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Model

• Motion in a random incompressible flow

dx(t)

dt
= ~u(t, x(t)), t  0,

x(0) = 0,

∑d
j=1 ∂xjuj(t, x) ≡ 0.

(1)

• ~u(t, x) ((Eulerian) velocity field of the fluid) random vector field
• basic model of transport in a turbulent flow of fluid

Tomasz Komorowski, IMPAN, UMCS, Lublin Passive tracer



Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Model

• Motion in a random incompressible flow

dx(t)

dt
= ~u(t, x(t)), t  0,

x(0) = 0,

∑d
j=1 ∂xjuj(t, x) ≡ 0.

(1)

• ~u(t, x) ((Eulerian) velocity field of the fluid) random vector field
• basic model of transport in a turbulent flow of fluid

Tomasz Komorowski, IMPAN, UMCS, Lublin Passive tracer



Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Basic question

Statistics of a tracer
Knowing the statistics of the flow describe the behavior of the
particle

Law of large numbers
Stokes drift

v∗ = lim
t→+∞

x(t)

t
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Central limit theorem

[x(t)− v∗t]/
√
t ⇒ N(0,D), where

Dij = lim
t→+∞

1
t
E [(xi (t)− v∗,i t)(xj(t)− v∗,j t)] .

turbulent diffusivity

usually the assumptions of strong mixing in time is made;

Kraichnan, Gawedzki-Kupiainen (flow is white noise in time),
T.K.-Papanicolaou 97’ (Gaussian, finite dependence range in time),
Carmona-Xu 97’, Fannjiang-T.K. 99’, L. Koralov, 99’ (Markovian in
time +spectral gap), T.K.-S. Olla 05’ (O-U flow with weaker
mixing assumptions).
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Weakly coupled case

dx(t)

dt
= ε~u(t, x(t)), t  0,

x(0) = x0, ε� 1

Suppose that ~u(t, x) is a random vector field over a probability
space (Ω,V,P)

time-space stationary

of zero mean
〈~u(0, 0)〉 = 0.
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Convergence

Long time behavior of the tracer xε(t) := x(t/ε2).

dxε(t)

dt
=

1
ε
~u
(

t
ε2
, xε(t)

)
, t  0,

Martingale argument.

Suppose that f ∈ C∞0 (Rd ), ti = iεγ , s < t

E
[
f (xε(t))− f (xε(s))

∣∣∣Vs

]
≈

[tε−γ ]∑
[sε−γ ]

E
[
∆f (xε(ti ))

∣∣∣Vs

]

=
1
ε

[tε−γ ]∑
[sε−γ ]

∫ ti+1

ti
E
[
∇f (xε(ρ1)) · ~u

(
ρ1

ε2
, xε(ρ1)

) ∣∣∣Vs

]
dρ1
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Convergence cont’d

=
1
ε

[tε−γ ]∑
[sε−γ ]

∫ ti+1

ti
E
[
∇f (xε(ti )) · ~u

(
ρ1

ε2
, xε(ti )

) ∣∣∣Vs

]
dρ1

+
1
ε2

[tε−γ ]∑
[sε−γ ]

∫ ti+1

ti
dρ1

∫ ρ1

ti
E

∇2f (·) · ~u
(
ρ1

ε2
, ·
)
⊗ ~u

(
ρ2

ε2
, ·
)∣∣∣xε(ti )

∣∣∣Vs

 dρ2

+
1
ε2

[tε−γ ]∑
[sε−γ ]

∫ ti+1

ti
dρ1

∫ ρ1

ti
dρ2E

[
∇f (·) ·

(
~u
(
ρ2

ε2
, ·
)
· ∇~u

)(
ρ1

ε2
, ·
) ∣∣∣Vs

]
+O(ε2γ−3)

We need γ ∈ (1, 2) to make this scheme work!
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Central limit theorem
Khasminskii 66’
Suppose that ~u(t, x) is
1) zero mean, time-space stationary, with incompressible

realizations:

∇ · ~u(t, x) =
d∑

j=1

∂iuj(t, x) ≡ 0,

2) sufficiently strongly mixing in t variable,
3) sufficiently smooth with the respective derivatives bounded.

