Gradient estimates of q-harmonic functions of fractional Schrödinger operator

Tadeusz Kulczycki
Institute of Mathematics and Computer Science
Wrocław University of Technology

X_{t} - the symmetric α-stable process in $\mathbb{R}^{d}, \alpha \in(0,2)$. $q: \mathbb{R}^{d} \rightarrow \mathbb{R}$ belongs to the Kato class \mathcal{J}^{α}.

- We say that a Borel function u on \mathbb{R}^{d} is q-harmonic in an open set $D \subset \mathbb{R}^{d}$ iff

$$
u(x)=E^{x}\left[\exp \left(\int_{0}^{\tau_{W}} q\left(X_{s}\right) d s\right) u\left(X_{\tau_{W}}\right)\right], \quad x \in W
$$

for every open bounded set W, with $\bar{W} \subset D$.
X_{t} - the symmetric α-stable process in $\mathbb{R}^{d}, \alpha \in(0,2)$.
$q: \mathbb{R}^{d} \rightarrow \mathbb{R}$ belongs to the Kato class \mathcal{J}^{α}.

- We say that a Borel function u on \mathbb{R}^{d} is q-harmonic in an open set $D \subset \mathbb{R}^{d}$ iff

$$
u(x)=E^{x}\left[\exp \left(\int_{0}^{\tau_{W}} q\left(X_{s}\right) d s\right) u\left(X_{\tau_{W}}\right)\right], \quad x \in W
$$

for every open bounded set W, with $\bar{W} \subset D$.

- If u is q-harmonic in open set $D \subset \mathbb{R}^{d}$ then u is a weak solution of

$$
\begin{equation*}
\Delta^{\alpha / 2} u+q u=0, \quad \text { on } \quad D \tag{1}
\end{equation*}
$$

$\Delta^{\alpha / 2}:=-(-\Delta)^{\alpha / 2}$ - the fractional Laplacian.
$\Delta^{\alpha / 2}+q$ - the fractional Schrödinger operator.
X_{t} - the symmetric α-stable process in $\mathbb{R}^{d}, \alpha \in(0,2)$.
$q: \mathbb{R}^{d} \rightarrow \mathbb{R}$ belongs to the Kato class \mathcal{J}^{α}.

- We say that a Borel function u on \mathbb{R}^{d} is q-harmonic in an open set $D \subset \mathbb{R}^{d}$ iff

$$
u(x)=E^{x}\left[\exp \left(\int_{0}^{\tau_{W}} q\left(X_{s}\right) d s\right) u\left(X_{\tau_{W}}\right)\right], \quad x \in W
$$

for every open bounded set W, with $\bar{W} \subset D$.

- If u is q-harmonic in open set $D \subset \mathbb{R}^{d}$ then u is a weak solution of

$$
\begin{equation*}
\Delta^{\alpha / 2} u+q u=0, \quad \text { on } \quad D \tag{1}
\end{equation*}
$$

$\Delta^{\alpha / 2}:=-(-\Delta)^{\alpha / 2}$ - the fractional Laplacian.
$\Delta^{\alpha / 2}+q$ - the fractional Schrödinger operator.

- If $D \subset \mathbb{R}^{d}$ is an open bounded set and (D, q) is gaugeable then a weak solution of (1) is a q-harmonic function on D after a modification on a set of Lebesgue measure zero.
- If u is q-harmonic in D then it is continuous in D.
- If u is q-harmonic in D then it is continuous in D.

Theorem 1

Let $\alpha \in(0,1], d \in \mathbb{N}$ and $D \subset \mathbb{R}^{d}$ be an open bounded set. Assume that $q: D \rightarrow \mathbb{R}$ is Hölder continuous with Hölder exponent $\eta>1-\alpha$. Let u be q-harmonic in D. If u is nonnegative in \mathbb{R}^{d} then $\nabla u(x)$ exists for any $x \in D$ and we have

$$
|\nabla u(x)| \leqslant c \frac{u(x)}{\delta_{D}(x) \wedge 1}, \quad x \in D
$$

where $\delta_{D}(x)=\operatorname{dist}(x, \partial D)$ and $c=c(\alpha, d, q)$.

- If u is q-harmonic in D then it is continuous in D.

