On Harnack inequality for subordinate Brownian motions

Tomasz Grzywny

TU Dresden

Będlewo, September 10, 2012

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Let S_t be a subordinator i.e. a increasing Lévy process starting from 0. The Laplace transform of a subordinator is of the form

$$Ee^{-\lambda S_t} = e^{-t\phi(\lambda)}, \qquad \lambda \ge 0,$$

where ϕ is called the Laplace exponent of S or a Bernstein function and has the following representation:

$$\phi(\lambda) = a + b\lambda + \int_{(0,\infty)} (1 - e^{-\lambda u})\mu(du),$$

where $a, b \ge 0$ and μ is a Lévy measure on $(0, \infty)$ such that $\int \frac{u}{1+u} \mu(du) < \infty$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• The potential measure of the subordinator S is defined by

$$U(A) = \int_0^\infty P(S_t \in A) dt.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Subordinators

 $\bullet\,$ The potential measure of the subordinator S is defined by

$$U(A) = \int_0^\infty P(S_t \in A) dt.$$

PROPOSITION

For r > 0 we have

$$\frac{1-2e^{-1}}{2\phi(r^{-1})}\leqslant U[0,r)\leqslant \frac{e}{\phi(r^{-1})}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\bullet\,$ The potential measure of the subordinator S is defined by

$$U(A) = \int_0^\infty P(S_t \in A) dt.$$

PROPOSITION

For r > 0 we have

$$\frac{1-2e^{-1}}{2\phi(r^{-1})}\leqslant U[0,r)\leqslant \frac{e}{\phi(r^{-1})}.$$

• Proof.

$$U[0,r) \leqslant e \int_0^r e^{-s/r} U(ds) \leqslant e\mathcal{L}(U)(r^{-1}) = \frac{e}{\phi(r^{-1})}.$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

• The potential measure of the subordinator S is defined by

$$U(A) = \int_0^\infty P(S_t \in A) dt.$$

PROPOSITION

For r > 0 we have

$$\frac{1-2e^{-1}}{2\phi(r^{-1})} \leqslant U[0,r) \leqslant \frac{e}{\phi(r^{-1})}.$$

• Proof.

$$U[0,r) \leqslant e \int_0^r e^{-s/r} U(ds) \leqslant e\mathcal{L}(U)(r^{-1}) = \frac{e}{\phi(r^{-1})}.$$

• A function ϕ is a special Bernstein function (SBF) if $\frac{\lambda}{\phi(\lambda)}$ is again a Bernstein function.

• The potential measure of the subordinator S is defined by

$$U(A) = \int_0^\infty P(S_t \in A) dt.$$

PROPOSITION

For r > 0 we have

$$\frac{1-2e^{-1}}{2\phi(r^{-1})} \leqslant U[0,r) \leqslant \frac{e}{\phi(r^{-1})}.$$

• Proof.

$$U[0,r) \leqslant e \int_0^r e^{-s/r} U(ds) \leqslant e\mathcal{L}(U)(r^{-1}) = \frac{e}{\phi(r^{-1})}.$$

- A function ϕ is a special Bernstein function (SBF) if $\frac{\lambda}{\phi(\lambda)}$ is again a Bernstein function.
- If ϕ is a unbounded SBF then there exists a decreasing positive density u on $(0, \infty)$ of a potential measure U.

$$Ee^{i\xi B_t} = e^{-t|\xi|^2}$$

By $g_t(\cdot)$ we denote the density of B_t . Assume that B_t and S_t are stochastically independent. Then a process $X_t = B_{S_t}$ is a subordinate Brownian motion. The characteristic function of X_t takes the form

$$Ee^{i\xi X_t} = e^{-t\phi(|\xi|^2)}$$

$$Ee^{i\xi B_t} = e^{-t|\xi|^2}$$

By $g_t(\cdot)$ we denote the density of B_t . Assume that B_t and S_t are stochastically independent. Then a process $X_t = B_{S_t}$ is a subordinate Brownian motion. The characteristic function of X_t takes the form

$$Ee^{i\xi X_t} = e^{-t\phi(|\xi|^2)}$$

• The Lévy measure of process X_t is given by density

$$\nu(x) = \int_0^\infty g_t(x)\mu(dt), \ x \in \mathbb{R}^d \setminus \{0\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$Ee^{i\xi B_t} = e^{-t|\xi|^2}$$