Then, the process {xε(t), t  0} converges in law, as ε→ 0+, to a
Brownian motion,covariance matrix D = [Dij ], (Kubo formula):

Dij =
1
2

∫ +∞

0
{E[ui (t, 0)uj(0, 0)] + E[uj(t, 0)ui (0, 0)]}dt.
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Some historical remarks

Analogous results:

Borodin 77’ (unbounded fields),

Kesten-Papanicolaou 79’ (time independent situation),

Kunita 86’ (flows),

T.K. 96’ (longer time scales).
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Isotropic Ornstein-Uhlenbeck flows with spectrum
satisfying power law

~u(t, x) is zero mean, stationary Gaussian, Markovian in t

Rpq(t, x) = 〈up(t, x)uq(0, 0)〉

=

∫
e ix ·ke−γ(|k|)t R̂pq(k)

dk
|k |d−1

R̂pq(k) = r(|k |)Γpq(k̂), p, q = 1, . . . , d .

factor Γpq(k̂) := δpq − k̂p k̂q, where k̂ = (k̂1, . . . , k̂d ) := k/|k|,
ensures incompressibility of the flow

r(`) =
a(`)

`α
, γ(`) := `β,

Tomasz Komorowski, IMPAN, UMCS, Lublin Passive tracer
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• a(·) is a compactly supported cut-off function, ensures
integrability of the spectrum at ∞ and a(0) > 0.

• integrability of r(`) = a(`)
`α at 0: α < 1

• mixing rate γ(`) := `β with β  0.

• the decay of the spatial correlations

Rij(0, x) ∼ |x |α−1

Kubo formula

Dpq = Dδpq, D =

(
1− 1

d

)
|Sd−1|

∫ +∞

0

a(`)d`
`α+β

.

D < +∞ iff α + β < 1.

|Sd−1| - the surface area of the unit sphere in RdTomasz Komorowski, IMPAN, UMCS, Lublin Passive tracer
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Central limit theorem when D < +∞

Theorem (Fannjiang-T.K. 99’)

Suppose that ~u(t, x) is a Gaussian, Markovian flow as described
before. If D < +∞ then {xε(t), t  0} converge in law, as
ε→ 0+, do a Brownian motion with the covariance matrix given by
the Kubo formula.

What happens when D = +∞?

Tomasz Komorowski, IMPAN, UMCS, Lublin Passive tracer
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Superdiffusive scaling

Let xε(t) := x(t/ε2δ). We expect δ < 1.

xε(t) = ε

∫ t/ε2δ

0
~u (s, εx(s)) ds.

Stationarity of ~u(s, εx(s)) (Theorem of Port-Stone) ⇒

E
[
x (i)
ε (t)x (j)

ε (t)
]

=
∑

(i ,j)=(p,q),(q,p)

ε2

t
ε2δ∫
0

ds
s∫

0

E
[
ui (s ′, εx(s ′))uj(0, 0)

]
ds ′

=
∑

(i ,j)=(p,q),(q,p)

ε2

t
ε2δ∫
0

ds
s∫

0

E
[
ui (s ′, 0)uj(0, 0)

]
ds ′ +

N∑
n=2
In +RN
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Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Superdiffusive scaling cont’d

In =
∑

(i ,j)=(p,q),(q,p)

εn+1
∫

∆n(t/ε2δ)

E [Wn−1,i (s1, · · · , sn, 0)uj(0, 0)] ds

W0(s1, x) = ~u(s1, x)

Wn(s1, · · · , sn+1, x) = (~u(sn+1, x) · ∇)Wn−1(s1, · · · , sn, x) for n = 1, 2, · · · .