Theorem 1

Let $\alpha \in(0,1], d \in \mathbb{N}$ and $D \subset \mathbb{R}^{d}$ be an open bounded set. Assume that $q: D \rightarrow \mathbb{R}$ is Hölder continuous with Hölder exponent $\eta>1-\alpha$. Let u be q-harmonic in D. If u is nonnegative in \mathbb{R}^{d} then $\nabla u(x)$ exists for any $x \in D$ and we have

$$
|\nabla u(x)| \leqslant c \frac{u(x)}{\delta_{D}(x) \wedge 1}, \quad x \in D
$$

where $\delta_{D}(x)=\operatorname{dist}(x, \partial D)$ and $c=c(\alpha, d, q)$.

- The existence of $\nabla u(x)$ and similar gradient estimates are well known: for $\alpha=2$, M. Cranston, Z. Zhao (1990), for $\alpha \in(1,2)$, K. Bogdan, T. K., A. Nowak (2002).
- If u is q-harmonic in D then it is continuous in D.

Theorem 1

Let $\alpha \in(0,1], d \in \mathbb{N}$ and $D \subset \mathbb{R}^{d}$ be an open bounded set. Assume that $q: D \rightarrow \mathbb{R}$ is Hölder continuous with Hölder exponent $\eta>1-\alpha$. Let u be q-harmonic in D. If u is nonnegative in \mathbb{R}^{d} then $\nabla u(x)$ exists for any $x \in D$ and we have

$$
|\nabla u(x)| \leqslant c \frac{u(x)}{\delta_{D}(x) \wedge 1}, \quad x \in D
$$

where $\delta_{D}(x)=\operatorname{dist}(x, \partial D)$ and $c=c(\alpha, d, q)$.

- The existence of $\nabla u(x)$ and similar gradient estimates are well known: for $\alpha=2$, M. Cranston, Z. Zhao (1990), for $\alpha \in(1,2)$, K. Bogdan, T. K., A. Nowak (2002).
- The results for $\alpha \in(1,2]$ were shown under the assumption that $q \in \mathcal{J}^{\alpha-1}$. The case $\alpha \in(0,1]$ is different. In the proof of Theorem 1 probabilistic ideas are used (see e.g. B.

One may ask whether it is possible to weaken the assumption in Theorem 1 that q is Hölder continuous with Hölder exponent $\eta>1-\alpha$. It occurs that the exponent $\eta=1-\alpha$ is critical in the following sense.

Proposition 2

For any $\alpha \in(0,1], d \in \mathbb{N}$ and any open bounded set $D \subset \mathbb{R}^{d}$ there exists $q: D \rightarrow[0, \infty)$ which is $1-\alpha$ Hölder continuous, a function $u: \mathbb{R}^{d} \rightarrow[0, \infty)$ which is q-harmonic in D and a point $z \in D$ such that $\nabla u(z)$ does not exist.

The proof of this proposition is based on the estimates of the Green function of the killed Brownian motion subordinated by the $\alpha / 2$-stable subordinator, obtained by R. Song (2004).

When a q-harmonic function u vanishes continuously near some part of the boundary of D and $D \subset \mathbb{R}^{d}$ is a bounded Lipschitz domain then the estimates obtained in Theorem 1 are sharp near that part of the boundary.

Theorem 3

Let $\alpha \in(0,1], d \in \mathbb{N}, D \subset \mathbb{R}^{d}$ be a bounded Lipschitz domain and $q: D \rightarrow \mathbb{R}$ be Hölder continuous with Hölder exponent $\eta>1-\alpha$. Let $V \subset \mathbb{R}^{d}$ be open and let K be a compact subset of V. Then there exist constants $c=c(D, V, K, \alpha, q)$ and $\varepsilon=\varepsilon(D, V, K, \alpha, q)$ such that for every function $u: \mathbb{R}^{d} \rightarrow[0, \infty)$ which is bounded on V, q-harmonic in $D \cap V$ and vanishes in $D^{c} \cap V$ we have

$$
c^{-1} \frac{u(x)}{\delta_{D}(x)} \leqslant|\nabla u(x)| \leqslant c \frac{u(x)}{\delta_{D}(x)}, \quad x \in K \cap D, \quad \delta_{D}(x)<\varepsilon .
$$

Similar result was obtained for $\alpha=2$ by R. Bañuelos, M. Pang (1999) and for $\alpha \in(1,2)$ by K. Bogdan, T. K., A. Nowak $(2002) \equiv$

Applications

Let us consider the eigenvalue problem for the fractional Schrödinger operator on D with zero exterior condition

$$
\begin{aligned}
\Delta^{\alpha / 2} \varphi+q \varphi & =-\lambda \varphi & \text { on } D \\
\varphi & =0 & \text { on } D^{c}
\end{aligned}
$$

It is well known that for the above problem there exists a sequence of eigenvalues $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ satisfying

$$
\lambda_{1}<\lambda_{2} \leqslant \lambda_{3} \leqslant \ldots, \quad \lim _{n \rightarrow \infty} \lambda_{n}=\infty
$$

and a sequence of corresponding eigenfunctions $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$, which can be chosen so that they form an orthonormal basis in $L^{2}(D)$. All φ_{n} are bounded and continuous on D and φ_{1} is strictly positive on D.

