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Singular Perturbation

Let Li be diffusion operators. Consider

Lε := L1 +
1

ε
L2,

where ε ∈ (0, 1) is a small parameter.

Expand the solution, to the equation below, in ε,

∂uεt
∂t

= (L1 +
1

ε
L2)(uεt ).

uεt = u0
t + εu1

t + ε2u2
t + . . . .

We seek an equation for u0
t , and possibly for u1

t ...
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History

Orbits of celestial bodies are governed by a Hamiltonian
system on the cotangent bundle : u̇t = XH(ut).
On R2d , the equation is q̇t = ∂H

∂p
, ṗt = −∂H

∂q
.

Reduction in complexity:
Suppose that the true dynamical system differs from this
Hamiltonian system by order ε. After a long time of order
1
ε
, how does the orbit deviate from that given by the

Hamiltonian system, ? V.I. Arnold, ...
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History: Averaging and Homogeneisation

Averaging and homogenisation of parabolic PDEs trace back
to: R. Khasminskii (1963), M. Freidlin (1964),

Papanicolaou-Varadhan (1973),
Papanicolaou-Stroock-Varadhan (1977).

Book by A. Bensoussan,
J.-L. Lions, G. Papanicolaou. 700 pages, expect to find
everything!
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Development

In elasticity theory, e.g. A. Desimon, S. Müller, R.V. Kohn;
For discrete systems, e.g. A. Gloria and F. Otto.

J.-M. Bismut “Hypoelliptic Laplacian and orbital
integrals”, “Loops Spaces and hypoelliptic Laplacian” and
cohomologies. Look for unspoken Brownian motions.

Hamilton-Jacobi equations, transport
equations : E. Kosygina-F. Rezakhanlou-S.R.S. Varadhan-P.-L.
Lions-P.E. Souganidis; A. Bensoussan-J. L. Lions- G.
Papanicolaou.
Multi scale analysis: A.J. Majda, W. E., E. Vanden-Eijnden, A.
Stuart, M. Hairer, J. Mattingly and G. Pavliotis.
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Example

Let L2 =
∑d

i ,j=1 a2
i ,j(x , y) ∂2

∂yi∂yj
,L1 =

∑d
i ,j=1 a1

i ,j(x , y) ∂2

∂xi∂xj
,

∂

∂t
(u0

t + εu1
t + ε2u2

t + . . . ) = (L1 +
1

ε
L2)(u0

t + εu1
t + ε2u2

t + . . . ).

0 = L2u0
t ,

∂u0
t

∂t
= L1u0

t + L2u1
t .

Assume that Lx
2 is elliptic in variable y with the unique

invariant measure µx(dy). Then u0 is a constant in y .
We integrate the second equation:

∂

∂t
u0
t (x) =

∫ (∑
a1
i ,j(x , y)

∂2

∂xi∂xj
µx(dy)

)
u0
t (x) +

∫
L2u1

t µ
x(dy)

=

∫ (∑
a1
i ,j(x , y)µx(dy)

) ∂2

∂xi∂xj
u0
t (x)

= L̄1u0
t (x).
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Example: stochastic dynamics

Let the matrix (σi
1, . . . , σ

i
m) be a square root of the matrix

(ai
k,j). Let (bi

t ,w
k
t ) be independent Brownian motions.

dx εt =
m∑

k=1

σ1
k(x εt , y

ε
t )dbk

t , dy εt =
1√
ε

m∑
k=1

σ2
k(x εt , y

ε
t )dw k

t .

Let uεt = (x εt , y
ε
t ) ∈ Rd × Rd . By Itô’s formula, the

Markov generator for uεt is 1
ε
L2 + L1.

The special feature of uεt is that it consists of two
components, living in the product space Rd × Rd , one
of which is clearly the fast variable.

In general there will be more interactions, intertwinnings
such as rotations. We may consider uεt lives in a space
upstairs; x εt or y εt the projection. The total space, where
uεt lives, is locally a product space.
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Examples

We note three classes of spaces, where singular perturbation
problem occurs naturally.

