all t > 0. Then it can be regarded as an ancient solution
of the forward heat equation, and the monotonicity and convexity of £

imply:

@ If £(t) grows sublineary, i.e. if lim;_, &rt) =0, u must be
constant.

Q@ If £(t) is exactly linear, i.e. if £”(t) = 0, then u has the form
u(t,x) = p(x)e(t).




Proof (1): Since £ is convex, the condition lim;_, itt) = 0 implies

that £ is constant. Therefore
2

£'(t) = ['V,j" 0 X)]

so that u is constant.




Proof (2): If £”(t) = 0, we have

Hess(logu) =0,

so that
dlogu 1
ot~ o
1
= A(|OQU)+?|VU|2
= |Vliogul?.
This implies

t
logu(t,y) —logu(0,y) = — /0 |V log u|2(sl ds,
does not depend on y

so that

(ty)-u(Oyexp( /\Vlogu| >