Applications

Corollary 4

Assume that $\alpha \in(0,2), D \subset \mathbb{R}^{d}$ is an open bounded set, $q \in \mathcal{J}^{\alpha-1}$ when $\alpha \in(1,2)$, or q is Hölder continuous on D with Hölder exponent $\eta>1-\alpha$ when $\alpha \in(0,1]$. Then $\nabla \varphi_{n}(x)$ exist for any $n \in \mathbb{N}, x \in D$ and we have

$$
\begin{aligned}
& \left|\nabla \varphi_{1}(x)\right| \leqslant c \frac{\varphi_{1}(x)}{\delta_{D}(x) \wedge 1}, \quad x \in D \\
& \left|\nabla \varphi_{n}(x)\right| \leqslant \frac{c_{n}}{\delta_{D}(x) \wedge 1}, \quad x \in D
\end{aligned}
$$

Furthermore, if additionally $D \subset \mathbb{R}^{d}$ is a bounded Lipschitz domain then there exists $\varepsilon=\varepsilon(D, q, \alpha)$ such that

$$
\left|\nabla \varphi_{1}(x)\right| \geqslant c \frac{\varphi_{1}(x)}{\delta_{D}(x)}, \quad x \in D, \quad \delta_{D}(x) \leqslant \varepsilon
$$

Applications

Corollary 5

Let $\alpha \in(0,1), d \in \mathbb{N}$ and $D \subset \mathbb{R}^{d}$ be an open bounded set. Assume that $q: D \rightarrow \mathbb{R}$ is Hölder continuous with Hölder exponent $\eta>1-\alpha$ and either u is nonnegative on \mathbb{R}^{d} or $\|u\|_{\infty}<\infty$. If u is a weak solution of

$$
\begin{equation*}
\Delta^{\alpha / 2} u+q u=0, \quad \text { on } \quad D . \tag{2}
\end{equation*}
$$

then (after a modification on a set of Lebesgue measure zero) u is continuous on D and it is a strong solution of (2).

The idea of the proof. $(d>\alpha)$

The idea of the proof. $(d>\alpha)$

$$
\left|\nabla f\left(x_{0}\right)\right| \leqslant c_{1} \frac{f\left(x_{0}\right)}{\delta_{B}\left(x_{0}\right)} \leqslant c_{2} \frac{u\left(x_{0}\right)}{r} .
$$

The idea of the proof. $(d>\alpha)$

$$
\begin{aligned}
& B=B\left(x_{0}, r\right), \\
& r=\left(\delta_{D}\left(x_{0}\right) / 2\right) \wedge c, \\
& u(x)=E^{x} u\left(X_{\tau_{B}}\right)+G_{B}(q u)(x), \quad x \in B
\end{aligned}
$$

- $f(x)=E^{x} u\left(X_{\tau_{B}}\right)-\alpha$-harmonic function in B.

$$
\left|\nabla f\left(x_{0}\right)\right| \leqslant c_{1} \frac{f\left(x_{0}\right)}{\delta_{B}\left(x_{0}\right)} \leqslant c_{2} \frac{u\left(x_{0}\right)}{r}
$$

- $G_{B}(q u)(x)=\int_{B} G_{B}(x, y) q(y) u(y) d y$.

$$
\frac{\partial}{\partial x_{i}} G_{B}(q u)(x) \stackrel{?}{=} \int_{B} \frac{\partial}{\partial x_{i}} G_{B}(x, y) q(y) u(y) d y .
$$

For $\alpha \in(0,1] \frac{\partial}{\partial x_{i}} G_{B}(x, y)$ is not integrable.
$\frac{\partial}{\partial x_{i}} G_{B}(x, y) \simeq \frac{\partial}{\partial x_{i}}|x-y|^{\alpha-d} \simeq \frac{\left(x_{i}-y_{i}\right)}{|x-y|}|x-y|^{\alpha-d-1}$.
(the difference between cases $\alpha \in(0,1]$ and $\alpha \in(1,2)$)