(iterative convective derivatives)

RN =
∑

(i ,j)=(p,q),(q,p)

εN+2
∫

∆N+1(t/ε2δ)

E [WN,i (s1, · · · , sN+1, εx(sN+1))uj(0, 0)] ds.
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Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Superdiffusive scaling cont’d

Elementary calculations

∑
(i ,j)=(p,q),(q,p)

ε2

t
ε2δ∫
0

ds
s∫

0

E
[
ui (s ′, 0)uj(0, 0)

]
ds ′

= cdδpqε
2
∫ +∞

0

a(`)[e−`
βt/ε2δ − 1 + `βt/ε2δ]d`

`α+2β

(substitution `′ := `t1/β/ε2δ/β)

−→
ε→0+

a(0)c(d , α, β)δpqt2H

H =
α + 2β − 1

2β
, δ =

1
2H

α + β > 1 ⇒ 1 > H > 1/2, δ ∈ (1/2, 1)
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Superdiffusive fBm limit

Theorem (Fannjiang-T.K. 00’)

If D = +∞ (α + β > 1) then {εx(t/ε2δ), t  0} converge in law,
as ε→ 0+, to a fractional Brownian motion with the Hurst
exponent

H =
α + 2β − 1

2β

and the covariance matrix given by Dpq = Dδpq,

D = 2a(0)|Sd−1|
(
1− 1

d

)∫ +∞

0

[e−`
β − 1 + `β]d`
`α+2β .
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

The relative motion of two particles

xi (t), i = 1, 2 two particles satisfying

dxi (t)

dt
= ε~u(t, xi (t)), t  0,

x(0) = xi , ε� 1, i = 1, 2

zε(t) := x2(t/ε2)− x1(t/ε2), z := x2 − x1.
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Two particle motion - description

ẋε(t) =
1
ε
~u
(

t
ε2
, xε(t)

)
, xε(0) = 0, (2)

żε(t) =
1
ε
~v
(

t
ε2
, xε(t), zε(t)

)
, zε(0) = z ,

~v(t, x , z) := ~u (t, x + z)− ~u (t, x) .

Relative velocity

~v(t, x , z) =
√
2
∫ t

−∞

∫
e−|k|

β(t−s)e ik·x(e ik·z − 1)|k |β/2w(ds, dk).

(3)
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żε(t) =
1
ε
~v
(

t
ε2
, xε(t), zε(t)

)
, zε(0) = z ,

~v(t, x , z) := ~u (t, x + z)− ~u (t, x) .

Relative velocity

~v(t, x , z) =
√
2
∫ t

−∞

∫
e−|k|

β(t−s)e ik·x(e ik·z − 1)|k |β/2w(ds, dk).

(3)

Tomasz Komorowski, IMPAN, UMCS, Lublin Passive tracer



Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Two particle motion - description

w(dt, dk) – Cd -valued, space-time Gaussian noise:

w∗(dt, dk) = w(dt,−dk),

E
[
wi (dt, dk)w∗j (dt ′, dk ′)

]
= R̂ij(k)δ(t − t ′)δ(k − k ′)dtdt ′dkdk ′,

R̂(k) =
a(|k |)
|k |α+d−1 Γ(k̂). (4)
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Martingale argument
∆ti = εγ , γ ∈ (1, 2)

f (zε(t))− f (zε(s)) =
∑

i

[f (zε(ti+1))− f (zε(ti ))] (5)

=
1
ε

d∑
p=1

∑
i

∫ ti+1

ti
∂pf (zε(s))vp

(
s
ε2
, zε(s), xε(s)

)
ds

=
1
ε

d∑
p=1

∑
i

∫ ti+1

ti
∂pf (zε(ti−1))vp

(
s
ε2
, zε(ti−1), xε(ti−1)

)
ds (6)

+
1
ε

d∑
p=1

∑
i

∫ ti+1

ti

{∫ s

ti−1

d
dρ

[
∂pf (zε(ρ))vp

(
s
ε2
, zε(ρ), xε(ρ)

)]
dρ

}
ds

= J1 + J2 (7)
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Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Martingale argument - conditioning

