Lévy measure density corresponding to inverse local time

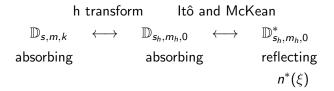
Tomoko Takemura and Matsuyo Tomisaki

2012. 9.11

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

motivation

We are concerned with Lévy measure density corresponding to the inverse local time at the regular end point for harmonic transform of a one dimensional diffusion process. We show that the Lévy measure density is represented as a Laplace transform of the spectral measure corresponding to an original diffusion process, where the absorbing boundary condition is posed at the end point if it is regular.



Tabel contents

1. One dimensional diffusion process

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2. Harmonic transform
- 3. Lévy measure density
- 4. Main theorem
- 5. Examples

We set

s : continuous increasing fnc. on $I = (I_1, I_2), -\infty \le I_1 < I_2 \le \infty$ m : right continuous increasing fnc. on I

k: right continuous nondecreasing fnc. on I

We set

s : continuous increasing fnc. on $I = (l_1, l_2), -\infty \le l_1 < l_2 \le \infty$ *m* : right continuous increasing fnc. on *I k* : right continuous nondecreasing fnc. on *I*

• $\mathcal{G}_{s,m,k}$: 1-dim diffusion operator with s, m, and k

$$\mathcal{G}_{s,m,k}u = \frac{dD_su - udk}{dm}$$

We set

s : continuous increasing fnc. on $I = (l_1, l_2), -\infty \le l_1 < l_2 \le \infty$ *m* : right continuous increasing fnc. on *I k* : right continuous nondecreasing fnc. on *I*

• $\mathcal{G}_{s,m,k}$: 1-dim diffusion operator with s, m, and k

$$\mathcal{G}_{s,m,k}u = \frac{dD_su - udk}{dm}$$

▶ D_{s,m,k} : 1-dim diffusion process with G_{s,m,k} [l₁ is absorbing if l₁ is regular]

► p(t, x, y) : transition probability w.r.t. dm for $\mathbb{D}_{s,m,k}$ If l_1 is (s, m, k)-regular,

$$p(t, x, y) = \int_{[0,\infty)} e^{-\lambda t} \psi_o(x, \lambda) \psi_o(y, \lambda) \, d\sigma(\lambda), \qquad t > 0, \ x, y \in I,$$
(1)

where $d\sigma(\lambda)$ is a Borel measure on $[0,\infty)$ satisfying

$$\int_{[0,\infty)} e^{-\lambda t} \, d\sigma(\lambda) < \infty, \qquad t > 0, \tag{2}$$

and $\psi_o(x, \lambda)$, $x \in I$, $\lambda \ge 0$, is the solution of the following integral equation

$$\psi_o(x,\lambda) = s(x) - s(l_1) + \int_{(l_1,x]} \{s(x) - s(y)\}\psi_o(y,\lambda)\{-\lambda dm(y) + dk(y)\}$$

Proposition 2.1

Assume that l_1 is (s, m, k)-entrance and

$$\int_{(l_1,c_o]} \{s(c_o) - s(x)\}^2 \, dm(x) < \infty. \tag{3}$$

Then p(t, x, y) is represented as (1) with $d\sigma(\lambda)$ satisfying (2) and $\psi_o(x, \lambda)$ is the solution of the integral equation

$$\psi_o(x,\lambda) = 1 + \int_{(l_1,x]} \{s(x) - s(y)\}\psi_o(y,\lambda)\{-\lambda \, dm(y) + dk(y)\}.$$

We set

$$\mathcal{H}_{s,m,k,eta}=\{h>0; \ \mathcal{G}_{s,m,k}h=eta h\}, \quad ext{for} \ eta\geq 0$$

For $h \in \mathcal{H}_{s,m,k,\beta}$,

$$ds_h(x) = h(x)^{-2} ds(x), \quad dm_h(x) = h(x)^2 dm(x)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

We set

$$\mathcal{H}_{s,m,k,eta}=\{h>0; \ \mathcal{G}_{s,m,k}h=eta h\}, \quad ext{for }eta\geq 0$$

For $h \in \mathcal{H}_{s,m,k,eta}$,

$$ds_h(x) = h(x)^{-2} ds(x), \quad dm_h(x) = h(x)^2 dm(x)$$

We obtain

$$\mathcal{G}_{s_h,m_h,0}$$
 : h transform of $\mathcal{G}_{s,m,k}$ $\left[p_h(t,x,y) = e^{-eta t} rac{p(t,x,y)}{h(x)h(y)}
ight]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We set

$$\mathcal{H}_{s,m,k,eta}=\{h>0; \ \mathcal{G}_{s,m,k}h=eta h\}, \quad ext{for } eta\geq 0$$

For $h \in \mathcal{H}_{s,m,k,eta}$,

$$ds_h(x) = h(x)^{-2} ds(x), \quad dm_h(x) = h(x)^2 dm(x)$$

We obtain

$$\mathcal{G}_{s_h,m_h,0}$$
 : h transform of $\mathcal{G}_{s,m,k}$ $\left[p_h(t,x,y) = e^{-eta t} rac{p(t,x,y)}{h(x)h(y)}
ight]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathbb{D}_{s_h,m_h,0} : 1 \text{-dim diffusion process with } \mathcal{G}_{s_h,m_h,0} \\ [l_1 \text{ is absorbing if } l_1 \text{ is regular }]$$

• $\mathbb{D}^*_{s_h,m_h,0}$: 1-dim diffusion process with $\mathcal{G}_{s_h,m_h,0}$ [l_1 is regular and reflecting boundary]

$$\int_0^t f(X(u)) \, du = \int_I I^{(h*)}(t,\xi) \, dm_h(\xi), \quad t > 0,$$

for bounded continuous functions f on I.

$$\int_0^t f(X(u)) \, du = \int_I l^{(h*)}(t,\xi) \, dm_h(\xi), \quad t > 0,$$

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for bounded continuous functions f on I.
 τ^(h*)(t) : inverse local time I^{(h*)⁻¹}(t, I₁) at the end point I₁

Lévy measure density

Proposition 2.2 (Itô and McKean) Assume the following conditions.