The idea of the proof. $(d>\alpha)$

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}, \\
& \hat{x}=\left(-x_{1}, x_{2}, \ldots, x_{d}\right) .
\end{aligned}
$$

$$
\hat{D}=\left\{x \in \mathbb{R}^{d}: \hat{x} \in D\right\}
$$

$$
D \text { - symmetric iff } D=\hat{D},
$$

$$
D_{+}=\left\{\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in D: x_{1}>0\right\}
$$

$$
G_{D} f(x)-G_{D} f(\hat{x})=\int_{D_{+}}\left(G_{D}(x, y)-G_{D}(\hat{x}, y)\right)(f(y)-f(\hat{y})) d y
$$

In order to get estimates of $\frac{\partial}{\partial x_{1}} G_{D} f(0)$ it is enough to get estimates of $G_{D}(x, y)-G_{D}(\hat{x}, y)$.

The idea of the proof. $(d>\alpha)$

- $X_{t}=B_{\eta_{t}}$.
X_{t} - the symmetric α-stable process in \mathbb{R}^{d}, B_{t} - the Brownian motion in $\mathbb{R}^{d}, \eta_{t}-\alpha / 2$-stable subordinator (starting from 0).

The idea of the proof. $(d>\alpha)$

- $X_{t}=B_{\eta_{t}}$.
X_{t} - the symmetric α-stable process in \mathbb{R}^{d}, B_{t} - the Brownian motion in $\mathbb{R}^{d}, \eta_{t}-\alpha / 2$-stable subordinator (starting from 0).
- $H=\mathbb{R}_{+}^{d}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: x_{1}>0\right\}$.
B_{t}^{H} - the Brownian motion in \mathbb{R}^{d} killed on exiting H.
$\tilde{X}_{t}=\left(B^{H}\right)_{\eta_{t}}$.
X_{t}^{D} - the process X_{t} killed on exiting $D \sim p_{D}(t, x, y)$.
$\tilde{X}_{t}^{D_{+}}$- the process \tilde{X}_{t} killed on exiting $D_{+} \quad \sim \tilde{p}_{D_{+}}(t, x, y)$.

Lemma

$$
\tilde{p}_{D_{+}}(t, x, y)=p_{D}(t, x, y)-p_{D}(t, \hat{x}, y), \quad x, y \in D_{+}
$$

The idea of the proof. $(d>\alpha)$

Lemma

$$
\tilde{p}_{D_{+}}(t, x, y)=p_{D}(t, x, y)-p_{D}(t, \hat{x}, y), \quad x, y \in D_{+}
$$

$X_{t}^{D} \sim G_{D}(x, y)=\int_{0}^{\infty} p_{D}(t, x, y) d t$.
$\tilde{X}_{t}^{D_{+}} \sim \tilde{G}_{D_{+}}(x, y)=\int_{0}^{\infty} \tilde{p}_{D_{+}}(t, x, y) d t$.
For symmetric domains $D \subset U$ we have $\tilde{G}_{D_{+}}(x, y) \leqslant \tilde{G}_{U_{+}}(x, y)$. In particular we have $\tilde{G}_{D_{+}}(x, y) \leqslant \tilde{G}_{R_{+}^{d}}(x, y)$.
Let $B=B(0, r), x, y \in B_{+}$. We have

$$
\begin{aligned}
G_{B}(x, y)-G_{B}(\hat{x}, y) & =\tilde{G}_{B_{+}}(x, y) \leqslant \tilde{G}_{R_{+}^{d}}(x, y) \\
& =G_{\mathbb{R}^{d}}(x, y)-G_{\mathbb{R}^{d}}(\hat{x}, y) \\
& =\frac{c_{1}}{|x-y|^{d-\alpha}}-\frac{c_{1}}{|\hat{x}-y|^{d-\alpha}} \\
& \leqslant \frac{c_{2}|x-y|}{|x-y|^{d-\alpha}|\hat{x}-y|} .
\end{aligned}
$$

The idea of the proof. $(d>\alpha)$

- Let $\alpha \in(0,1), B=B(0, r)$. Assume that the function $f: B \rightarrow \mathbb{R}$ is Borel and bounded on B and satisfies

$$
|f(x)-f(\hat{x})| \leqslant A|x|^{\beta}, \quad x \in B(0, r / 2)
$$

for some constants $A \geqslant 1$ and $\beta \geqslant 0$.

The idea of the proof. $(d>\alpha)$

- Let $\alpha \in(0,1), B=B(0, r)$. Assume that the function $f: B \rightarrow \mathbb{R}$ is Borel and bounded on B and satisfies

$$
|f(x)-f(\hat{x})| \leqslant A|x|^{\beta}, \quad x \in B(0, r / 2)
$$

for some constants $A \geqslant 1$ and $\beta \geqslant 0$.