E
[
J1

∣∣∣Fs

]

= E

1
ε

d∑
p=1

∑
i

∫ ti+1

ti
∂pf (zε(ti−1))v̄p

(
s
ε2
,
ti−1

ε2
, zε(ti−1), xε(ti−1)

)
ds
∣∣∣Fs


≈ 0,

as ε→ 0+.
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Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Martingale argument - conditioning

E
[
J2

∣∣∣Fs

]
= E

 d∑
p,q=1

∑
i

∂2
pqf (zε(ti ))cpq(zε(ti ))∆ti

∣∣∣Fs


≈ E

 d∑
p,q=1

∫ t

s
∂2

pqf (zε(u))cpq(zε(u))du
∣∣∣Fs

 ,
as ε→ 0+.

Formula for diffusivity

cpq(z) :=

∫ ∞
0

E [vp(t, 0, z)vq(0, 0, z)] dt

=

∫ 1− cos(k · z)

|k |α+β+d−1 Γpq(k)dk , z ∈ Rd , p, q = 1, . . . , d .
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Martingale argument - conditioning

E
[
J2

∣∣∣Fs
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= E

 d∑
p,q=1

∑
i

∂2
pqf (zε(ti ))cpq(zε(ti ))∆ti

∣∣∣Fs
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p,q=1

∫ t

s
∂2

pqf (zε(u))cpq(zε(u))du
∣∣∣Fs
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Convergence result

Theorem, (T.K., Novikov, Ryzhik 12’)

Suppose that α + β > 1 and α + 2β < 3. Then {zε(t), t  0}
converge in law over C [0,+∞), as ε→ 0+ to the diffusion with
the generator

Lf (z) =
d∑

p,q=1
cpq(z)∂2

p,qf (z), f ∈ C∞0 (Rd ). (8)
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Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Related results
Time independent case

dx(t)

dt
= v + ε~u(x(t)), x(0) = 0. (9)

Here v 6= 0, ε� 1, ~u(x) stationary, zero mean, R(x) = [Rij(x)] the
covariance matrix, with div-free realizations.

yε(t) = y(t/ε2) := x
(
t/ε2

)
− vt/ε2,

Theorem (Kesten-Papanicolaou 79’)

Suppose that ~u(t, x) is mixing at sufficiently fast rate. Then,
{yε(t), t  0} converge in law to a Brownian motion with the
covariance matrix D = [Dij ]

Dij =
1
2

∫ ∞
0

(Rij(vt) + Rji (vt)) dt, i , j = 1, . . . , d . (10)
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Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Gaussian drifts

Covariance
Rij(x) =

∫
Rd

eik·x R̂ij(k)dk , (11)

the power-energy spectrum:

R̂ij(k) =
1[0,K ](|k |)
|k |α+d−1 Γij(k̂), (12)

where α < 1. The rate of decay of the correlations

Rij(x) ∼ |x |α−1, for |x | � 1. (13)
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Result

Theorem (T.K. Ryzhik 07’)

Suppose that t > 0, α < 0 and ρ > 0. Then,

lim
ε→0+

E
∣∣∣y (t/ε2(1−ρ)

)∣∣∣2 = 0 and lim
ε→0+

E
∣∣∣y (t/ε2(1+ρ)

)∣∣∣2 = +∞.

When α ∈ (0, 1) we have

lim
ε→0+

E
∣∣∣y (t/ε2H(1−ρ)

)∣∣∣2 = 0 and lim
ε→0+

E
∣∣∣y (t/ε2H(1+ρ)

)∣∣∣2 = +∞

with H = 1/(α + 1).