By $g_t(\cdot)$ we denote the density of B_t . Assume that B_t and S_t are stochastically independent. Then a process $X_t = B_{S_t}$ is a subordinate Brownian motion. The characteristic function of X_t takes the form

$$Ee^{i\xi X_t} = e^{-t\phi(|\xi|^2)}$$

• The Lévy measure of process X_t is given by density

$$\nu(x) = \int_0^\infty g_t(x)\mu(dt), \ x \in \mathbb{R}^d \setminus \{0\}.$$

• The potential kernel is equal to $(d \ge 3)$

$$G(x,y) = G(x-y) = \int_0^\infty g_t(x-y)U(dt), \ x,y \in \mathbb{R}^d.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$Ee^{i\xi B_t} = e^{-t|\xi|^2}$$

By $g_t(\cdot)$ we denote the density of B_t . Assume that B_t and S_t are stochastically independent. Then a process $X_t = B_{S_t}$ is a subordinate Brownian motion. The characteristic function of X_t takes the form

$$Ee^{i\xi X_t} = e^{-t\phi(|\xi|^2)}$$

• The Lévy measure of process X_t is given by density

$$\nu(x) = \int_0^\infty g_t(x)\mu(dt), \ x \in \mathbb{R}^d \setminus \{0\}.$$

• The potential kernel is equal to $(d \ge 3)$

$$G(x,y) = G(x-y) = \int_0^\infty g_t(x-y)U(dt), \ x,y \in \mathbb{R}^d.$$

• By Cap we denote 0-order capacity.

From now on a = 0

PROPOSITION

Let $d \ge 3$. For r > 0

$$c_1 \phi(r^{-2})^{-1} \leqslant \int_{B(0,r)} G(y) dy \leqslant c_2 \phi(r^{-2})^{-1},$$

where $c_1 = \frac{(1-2e^{-1})\Gamma(\frac{d}{2},\frac{1}{4})}{2\Gamma(\frac{d}{2})}, c_2 = \left(e + \frac{ed}{2^{d+1}\Gamma(\frac{d}{2}+2)}\right).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

From now on a = 0

PROPOSITION

Let $d \ge 3$. For r > 0

$$c_1\phi(r^{-2})^{-1} \leqslant \int_{B(0,r)} G(y)dy \leqslant c_2\phi(r^{-2})^{-1},$$

where $c_1 = \frac{(1-2e^{-1})\Gamma(\frac{d}{2},\frac{1}{4})}{2\Gamma(\frac{d}{2})}, c_2 = \left(e + \frac{ed}{2d+1}\Gamma(\frac{d}{2}+2)\right).$

COROLLARY

Let $d \ge 3$. There exists a constant C = C(d) such that, for r > 0

$$C^{-1}r^d\phi(r^{-2}) \leqslant \operatorname{Cap}(\overline{B(0,r)}) \leqslant Cr^d\phi(r^{-2}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

Let $d\geqslant 3.$ If for some $\beta>0$ a function $\phi(\lambda)\lambda^{-\beta}$ is almost increasing on $[R^{-1},\infty),$ then

$$G(x) \approx \frac{1}{|x|^d \phi(|x|^{-2})}, \qquad |x| \leqslant R.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

PROPOSITION

Let $d \ge 3$. If for some $\beta > 0$ a function $\phi(\lambda)\lambda^{-\beta}$ is almost increasing on $[R^{-1},\infty)$, then

$$G(x) \approx \frac{1}{|x|^d \phi(|x|^{-2})}, \qquad |x| \leqslant R.$$

Theorem

Suppose that ϕ is a SBF. Then $G(x) \approx \frac{1}{|x|^d \phi(|x|^{-2})}$, for $|x| \leq R$ iff for some $\beta > 0$ a function $\phi(u)u^{-\beta}$ is increasing on $[R^{-1}, \infty)$.