- If $\alpha \in(0,1)$ and $\beta \in[0,1-\alpha)$ then there exists $c=c(d, \alpha, \beta)$ such that for any $x \in B$ we have

$$
\left|G_{B} f(x)-G_{B} f(\hat{x})\right| \leqslant c A|x|^{\beta+\alpha}+c \frac{\sup _{y \in B} f(y)}{r}|x|^{\beta+\alpha} .
$$

The idea of the proof. $(d>\alpha)$

- Let $\alpha \in(0,1), B=B(0, r)$. Assume that the function $f: B \rightarrow \mathbb{R}$ is Borel and bounded on B and satisfies

$$
|f(x)-f(\hat{x})| \leqslant A|x|^{\beta}, \quad x \in B(0, r / 2)
$$

for some constants $A \geqslant 1$ and $\beta \geqslant 0$.

- If $\alpha \in(0,1)$ and $\beta \in[0,1-\alpha)$ then there exists $c=c(d, \alpha, \beta)$ such that for any $x \in B$ we have

$$
\left|G_{B} f(x)-G_{B} f(\hat{x})\right| \leqslant c A|x|^{\beta+\alpha}+c \frac{\sup _{y \in B} f(y)}{r}|x|^{\beta+\alpha} .
$$

- If $\alpha \in(0,1)$ and $\beta>1-\alpha$ then there exists $c=c(d, \alpha, \beta)$ such that for any $x \in B$ we have

$$
\left|G_{B} f(x)-G_{B} f(\hat{x})\right| \leqslant c A|x|+c \frac{\sup _{y \in B} f(y)}{r}|x|
$$

The idea of the proof. $(d>\alpha)$

- Let $\alpha \in(0,1), B=B(0, r)$. Assume that the function $f: B \rightarrow \mathbb{R}$ is Borel and bounded on B and satisfies

$$
|f(x)-f(\hat{x})| \leqslant A|x|^{\beta}, \quad x \in B(0, r / 2)
$$

for some constants $A \geqslant 1$ and $\beta \geqslant 0$.

- If $\alpha \in(0,1)$ and $\beta \in[0,1-\alpha)$ then there exists $c=c(d, \alpha, \beta)$ such that for any $x \in B$ we have

$$
\left|G_{B} f(x)-G_{B} f(\hat{x})\right| \leqslant c A|x|^{\beta+\alpha}+c \frac{\sup _{y \in B} f(y)}{r}|x|^{\beta+\alpha} .
$$

- If $\alpha \in(0,1)$ and $\beta>1-\alpha$ then there exists $c=c(d, \alpha, \beta)$ such that for any $x \in B$ we have

$$
\left|G_{B} f(x)-G_{B} f(\hat{x})\right| \leqslant c A|x|+c \frac{\sup _{y \in B} f(y)}{r}|x| .
$$

- Recall that $u(x)=E^{x} u\left(X_{\tau_{B}}\right)+G_{B}(q u)(x)$. Put $f(x)=q(x) u(x)$.

The idea of the proof. $(d>\alpha)$

- Let $\alpha \in(0,1), B=B(0, r)$. Assume that the function $f: B \rightarrow \mathbb{R}$ is Borel and bounded on B and satisfies

$$
|f(x)-f(\hat{x})| \leqslant A|x|^{\beta}, \quad x \in B(0, r / 2)
$$

for some constants $A \geqslant 1$ and $\beta \geqslant 0$.

- If $\alpha \in(0,1)$ and $\beta \in[0,1-\alpha)$ then there exists $c=c(d, \alpha, \beta)$ such that for any $x \in B$ we have

$$
\left|G_{B} f(x)-G_{B} f(\hat{x})\right| \leqslant c A|x|^{\beta+\alpha}+c \frac{\sup _{y \in B} f(y)}{r}|x|^{\beta+\alpha} .
$$

- If $\alpha \in(0,1)$ and $\beta>1-\alpha$ then there exists $c=c(d, \alpha, \beta)$ such that for any $x \in B$ we have

$$
\left|G_{B} f(x)-G_{B} f(\hat{x})\right| \leqslant c A|x|+c \frac{\sup _{y \in B} f(y)}{r}|x| .
$$

- Recall that $u(x)=E^{x} u\left(X_{\tau_{B}}\right)+G_{B}(q u)(x)$. Put $f(x)=q(x) u(x)$.
- This allows to obtain estimates of $\frac{\partial}{\partial x_{1}} G_{B}(q u)(0)$.