1 Symplectic manifolds, e.g. with a completely integrable
family of Hamiltonian. [L. 08]

2 The frame bundles of a Riemannian manifold M [L.12].
Why is it interesting? u̇t = Hut (e0), u0(e0) = v0 gives the

geodesic flow.
3 The Hopf fibration: π : S3 → S2, with Berger’s metrics.

This is expected to extend to manifolds with contact
structures.

Something in common: there is an almost symplectic structure
for (2) and a contact structure for (3), J. Gray 59.
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The Hopf Fibration

Let SU(2) =

{(
z w
−w̄ z̄

) ∣∣∣ z ,w ∈ C, |z |2 + |w |2 = 1

}
.

1 There is a right action by U(1) on SU(2), defined below:

[z ,w ]
e iθ

=⇒ [e iθz , e iθw ] =

(
e iθ 0
0 e−iθ

)(
z w
−w̄ z̄

)
.

2 Denote by M = SU(2)/U(1), the space of of orbits.
Define: π to be the projection to the orbit.

3 The action by U(1) is smooth, effective and proper.

π−1(Ui )
diffeo

Ui × S1

Ui ⊂ M

π
Pr
oj

There is, hence, a unique manifold
structure on M s.t. π is smooth, surjective, a submersion
(Tp is surjective), and a fibration with fibre S1.
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The Hopf fibration π : S3 → S2

Hopf constructed a map from S3 to S2 to showed that
H3(S2) = Z . We identify SU(2) with S3, the set of unit
quaternion with non-abelian group multiplication.

The Hopf map is:
π : [z ,w ] 7→ (2Re(zw̄), 2Im(zw̄), |z |2 − |w |2). Indeed,

1 SU(2)/U(1) ∼ CP1, the complex projective space. It
consists of equivalent classes in C2, [z ,w ] ∼ [λz , λw ],
λ 6= 0.

2 CP1 ∼ S2. Let φ : R2 → S2 − { North Pole} be the
stereographic projection. Take [z : w ] ∈ CP1 with w 6= 0,

define [z : w ]→ z
w
∈ C ∼ R2 φ→ S2.
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The projection Tπ : TS3 → TS2

Consider S3 as a subset of R4. Take z = y1 + iy2,w = y3 + iy4.

Tyπ = 2

 y3 y4, y1 y2

−y4 y3 y2, −y1

y1, y2, −y3, −y4

.

The vertical tangent spaces are the kernels of Tuπ.

It is easy to check that
V (y1, y2, y3, y4) = −y2∂1 + y1∂2 − y4∂3 + y3∂4 is vertical. The
vertical space is one dimensional. In fact at [z ,w ] the vertical
vector fields are generated by d

dt
[e itz , e itw ].
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The Riemannian Structures, π : S3 → S2

Let S3 be given the standard Riemannian structure, that
of sub-manifold of R4.
There is a unique Riemmanian structure on S2 such that
π is a Riemannian submersion.
Let TuS3 = [ker Tuπ]⊕ HTuS3 be the orthogonal

decomposition. Then
Tuπ : HTuπ → Tπ(u)S

2 is an isometry.
With the above Riemannian metric, S2 has constant
sectional curvature 1

4
.

The holonomy group is S1: any two points in π−1(x) can be
connected by a horizontal curve. (Non-integrability).
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The Pauli matrices

SU(2) is a simply connected Lie group. Its Lie algebra

su(2) consists of matrices of the form,

(
ia β
−β̄ −ia

)
where a ∈ R, β ∈ C. Define〈A,B〉 = 1

2
trace(AB∗).

The pauli matrices form an o.n.b.:

X1 =

(
i 0
0 −i

)
,X2 =

(
0 −1
1 0

)
,X3 =

(
0 i
i 0

)
.