> l_1 is (s, m, 0)-regular and reflecting. $s(l_2) = \infty$, or l_2 is (s, m, 0)-regular and reflecting.

Then $[\tau^*(t), t \ge 0]$ is a Lévy process and there is a Lévy measure density $n^*(\xi)$ such that

$$E_{l_1}^* \left[e^{-\lambda \tau^*(t)} \right] = \exp\left\{ -t \int_0^\infty (1 - e^{-\lambda \xi}) n^*(\xi) \, d\xi \right\},\\ n^*(\xi) = \lim_{x \to l_1} q^*(\xi, x) / \{s(x) - s(l_1)\},$$

where $E_{l_1}^*$ stands for the expectation with respect to $P_{l_1}^*$,

Lévy measure density

$$\int_0^t q^*(\xi, x) \, d\xi = P^*_x(\sigma_{l_1} < t), \quad x \in I, \,\, t > 0,$$

and σ_{l_1} is the first hitting time for l_1 . In particular, if $s(l_2) = \infty$, then

$$n^*(\xi) = \lim_{x,y \to I_1} D_{s(x)} D_{s(y)} p(\xi, x, y) = \int_{[0,\infty)} e^{-\lambda \xi} d\sigma(\lambda),$$

where p(t, x, y) is the the transition probability density with respect to dm for $\mathbb{D}_{s,m,0}$, and $d\sigma(\lambda)$ is the Borel measure appeared in the representation (1) satisfying (2).

Main theorem

Now we give a representation of $n^{(h*)}(\xi)$ by means of items corresponding to the diffusion process $\mathcal{D}_{s,m,k}$. l_1 is $(s_h, m_h, 0)$ -regular if and only if one of the following conditions is satisfied.

$$\begin{split} &l_{1} \text{ is } (s, m, k) \text{-regular and } h(l_{1}) \in (0, \infty). \end{split}$$
(4)

$$&l_{1} \text{ is } (s, m, k) \text{-entrance, } h(l_{1}) = \infty, \text{ and } |m_{h}(l_{1})| < \infty. \end{aligned}$$
(5)

$$&l_{1} \text{ is } (s, m, k) \text{-natural, } h(l_{1}) = \infty, \text{ and } |m_{h}(l_{1})| < \infty. \end{aligned}$$
(6)

Main theorem

Theorem 2.3 Let $h \in \mathcal{H}_{s,m,k,\beta}$. Assume one of (??), (??), and (??). Further assume that l_1 is reflecting and $s_h(l_2) = \infty$. Then there exists Lévy measure density $n^{(h*)}(\xi)$. In particular, if (??) is satisfied, then

$$n^{(h*)}(\xi) = h(I_1)^2 e^{-\beta\xi} \int_{[0,\infty)} e^{-\xi\lambda} d\sigma(\lambda)$$

= $h(I_1)^2 e^{-\beta\xi} \lim_{x,y \to I_1} D_{s(x)} D_{s(y)} p(\xi, x, y).$

If (??) is satisfied, then

$$n^{(h*)}(\xi) = D_s h(I_1)^2 e^{-\beta\xi} \int_{[0,\infty)} e^{-\xi\lambda} d\sigma(\lambda)$$
$$= D_s h(I_1)^2 e^{-\beta\xi} \lim_{x,y \to I_1} p(\xi, x, y).$$

Examples

Let us consider the following diffusion generators on $(0,\infty)$.

$$\begin{split} \mathcal{L}_{1} &= \frac{1}{2} \frac{d^{2}}{dx^{2}} + \left\{ \frac{1}{2x} + \sqrt{2\beta} \frac{K_{\nu}' \left(\sqrt{2\beta} x\right)}{K_{\nu} \left(\sqrt{2\beta} x\right)} \right\} \frac{d}{dx}, \\ \mathcal{L}_{2} &= \frac{1}{2} \frac{d^{2}}{dx^{2}} + \left\{ -\frac{1}{2x} + 2\kappa x \frac{W_{-\frac{\beta}{2\kappa} + \frac{\nu+1}{2}, \frac{|\nu|}{2}}(\kappa x^{2})}{W_{-\frac{\beta}{2\kappa} + \frac{\nu+1}{2}, \frac{|\nu|}{2}}(\kappa x^{2})} \right\} \frac{d}{dx}, \end{split}$$

where $-1 < \nu < 1$, $\kappa > 0$ and $\beta > 0$. $K_l(x)$ and $W_{k,l}(x)$ are the modified Bessel function and the Whittaker function. Lévy measure densities $n_i^*(\xi)$ of $\tau^*(t)$ are given as follows.

$$n_1^*(\xi) = C\xi^{-(|\nu|+1)}e^{-\beta\xi}, \quad n_2^*(\xi) = C\left(\frac{\kappa}{\sinh(\kappa\xi)}\right)^{|\nu|+1}e^{\{\kappa(\nu+1)-\beta\}\xi}$$

where $C = 2^{-(|\nu|+1)} \Gamma(|\nu|+1)$.