• The first exit time of an (open) set $D \subset \mathbb{R}^d$ by the process X_t :

 $\tau_D = \inf\{t > 0; X_t \notin D\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• The first exit time of an (open) set $D \subset \mathbb{R}^d$ by the process X_t :

$$\tau_D = \inf\{t > 0; X_t \notin D\}.$$

• X_t^D -the killed process when exiting the set D.

• The first exit time of an (open) set $D \subset \mathbb{R}^d$ by the process X_t :

$$\tau_D = \inf\{t > 0; X_t \notin D\}.$$

- X_t^D -the killed process when exiting the set D.
- The potential of the process X^D_t is called the *Green function* and is denoted by G_D (d ≥ 3).

$$G_D(x, y) = G(x - y) - E^x G(X_{\tau_D} - y).$$

Theorem

Let $d \ge 3$ and ϕ be a SBF. For any open set D

$$G_D(x,y) \ge C_1 G(x-y), \qquad 2|x-y| \le \delta_D(x) \lor \delta_D(y),$$
(1)
where $C_1 = \frac{\Gamma(\frac{d}{2}-1,\frac{1}{4})}{\Gamma(\frac{d}{2}-1)} \left(1-e^{-\frac{3}{4}}\right).$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

Let $d \ge 3$ and ϕ be a SBF. For any open set D

$$G_D(x,y) \ge C_1 G(x-y), \qquad 2|x-y| \le \delta_D(x) \lor \delta_D(y), \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where
$$C_1 = \frac{\Gamma(\frac{d}{2}-1,\frac{1}{4})}{\Gamma(\frac{d}{2}-1)} \left(1-e^{-\frac{3}{4}}\right).$$

PROPOSITION

If for some $\beta > 0$ a function $\phi(\lambda)\lambda^{-\beta}$ is almost increasing on $[R^{-1}, \infty)$, then (1) holds for $|x - y| \leq R$ with constant that may depend on ϕ .

THEOREM

Let $d \ge 3$ and ϕ be a SBF. For any open set D

$$G_D(x,y) \ge C_1 G(x-y), \qquad 2|x-y| \le \delta_D(x) \lor \delta_D(y), \tag{1}$$

where
$$C_1 = \frac{\Gamma(\frac{d}{2}-1,\frac{1}{4})}{\Gamma(\frac{d}{2}-1)} \left(1-e^{-\frac{3}{4}}\right).$$

PROPOSITION

If for some $\beta > 0$ a function $\phi(\lambda)\lambda^{-\beta}$ is almost increasing on $[R^{-1}, \infty)$, then (1) holds for $|x - y| \leq R$ with constant that may depend on ϕ .

COROLLARY

In the above two cases we have

$$CG(x,y) \leqslant G_{B(0,r)}(x,y) \leqslant G(x,y), \qquad |x|, |y| \leqslant r/3.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

From now on b = 0

• Let u be a Borel measurable function on \mathbb{R}^d . We say that h is harmonic function in an open set $D \subset \mathbb{R}^d$ if

$$h(x) = E^x h(X_{\tau_B}), \quad x \in B,$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

for every bounded open set B with the closure $\overline{B} \subset D$.

From now on b = 0

• Let u be a Borel measurable function on \mathbb{R}^d . We say that h is harmonic function in an open set $D \subset \mathbb{R}^d$ if

$$h(x) = E^x h(X_{\tau_B}), \quad x \in B,$$

for every bounded open set B with the closure $\overline{B} \subset D$.