The structural constants are {−2,−2,−2}, see J. Milnor
[Mil76] for a discussion on classifications of three
dimensional Lie groups.
Let Xi denote also the corresponding left invariant vector
fields.
[X2,X3] = −2X1, [X3,X1] = −2X2, [X1,X2] = −2X3. The
horizontal distributions are not integrable.
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Berger’s Spheres

The right invariant vector field X1 ∼ d
dθ

is the action field.

Define left invariant (reps. right invariant)
Riemannian metric mε on S3 by keeping the left invariant
vector fields X1,X2,X3 orthogonal, but scaling the circle
direction by ε: |X1|mε = ε.

The spaces (S3,mε) are Berger’s spheres.

Collapsing: The diameter of the orbits of Berger’s spheres
is ε, which shrinks to zero. The injectivity radius of
(S3,mε)→ 0 as ε→ 0. The volume of S3 shrinks to zero.
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Collapsing of (S3,mε)

Berger: (S3,mε) converges to S2( 1
2
) in Gromov-Hausdorff

distance. The limit space is a lower dimensional manifold.

Gromov-Cheeger, [CG86], would like to see collapsings of
manifold sequences while keeping sectional curvatures
uniformly bounded.
For Berger’s spheres:

K ε(X1,X2) = ε2,K ε(X1,X3) = ε2,K ε(X2,X3) = 4− 3ε.
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Why bounded sectional curvature?

Let us look at an example for some intuition on the
requirement ‘bounded sectional curvature’.
Consider Riemannian manifold (M , gt), where gt ∈ (∧2TM)∗

satisfies:
ġt = −2Ricgt , g0 smooth.

R. S. Hamilton 82 proved short time existence and uniqueness.
Let gt , t ∈ (0,T ) be a maximal flow.

For t < T , the metrics are equivalent:

e−2Ctg(0) ≤ g(t) ≤ e2Ctg(0).
The norm of the Riemannian curvature blows up as
t ↑ T unless T =∞ (Hamilton).
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Gromov-Hausdorff Convergence

A sequence (Mn, gn) converges strongly to (M , g) if there are
diffeomorphisms φn : Mn → M such that (φn)∗gn → g .

Let A,B be sets in a metric space (X , d), define

dH(A,B) = inf{ε > 0 : B ⊂ Aε,A ⊂ Bε}.

For any point x in A there is a point y in B s.t.
d(x , y) ≤ ε.

Gromov-Hausdorff distance between metric spaces:

dGH((X1, d1), (X2, d2)) = inf
(φi :(Xi ,di )→(X ,d))

{dH(φ1(X1), φ2(X2))}.

Here φi are isometric embeddings.

Two metric spaces are isometric if their distance equals zero.
The set of equivalent classes of compact metric spaces with
diameter bounded above is compact.

36 / 59



Measured G-H convergence

If (Mn, gn)→ (M , g) how about the spectral of the Laplacian?

K. Fukaya introduced Measured Gromov-Hausdorff
convergence: consider the metric spaces (Mn, gn, µn)
where µn is a probability measure.
limn→∞(Mn, gn) = (M , g) in measured Gromov-Hausdorff
distance if there is a family of measurable maps:
ψn : Mn → M and positive numbers εn → 0 such that
|d(ψn(p), ψn(q))− d(p, q)| < εn, (ψn(Mn))εn = M and
(ψn)∗(µn)→ µ weakly.

One a Riemannian manifold of finite volume, we take the
measure to be the volume measure normalised to 1.

Berger’s sphere converges in measured Gromov-Hausdorff
distance.
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Fukaya’s theorem on spectral convergence

Theorem (Fukaya [Fuk87])

Let DM(n,D) be the closure of the class of Riemannian
manifolds whose sectional curvature K is bounded between −1
and 1 in the measured Gromov-Hausdorff distance. Let λk(M)
be the kth-eigenvalue of a manifold M ∈ DM(n,D).
Then λk can be extended to a continuous function on
DM(n,D)− {(point, 1)}. For each element
(X , µ) ∈ DM(n,D), λk(X ) is the kth eigenvalue of a
selfadjoint operator on L2(X , µ).

