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motivation

We are concerned with Lévy measure density corresponding to the
inverse local time at the regular end point for harmonic transform
of a one dimensional diffusion process. We show that the Lévy
measure density is represented as a Laplace transform of the
spectral measure corresponding to an original diffusion process,
where the absorbing boundary condition is posed at the end point
if it is regular.

h transform Itô and McKean

Ds,m,k ←→ Dsh,mh,0 ←→ D∗sh,mh,0

absorbing absorbing reflecting

n∗(ξ)
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One dimensional diffusion process

I We set

s : continuous increasing fnc. on I = (l1, l2), −∞ ≤ l1 < l2 ≤ ∞
m : right continuous increasing fnc. on I

k : right continuous nondecreasing fnc. on I

I Gs,m,k : 1-dim diffusion operator with s, m, and k

Gs,m,ku =
dDsu − udk

dm

I Ds,m,k : 1-dim diffusion process with Gs,m,k
[l1 is absorbing if l1 is regular ]
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One dimensional diffusion process

I p(t, x , y) : transition probability w.r.t. dm for Ds,m,k

If l1 is (s,m, k)-regular,

p(t, x , y) =

∫
[0,∞)

e−λtψo(x , λ)ψo(y , λ) dσ(λ), t > 0, x , y ∈ I ,

(1)

where dσ(λ) is a Borel measure on [0,∞) satisfying∫
[0,∞)

e−λt dσ(λ) <∞, t > 0, (2)

and ψo(x , λ), x ∈ I , λ ≥ 0, is the solution of the following integral
equation

ψo(x , λ) =s(x)− s(l1)

+

∫
(l1,x]
{s(x)− s(y)}ψo(y , λ){−λ dm(y) + dk(y)}



One dimensional diffusion process

Proposition 2.1

Assume that l1 is (s,m, k)-entrance and∫
(l1,co ]

{s(co)− s(x)}2 dm(x) <∞. (3)

Then p(t, x , y) is represented as (1) with dσ(λ) satisfying (2) and
ψo(x , λ) is the solution of the integral equation

ψo(x , λ) = 1 +

∫
(l1,x]
{s(x)− s(y)}ψo(y , λ){−λ dm(y) + dk(y)}.



Harmonic transform

I We set

Hs,m,k,β = {h > 0; Gs,m,kh = βh}, for β ≥ 0

For h ∈ Hs,m,k,β,

dsh(x) = h(x)−2ds(x), dmh(x) = h(x)2dm(x)

I We obtain

Gsh,mh,0 : h transform of Gs,m,k
[

ph(t, x , y) = e−βt
p(t, x , y)

h(x)h(y)

]
I Dsh,mh,0 : 1-dim diffusion process with Gsh,mh,0

[l1 is absorbing if l1 is regular ]
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Harmonic transform

I D∗sh,mh,0
: 1-dim diffusion process with Gsh,mh,0

[l1 is regular and reflecting boundary ]

I l (h∗)(t, ξ) : local time for D∗sh,mh,0
, that is,∫ t

0
f (X (u)) du =

∫
I

l (h∗)(t, ξ) dmh(ξ), t > 0,

for bounded continuous functions f on I .

I τ (h∗)(t) : inverse local time l (h∗)
−1

(t, l1) at the end point l1
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Lévy measure density

Proposition 2.2 (Itô and McKean)

Assume the following conditions.

l1 is (s,m, 0)-regular and reflecting.

s(l2) =∞, or l2 is (s,m, 0)-regular and reflecting.

Then [τ∗(t), t ≥ 0] is a Lévy process and there is a Lévy measure
density n∗(ξ) such that

E ∗l1

[
e−λτ

∗(t)
]

= exp

{
−t

∫ ∞
0

(1− e−λξ)n∗(ξ) d ξ

}
,

n∗(ξ) = lim
x→l1

q∗(ξ, x)/{s(x)− s(l1)},

where E ∗l1 stands for the expectation with respect to P∗l1 ,



Lévy measure density

∫ t

0
q∗(ξ, x) dξ = P∗x (σl1 < t), x ∈ I , t > 0,

and σl1 is the first hitting time for l1. In particular, if s(l2) =∞,
then

n∗(ξ) = lim
x ,y→l1

Ds(x)Ds(y)p(ξ, x , y) =

∫
[0,∞)

e−λξdσ(λ),

where p(t, x , y) is the the transition probability density with
respect to dm for Ds,m,0, and dσ(λ) is the Borel measure appeared
in the representation (1) satisfying (2).



Main theorem

Now we give a representation of n(h∗)(ξ) by means of items
corresponding to the diffusion process Ds,m,k . l1 is
(sh,mh, 0)-regular if and only if one of the following conditions is
satisfied.

l1 is (s,m, k)-regular and h(l1) ∈ (0,∞). (4)

l1 is (s,m, k)-entrance, h(l1) =∞, and |mh(l1)| <∞. (5)

l1 is (s,m, k)-natural, h(l1) =∞, and |mh(l1)| <∞. (6)



Main theorem

Theorem 2.3
Let h ∈ Hs,m,k,β. Assume one of (??), (??), and (??). Further
assume that l1 is reflecting and sh(l2) =∞. Then there exists Lévy
measure density n(h∗)(ξ). In particular, if (??) is satisfied, then

n(h∗)(ξ) =h(l1)2e−βξ
∫
[0,∞)

e−ξλ dσ(λ)

=h(l1)2e−βξ lim
x ,y→l1

Ds(x)Ds(y)p(ξ, x , y).

If (??) is satisfied, then

n(h∗)(ξ) =Dsh(l1)2e−βξ
∫
[0,∞)

e−ξλ dσ(λ)

=Dsh(l1)2e−βξ lim
x ,y→l1

p(ξ, x , y).



Examples

Let us consider the following diffusion generators on (0,∞).

L1 =
1

2

d2

dx2
+

{
1

2x
+
√

2β
K ′ν
(√

2β x
)

Kν

(√
2β x

)} d

dx
,

L2 =
1

2

d2

dx2
+

− 1

2x
+ 2κx

W ′
− β

2κ
+ ν+1

2
,
|ν|
2

(κx2)

W− β
2κ

+ ν+1
2
,
|ν|
2

(κx2)

 d

dx
,

where −1 < ν < 1, κ > 0 and β > 0. Kl(x) and Wk,l(x) are the
modified Bessel function and the Whittaker function. Lévy
measure densities n∗i (ξ) of τ∗(t) are given as follows.

n∗1(ξ) = Cξ−(|ν|+1)e−βξ, n∗2(ξ) = C

(
κ

sinh(κξ)

)|ν|+1

e{κ(ν+1)−β}ξ

where C = 2−(|ν|+1)Γ(|ν|+ 1).
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