The method of proof: variational principles. Is the superdiffusive
limit a Brownian motion? Two particle motion?
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Result without the assumption of weak coupling
dx(t)

dt
= ~u(x(t)), x(0) = 0, (14)

~u(x) zero mean Gaussian, power energy spectrum
R̂ij(k) = R(|k |)Γij(k̂)/|k |d−1, R(`) = 1[0,K ](`)/`

α

Theorem (T.K. Nieznaj 08’)

For any α ∈ (0, 1) we have

lim
ε→0+

1
t2H1

E |x (t))|2 = +∞, ∀H1 <
1 + α

2
,

lim
ε→0+

1
t2H2

E |x (t))|2 = +∞, ∀H2 > 1.

Instead of Gaussian - ”Poisson shots type” fields (Nieznaj 11’)
Tomasz Komorowski, IMPAN, UMCS, Lublin Passive tracer
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Motion in a random Hamiltonian field

dx(t)

dt
= ∇kHε(x(t), k(t)), (15)

dk(t)

dt
= −∇xHε(x(t), k(t)),

x(0) = x0, k(0) = k0.

Hε(x , k) :=
|k |2

2
+ εV (x), ε� 1 (weak coupling regime)

V (x) random potential
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Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Result on a particle diffusion approximation

Theorem (Kesten-Papanicolaou, 80’ (d  3), T.K., L.Ryzhik,
06’ (d = 2))

If V (x) is strictly stationary, sufficiently strongly mixing and
d  2 then {k(t/ε2), t  0}converges in law, as ε→ 0+, to a
diffusion {k̄(t), t  0} on a sphere S|k0| := [|k | = |k0|]. Moreover
ε2x(t/ε2) converge to

x̄(t) =

∫ t

0
k̄(s)ds.
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Motion of two particles

Suppose that d  3.

dxi (t)

dt
= ∇kHε(xi (t), ki (t)), (16)

dki (t)

dt
= −∇xHε(xi (t), ki (t)),

xi (0) = x (0)
i , ki (0) = k(0)

i , i = 1, 2..

Hε(x , k) :=
|k |2

2
+ εV (x)
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Motion of two particles cont’d

if |x (0)
1 − x (0)

2 | � O(ε2) then the particles would experience
approx. two different random media. The limit should be two
copies of motions based on independent diffusions (Bal, T.K.,
Ryzhik 03’)

x̃ (0)
2 = x + ε2y ; separation of the initial momentum:

- if |k(0)
1 − k(0)

2 | � O(1) then the limit should consist of
two copies of independent diffusions,

- if k(0)
2 = k + ε2/3p we should have a nontrivial limit for

the separation process in times t ∼ ε−4/3 (work in progress).
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Propagation of parabolic waves in a random
medium

Schrödinger equation with a random potential

iε
∂φε
∂t

+
ε2

2
∆φε − γV (

t
ε
,
x
ε

)φε = 0, (17)

φε(0, x) = φ0(x/ε).

Here V (t, x) is a random field in the spatial dimension d  1,
γ � 1 is the (small) parameter that measures the relative strength
of the (weak) random fluctuations, ε� 1 corresponds to the
macroscopic/microscopic scales ratio, φ0 ∈ S(Rn).
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

About the potential

V (t, x) is time-space stationary gaussian field, covariance function
R(t, x) = E[V (t, x)V (0, 0)] has the spatial power spectrum:

R̃(t, k) =

∫
e−ik·xR(t, x)dx

with
R̃(t, k) = e−γ(k)|t|R̂(k), (18)

where R̂(k) ∈ L1(Rd ) equivalently

R(t, x) =

∫
R1+d

e iωt+ikx R̂(ω, k)dωdk ,

R̂(ω, k) =
2γ(k)R̂(k)

ω2 + γ2(k)
. (19)
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Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Behavior of the covariance of the wave function

Wigner transform

Wε(t, x , k) =

∫
φε

(
t, x − εy

2

)
φ̄ε

(
t, x +

εy
2

)
e ik·y dy

(2π)n . (20)

It satisfies the following kinetic equation

W ε
t + k · ∇xW ε − LεW ε = 0. (21)

LεW (x , k) :=

iγ
ε

∫
Rd

e ip·x V̂ (t/ε, p)

[
W (x , k − εp

2
)−W (x , k +

εp
2

)

