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The Static Random Conductance Model
Intuitive description

Put i.i.d. random conductances (or weights) ωe ∈ [0,∞) on the edges
of the Euclidean lattice (Zd ,Ed).

Look at a continuous time Markov chain Xt with jump probabilities
proportional to the edge conductances.

Pxy =
ωxy∑
z∼x ωxz

.

Bond conductivities: blue � 1, black ≈ 1, red � 1.
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Definitions

Environment. Let Ω = [0,∞)Ed be the space of environments, and
let P be the probability law on Ω which makes the coordinates
ωe , e ∈ Ed i.i.d. random variables.

Random walk. Let Ω′ = D([0,∞),Zd). For each ω ∈ Ω let Pω
x be

the probability law on Ω′ which makes the coordinate process
Xt = Xt(ω

′) a Markov chain with generator

Lf (x) =
∑
y∼x

ωxy (f (y)− f (x)).

Problems. What we would like to have:
I Gaussian bounds (GB) on the heat kernel for X .
I Quenched functional CLT with diffusivity σ2: Let X

(N)
t = N−1XN2t

and W be a BM(Rd). Then for P-a.a. ω, under Pω
0 ,

X (N) ⇒ σW .

(In particular is σ > 0?)
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Results on the static RCM

Annealed FCLT: De Masi, Ferrari, Goldstein, Wick (1989).

“Elliptic”: 0 < C1 ≤ ωe ≤ C2 <∞. GB follow from results of
Delmotte (1999). QFCLT proved by Sidoravicius and Sznitman
(2004).

“Supercritical Percolation”: ωe ∈ {0, 1} (and p+ > pc .) GB proved
by Barlow (2004). QFCLT proved by Sidoravicius and Sznitman
(2004), Berger and Biskup (2007), Mathieu and Piatnitski (2007).

“Bounded above”: ωe ∈ [0, 1]. Berger, Biskup, Hoffmann, Kozma
(2008) showed GB may fail! QFCLT holds with σ2 > 0: Biskup and
Prescott (2007), Mathieu (2007).

“Bounded below”: ωe ∈ [1,∞). GB and QFCLT proved by Barlow
and Deuschel (2010).

General i.i.d. ωe ≥ 0. QFCLT by A., Barlow, Deuschel, Hambly
(2011).
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Dynamic Random Conductance Model

Environment. Let Ω be the space of measurable mappings from
[0,∞) into [0,∞)Ed , and let P be a probability law on Ω. Write
ωe(t), e ∈ Ed , t ≥ 0, for the coordinates.

Random walk. Let Ω′ = D([0,∞),Zd). For each ω ∈ Ω let Pω
s,x be

the probability law on Ω′ which makes the coordinate process
Xt = Xt(ω

′) a time-inhomogeneous Markov chain starting at x at
t = s with time-dependent generator

Lωt f (x) =
∑
y∼x

ωxy (t) (f (y)− f (x)) .

Denote by pω(s, x ; t, y) the transition kernel.

Shift. Let τt,xω be the environment obtained by shifting ω by t in
time and by x in space.
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QFCLT’s for RWRE with dynamical Environment

Space-time i.i.d. environment: Boldrighini, Minlos, Pellegrinotti
(2004); Rassoul-Agha, Seppäläinen (2005)

Markovian in time, i.i.d. in space: Bandyopadhyay, Zeitouni (2006)

Markovian in time, exponential mixing environment: Dolgopyat,
Keller, Liverani (2008)

Continuous-space random walks: Rassoul-Agha, Joseph (2010)

Ergodic Markovian environment under some coupling conditions:
Redig, Völlering (2011)
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Assumptions

A1: Ergodicity. The measure P is invariant and ergodic w.r.t. (τt,x).

A2: Stochastic Continuity. For any δ > 0 and f ∈ L2(P) we have

lim
h→0

P[|f (τh,0ω)− f (ω)| ≥ δ] = 0.

A3: Ellipticity. There exist positive constants Cl and Cu such that

P
[
Cl ≤ ωe(t) ≤ Cu, ∀e ∈ Ed , t ≥ 0

]
= 1.
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Gaussian Bounds and Annealed Functional CLT

Theorem (Delmotte, Deuschel; 2005)

Under A1-A3, for P-a.e. ω

pω(s, x ; t, y) ≤ c2

(t − s)d/2
exp

(
−c3
|x − y |2

t − s

)
, if |x − y | ≤ c1(t − s)

and similar lower bounds

Define annealed law P∗s,x =
∫

Ω Pω
s,x dP(ω).