• We say that h is regular harmonic if

$$f(x) = E^x[\tau_D < \infty; h(X_{\tau_D}))], \quad x \in D.$$

Theorem

Let $d \ge 1$. Suppose that for some $\beta > 0$ a function $\phi(\lambda)\lambda^{-\beta}$ is almost increasing on $[R^{-1}, \infty)$. Then there exists a constant C = C(R) such that for all $r \in (0, R]$ and any non-negative function h which is harmonic in B(0, r)

 $\sup_{x\in B(0,r/3)}h(x)\leqslant C\inf_{x\in B(0,r/3)}h(x).$

Theorem

Let $d \ge 1$. Suppose that for some $\beta > 0$ a function $\phi(\lambda)\lambda^{-\beta}$ is almost increasing on $[R^{-1}, \infty)$. Then there exists a constant C = C(R) such that for all $r \in (0, R]$ and any non-negative function h which is harmonic in B(0, r)

$$\sup_{x \in B(0,r/3)} h(x) \leqslant C \inf_{x \in B(0,r/3)} h(x).$$

Theorem

Let $d \ge 1$. Suppose that for some $\beta > 0$ a function $\phi(\lambda)\lambda^{-\beta}$ is almost increasing on $[R^{-1},\infty)$. Then there exist constants C = C(R) and $\gamma > 0$ such that for all $r \in (0,R]$ and any bounded function h which is harmonic in B(0,r)

$$|h(x) - h(y)| \leq C \sup_{z} |h(z)| \left(\frac{|x-y|}{r}\right)^{\gamma}, \qquad x, y \in B(0, r/3)$$

EXAMPLES

Recall that

$$E^{iz \cdot X_t} = e^{-t\phi(|z|^2)}$$

• Let
$$f$$
 be a SBF. Define $\phi(u) = \frac{u}{f(u)}$. If, for $\lambda, u \ge 1$,

$$\frac{f'(\lambda u)}{f'(u)} \leqslant c\lambda^{-\beta}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

then the scale-invariant Harnack inequality holds for $r \leq 1$.

EXAMPLES

Recall that

$$E^{iz \cdot X_t} = e^{-t\phi(|z|^2)}$$

• Let f be a SBF. Define $\phi(u)=\frac{u}{f(u)}.$ If, for $\lambda,u\geqslant 1$,

$$\frac{f'(\lambda u)}{f'(u)} \leqslant c\lambda^{-\beta}.$$

then the scale-invariant Harnack inequality holds for $r \leq 1$.

• Let $\phi(u) \approx u^{\alpha} \ell_1(u)$ for $u \ge 1$ and $\phi(u) \approx u^{\beta} \ell_2(u)$, for $u \le 1$, where ℓ_1, ℓ_2 are slowly varying functions. If $\alpha, \beta > 0$ then the scale-invariant Harnack inequality holds, for any $0 < r < \infty$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

PROPOSITION

Let $d \ge 3$ and for some $\beta > 0$ a function $\phi(\lambda)\lambda^{-\beta}$ be almost increasing on $[R^{-1},\infty)$. Then there exists a constant $C_5 = C_5(R)$ such that for any $r \le R$ and any compact $A \subset B(0,r)$, $x \in B(0,r)$,

$$P^{x}(\tau_{A^{c}} < \tau_{B(0,3r)}) \ge C_{5} \frac{|A|}{|B(0,r)|}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Grzywny, T.: On Harnack inequality and Hölder continuity for subordinate Brownian motions, in preparation.
- Grzywny, T., Ryznar, M.: Potential theory of one-dimensional geometric stable processes, preprint 2011.

- 📕 Kim, P., Mimica, A.: Harnack Inequalities for Subordinate Brownian Motions, Elect. J. Probab. 17 (2012).
- Kim P., Song R., Vondraček Z.: Potential theory of subordinate Brownian motions with Gaussian components, preprint 2012
- Kim P., Song R., Vondraček Z.: Potential Theory of Subordinate Brownian Motions Revisited, Interdisciplinary Mathematical Sciences - Vol. 13, STOCHASTIC ANALYSIS AND APPLICATIONS TO FINANCE (2012).
- Kwaśnicki M., Małecki J., Ryznar M.: Suprema of Lévy processes, to appear in Annals Probab.
- Schilling R., Song R. and Vondracek Z., Bernstein Functions: Theory and Applications. de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin 2010