Y. Ogura [Ogu01], Y. Ogura-S. Taniguchi [OT96] studied the
convergence of Brownian motions, in a suitable sense, a family
of Riemannian manifolds (Mn, gn) that converges in
Kasue-Kumura’s spectral distance, where the distance
between heat kernels at time t (weighted by e−(t+1/t)) are
involved.
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The Spectrum on (S3,mε)

The k-th eigenvalue of Sd is λk = k(d + k − 1), k ≥ 0 with
multiplicity µk = C d+k

k − C d+k−2
k−2 .

S3 : λk = k(k + 2) : 0, 3, 8, . . .

S2 : λk = k(k + 1) : 0, 4, 6, 12, . . .

S1 : λk = k2 : 0, 12, 4, 9, . . . .

∆ε = 1
ε
LX∗

1
LX∗

1
+ LX∗

2
LX∗

2
+ LX∗

3
LX∗

3
= ∆ε

S1 + ∆h. Facts:
∆S3 , ∆h, ∆ε

S1 commute. See L. Bérard-Bergery and J.-P.
Bourguignon[BBB82], O’Neill [O’N67]
∆(f ◦ π) = ∆S2f ◦ π. c.f. [ELJL99]. The spectrum of ∆
and ∆h contains that of S2.
λ1(∆ε)→ λ1(S2( 1

2
)) = 4 · 1(1 + 1) = 8,

λ1(∆ε) = min{8 + 0, 2 +
1

ε
12} = 8, when ε2 <

1

6
.

S. Tanno [Tan80][BBB82]. Fukaya’s Theorem Applies, easily! 40 / 59



Convergences associated to collapsing of the

manifolds
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Horizontal Lifts

The orthogonal splitting, TuS3 = HuTS3 ⊕ ker(Tuπ), of the
tangent space induces a S1-invariant connection on S3. Note
that the kernel ker(Tπ) consists of the right invariant vector
field from X ∗1 . The horizontal tangent space is clearly given by
the right invariant vector fields X ∗2 and X ∗3 : the Riemannian
metric on S1 is right invariant.

If σ is a semi-martingale on S3, denote by σ̃ one of its

horizontal lifts. This exists c.f. [ELJL10].

•

•
•

σ(t)S2

S3

σ̃(t)

σ̃(t)
σ̃(t)

On the orthonormal frames of semi-martingales,this is well
known and is related to the stochastic parallel transport (K.
Itô) and to the stochastic development map (J. Eells-D.
Elworthy) ).
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Invariant vector fields on S3

As a Lie group there are three left invariant X L
i and right

invariant vector fields XR
i . Since the metric on the sphere with

round metric is bi-invariant, they form an o.n.b at each point.
The right invariant vector fields are horizontal, and
π∗(XR

2 ), π∗(X 3
3 ) is orthonormal at π(u). However the

projection do not induce vector fields on S2. This can also be
easily deduced from the fact that on S2 there is no nowhere
vanishing vector fields.
The left invariant vector fields do projects to vector fields on
S2. By the same reason the projection cannot be generate two
everywhere independent vector fields. Hence the left invariant
vector fields cannot lie in the horizontal distribution, and the
left invariant vector field X L

1 is not in the kernel of Tπ.
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Sub-Riemannian Geometry on S3

The horizontal distribution has the following properties:
Any point can be reached from a given one by a horizontal
curve (Hörmander condition).
The horizontal lift of a geodesic on S3, or on (S3,mε) given
below, is a horizontal geodesic (of minimal length among all
horizontal curves).
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SDE’s on Berger’s spheres

Using unit vectors on Berger’s spheres, we arrive at a number
of singularly perturbed SDE’s:

Brownian motion on (S3,mε) :
dx εt = 1

ε
X1(x εt ) ◦ db1

t +
∑3

i=2 Xi(x εt ) ◦ dbi
t . What we like to

do: converges of the processes, the derivative process,
propose a convergence corresponding to collapsing with
bounded geometry.
Hypoelliptic SDE’s with the hypo-elliptic Laplacians as
Markov generator:

dx εt = X2(xt) ◦ db2
t + X3(xt) ◦ db3

t ,

dx εt =
1√
ε

X1(x εt ) ◦ db1
t + X2(x εt ) ◦ db2

t ,

dx εt =
1√
ε

X1(x εt ) ◦ dbt + X3(x εt )dt.