Theorem (A., 2012)

Let d ≥ 1. Under A1-A3 the law of X (N) converges under P∗0,0 to the law

of a Brownian motion on Rd with a deterministic non-degenerate
covariance matrix Σ.
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Quenched Functional CLT

A4: Time-Mixing. There exists p1 > 1 such that for all bounded
ϕ,ψ of the form ϕ(ω) = ϕ̃(ω(t1)) and ψ(ω) = ψ̃(ω(t2)), |t1− t2| ≥ 1,
for some ϕ̃, ψ̃ depending on finitely many variables we have

|E[ϕψ]− E[ϕ]E[ψ]| ≤ c |t1 − t2|−p1‖ϕ‖L∞(P)‖ψ‖L∞(P).

A5: Space-Mixing. Let d ≥ 3. There exists p2 > 2d/(d − 2) such
that for all ϕ,ψ of the form ϕ(ω) = ϕ̃(ω(t0)) and ψ(ω) = ψ̃(ω(t0))
for some ϕ̃, ψ̃ depending on finitely many variables we have

|E[ϕ(ω)ψ(τ0,xω)]− E[ϕ]E[ψ]| ≤ c |x |−p2‖ϕ‖L∞(P)‖ψ‖L∞(P).

Theorem (A.,2012)

Let d ≥ 3. Under A1-A5, P-a.s. X (N) converges (under Pω
0,0) in law to a

Brownian motion on Rd with a deterministic non-degenerate covariance
matrix Σ.

Sebastian Andres Invariance Principle for the RCM with dynamic Conductances September 11th, 2012 9



Overview of proofs

Basic idea: Homogenization. Use the process of ‘the environment
seen from the particle’

ηt := τt,Xtω, t ≥ 0,

to construct the time-dependent corrector function χ such that

Xt = Mt + χ(t,Xt , ω).

Problem: η is not reversible!

To control the corrector one needs to show

lim
n→∞

n−1/2 max
k≤n
|χ(k ,Xk , ω)| = 0 in Pω

0,0-probability.

This follows from some fractional ergodic theorems by Derriennic and
Lin if for some δ > 0

EEω
0,0

[
|χ(n,Xn, ω)|2

]
= O(n1−δ).
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Local Limit Theorem

For the Gaussian heat kernel with diffusion matrix Σ write

kt(x) =
1√

(2πt)d det Σ
exp(−x · Σ−1x/2t), kt(x , y) = kt(0, y − x).

Combine the GB and the FCLT for X , following arguments from Barlow,
Hambly (2009), to obtain

Theorem

Let T > 0. Under A1-A3 we have

lim
N→∞

sup
x∈Rd

sup
t≥T

∣∣∣NdE[pω(0, 0; N2t, bNxc)]− kt(x)
∣∣∣ = 0.

and under A1-A5,

lim
N→∞

sup
x∈Rd

sup
t≥T

∣∣∣Ndpω(0, 0; N2t, bNxc)− kt(x)
∣∣∣ = 0, P-a.s.
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Application: ∇φ-Interface Models

Ginzburg-Landau interface models describe the separation of two
thermodynamical phases.

The interface is specified by a field of height variables φt(x), x ∈ Zd ,
t ≥ 0, given by

dφt(x) = −
∑

y :|x−y |=1

V ′(φt(x)− φt(y)) dt +
√

2dwt(x),

with
I {w(x), x ∈ Zd} collection of independent Brownian motions,
I potential V ∈ C 2(R,R+) even and strictly convex.

In d ≥ 3 there exists an ergodic Gibbs measure µ which is reversible
for the dynamics.
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Space-Time Covariances

Helffer-Sjöstrand representation:

covµ(φ0(0), φt(y)) =

∫ ∞
0

Eµpφ(0, 0; t + s, y) ds,

where pφ(s, x ; t, y) is the transition kernel of a RW with generator

Lφt f (x) =
∑

y :|x−y |=1

V ′′(φt(x)− φt(y)) (f (y)− f (x)) .

By the local limit theorem

Nd+2 covµ(φ0(0), φN2t(bNyc)) =Nd

∫ ∞
0

Eµpφ(0, 0; N2(t + s), bNyc) ds

N→∞−−−−→
∫ ∞

0
kt+s(y) ds.
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Conclusion, Outlook and open questions

For the static RCM we have a QFCLT in the case of general i.i.d.
conductances.

For the dynamic RCM we have a QFCLT under ellipticity and mixing
assumptions.

Is it possible to obtain a QFCLT
I in the static case with stationary, ergodic conductances under some

moment conditions? Yes: A., Deuschel, Slowik (in preparation)
I in the dynamic case without assuming ellipticity?
I for the static RCM on a half-lattice?

Heat kernel estimates for the dynamic RCM without ellipticity
assumption?
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Thank you!
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