]
dp

(2π)d
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Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

cont’d

Theorem: Limiting behavior of Wigner transform, Ball, T.K.,
Ryzhik (10) (gaussian), Bal, Papanicoalou, Ryzhik (02’)
(shot noise type fields)

Suppose that γ(k)  γ0 > 0 and γ =
√
ε, then the processes

{Wε(t), t  0} converge, as ε→ 0, in probability, in the topology
of C ([0,+∞); L2

w (R2d )), to the solution W of the following
transport equation

∂W
∂t

+ k · ∇xW = LW , (22)

LW (x , k) =

∫
Rd

R̂
( |p|2 − |k |2

2
, p−k

)(
W (x , p)−W (x , k)

)
dp

(2π)d .
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Random motion
Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

cont’d

This result can be generalized, see Gomez (11’),

R̃(t, k) = e−γ(k)|t|R̂(k), (23)

where R̂(k) ∼ |k |−d−α+1, γ(k) ∼ |k |β equivalently

R̂(k)

γ(k)
∼ 1
|k |d+α+β−1

and α + β < 2.
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Central limit theorem in the weakly coupled case

Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Behavior of the wave function

Lack of coherence, we need to compensate for oscillations

Define
ζ̂ε(t, ξ) =

1
εd
φ̂ε(t, ξ/ε)e i |ξ|2t/(2ε), (24)

We have phase transition!!!
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Self-similar Gaussian Markovian flows
Fractional Brownian motion limit

Two particle motion

Strongly decorrelating fields
Theorem (T.K., L. Ryzhik 2010)

Assume that the spatial power spectrum satisfies∫ R̂(p)dp
γ(p)

< +∞ (25)

and γ =
√
ε. Then, for each (t, ξ) ∈ R1+d fixed, ζ̂ε(t, ξ) converges

in law, as ε→ 0, to

ζ̂(t, ξ) = e−tDξ/2φ̂0(ξ) + Z (t, ξ) (26)

Here 1) Z (t, ξ) is a centered, complex valued Gaussian random
variable, whose variance equals

E|Z (t, ξ)|2 = Ŵ (t, ξ)− e−tReDξ |φ̂0(ξ)|2.
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Strongly decorrelating fields, cont’d

Theorem, c.d.
2) Dξ =

∫
D(p, ξ)dp and

D(p, ξ) =
2R̂(p)

(2π)d [γ(p)− i(ξ · p − |p|2/2)]
(27)

3) Ŵ (t, ξ) is the solution of:{
∂tŴ (t, ξ) = LŴ (t, ξ),

Ŵ (0, ξ) = |φ̂0(ξ)|2.
(28)

with
LF (ξ) :=

∫
D(p, ξ)[F (p)− F (ξ)]dp, (29)
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Weak decorrelation

the spatial power spectrum:

R̂(p) =
a(p)

|p|α+d−1 (30)

and the mixing rate is

γ(p) = µ|p|β (31)

for some α < 1, 0 ¬ β ¬ 1, µ > 0, and a compactly supported,
non-negative, bounded measurable function a(p). We assume that
a(p) is continuous at p = 0 and a(0) > 0.

In order for the previous regime to hold we need to assume that
α + β < 1. We assume that α + β > 1 ⇒ α ∈ (0, 1).
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Result
Theorem (T.K., L. Ryzhik 2010)

Let γ := εκ and κ = 1− (1− α)/(2β).
Then, for each (t, ξ) ∈ R1+d fixed, ζ̂ε(t, ξ) converges in law to

ζ̄0(t, ξ) = φ̂0(ξ)e i
√

D̃Bκ(t), (32)

where Bκ(t; ξ) is a standard fractional Brownian motion with Hurst
exponent κ. D̃ is given by

D̃ =



a(0)K1(α, β, µ)

κ(2κ− 1)(2π)d , β < 1,

a(0)K2(ξ;α, µ)

α(2α− 1)(2π)d , β = 1.
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