Degenerate system: dx εt = 1√
ε
X1(x εt ) ◦ db1

t + X2(x εt ) ◦ dt.
45 / 59



Effective Hypoelliptic Diffusions

Let xt = π(uεt ) and x̃ εt its horizontal lift. Take
Y0 ∈ span{X2,X3}. We investigate rotations of the vector Y0

by elements of (S1, gε):

Theorem ( [Li12c])

Take u0 ∈ SU(2). Consider the SDE on SU(2)× U(1),

duεt = (Y0g εt )∗(uεt )dt +
1√
ε

X ∗1 (uεt ) ◦ dbt , uε0 = u0

dg εt =
1√
ε

g εt X1 ◦ dbt , g ε0 = 1

Then x̃ εt converges in probability to the hypoelliptic diffusion
with generator L̄F = 1

2
|Y0|2∆H .

If |Y0| = 1, x εt converges in law to the Brownian motion on S2 .
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Remark

We have mentioned that a Brownian motion on S2 cannot be
constructed by an SDE on R2driven than less than 3
independent Brownian motion, e.g.

dxt =
m∑
i=1

Vi(xt) ◦ dbi
t

with m < 3.
In the above we constructed a Brownian motion on S2 with
one driving Brownian motion. We remark that : (1) The SDE
on S3 does not project to an SDE on S2.
(2) With one single driving Brownian motion, we obtain a
hypoelliptic Brownian motion.
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Check the scaling is correct

Note that if g ∈ S1, Y0 ∈ span{X2,X3}. Then

Y0g ∈ span{X2,X3} .

We make a multi scale analysis to confirm that we have the
correct scaling and that there is indeed an effective motion.
Let F : SU(2)× U(1)→ R be C∞. Then

Lε(g)F (u) = 1
ε
L0F (u) + 1√

ε
LZg

1
F (u) + LZF .

Here Z = (Y0g)∗, Z g
1 = 1

2
(Y0gX1)∗, L0 = 1

2
LX∗

1
LX∗

1
. The

middle term comes from interaction between u and g .
Let F be solution to ∂F

∂t
= Lε(g)F . Expand F in ε,

F = F0 +
√
εF1 + εF2 + o(ε).
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Multi-scale Analysis

∂F
∂t

= Lε(g)F , F = F0 +
√
εF1 + εF2 + o(ε)

Expand the equation in
√
ε, Ḟ0 +

√
εḞ1 + εḞ2 + o(ε) =

( 1
ε
L0 + 1√

ε
LZg

1
+ LZ )(F0 +

√
εF1 + εF2 + o(ε)).

L0F0 = 0 =⇒ F0 does not depend on the θ-variable

LZ1F0 = −L0F1 =⇒ F1 = L−1
0 (LZ1F0).

Ḟ0 = LZF0 + LZ1F1 + L0F2.

∫
L0F2dθ = 0

.

L0 = 1
2
LX∗

1
LX∗

1
, Integrate lat equation with respect to dθ,∫

Ḟ0 =
∫
LZF0 +

∫
LZ1F1 +

∫
L0F2. Define F̄0 =

∫
F0.

d

dt
F̄0 = LZ F̄0 + LZ1F̄1 = LZ F̄0 + LZ1L−1

0 (LZ1F̄0),

We have a second order differential operator.
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Idea of Proof

Observe that x̃ εt and uεt live in the same fibre, there is an
element aεt ∈ S1 such that uεt = Raεt x̃ εt . Then

duεt = TRaεt (dx εt ) + ((aεt)
−1daεt)

∗(uεt ).

We apply the connection 1-form $ to the above equation
and to the SDE for uεt . Note that the horizontal
distribution is right invariant and TRaεt (dx εt ) is horizontal.
Also $uA∗(u) = A for any u ∈ u(1). This means,

1√
ε

X1 ◦ dbt = (aεt)
−1daεt .

Thus aεt = g εt .
Deduce an equation for x̃ εt :

dx̃ εt = TR(gε
t )−1 ◦ duεt + (g εt d(g εt )−1)∗(x̃ εt )

= TR(gε
t )−1(g εt Y0)∗(uεt )dt = (g εt Y0)∗(x̃ εt )dt.

50 / 59



Proof

d
dt

x̃ εt = (g εt Y0)∗(x̃ εt ). This bounded variation term will
leads to a diffusion term in the limit.
We prove the tightness of relevant measures for the weak
convergence.
Let F : S3 → R be any smooth function. Since
Y0 ∈ span{X2,X3},

F (x̃ εt ) = F (u0) +
3∑

j=2

∫ t

0

dF (x̃ εs Xj)〈Xj , g
ε
s Y0〉ds.

Note the right hand side is bounded variation term.
However we seek an approximate ‘semi-martingale’
decomposition, of the form, ‘martingale +drift+
o(ε)-terms. To the drift term we may apply the ergodic
theorem.
Solve a Poisson Equation and use Stroock-Varadhan’s
martingale method to identify the limits.
Bensoussan-Lions-Papanicolaou [BLP76]
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Further Investigations

Generalise the results to manifolds with the following
structures: almost contact structures. Homogeneous
spaces, Nioptent Li Groups, Warped product manifolds.

Dynamics associated with collapsing with bounded
sectional curvature. The study of exchange limit with
homogenisation.

Discussions can be found in [Li12a, Li12b].
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Collapsing with bounded sectional curvature

Collapsing with bounded sectional curvature or convergence
with bounded derivative flows?
Let ∇ be the Levi-Civita connection. Then

Dv εt =
1√
ε
∇vε

t
X1 ◦ db1

t +
3∑

i=2

∇vε
t
Xi ◦ dbi

t , v εt = v0.

In general, let Pε
t f (u0) = Ef (uεt ). Then

d(Pε
t )f (v0) = Edf (v εt ).

Then W ε
t (v0) = E{v εt |F

uε·
t } solves DW ε

t (v0)
dt

= −1
2
Ric#(Wt(v0))

and W0 = v . If Ric ≥ K then

|d(Ptf )(v0)| = |Edf (Wt(v))| ≤ eKtE|df |uεt .
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Convergence with bounded derivatives

Since Ric bounded from below is equivalent to
|∇Ptf |2 ≤ e2Kt |∇f |2, we propose to study collapsing of
manifolds with one of the following constraints: (1)
|∇Pε

t f |2ε ≤ e2Kt |∇f |2ε or (2) the derivative flows
|E{v εt |F εt }|ε ≤ C |v0|ε.
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Some Estimates

In our case, the terms ∇X2X1 = εX3, ∇X3X1 = −εX2, ... can
be computed explicitly.
Since //t is an isometry, we see that |v εt | is nicely bounded.
This can also follow from the following computation:

Ricε(X2) = 4− 2ε,Ricε(X1,X1) = 2ε2.

Proposition

Consider the SDE with (X1,X
L
2 ,X

L
3 ). With respect to the

round metric, |v εt |1 is a constant in t. The eigenvalues of
(uεt )−1v εt is constant in t.

Remark: Suppose that v0 6= 0. The derivative flow of the
equation for x̃ εt satisfies that (x̃ εt )−1v εt is hypoelliptic on the
unit sphere {h ∈ su(2) : |h| = |v0|}.
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