Convergence of Stochastic Processes and Collapsing of Manifolds

Xue-Mei Li

The University of Warwick

6 ICSAA

12 September 2012
Bedlewo, Poland

Singular Perturbation

Let \mathcal{L}_{i} be diffusion operators. Consider

$$
\mathcal{L}^{\epsilon}:=\mathcal{L}_{1}+\frac{1}{\epsilon} \mathcal{L}_{2}
$$

where $\epsilon \in(0,1)$ is a small parameter.

Singular Perturbation

Let \mathcal{L}_{i} be diffusion operators. Consider

$$
\mathcal{L}^{\epsilon}:=\mathcal{L}_{1}+\frac{1}{\epsilon} \mathcal{L}_{2}
$$

where $\epsilon \in(0,1)$ is a small parameter.

- Expand the solution, to the equation below, in ϵ,

$$
\begin{gathered}
\frac{\partial u_{t}^{\epsilon}}{\partial t}=\left(\mathcal{L}_{1}+\frac{1}{\epsilon} \mathcal{L}_{2}\right)\left(u_{t}^{\epsilon}\right) \\
u_{t}^{\epsilon}=u_{t}^{0}+\epsilon u_{t}^{1}+\epsilon^{2} u_{t}^{2}+\ldots
\end{gathered}
$$

We seek an equation for u_{t}^{0}, and possibly for $u_{t}^{1} \ldots$

History

- Orbits of celestial bodies are governed by a Hamiltonian system on the cotangent bundle : $\dot{u}_{t}=X_{H}\left(u_{t}\right)$. On $\mathbf{R}^{2 d}$, the equation is $\dot{q}_{t}=\frac{\partial H}{\partial p}, \dot{p}_{t}=-\frac{\partial H}{\partial q}$.

History

- Orbits of celestial bodies are governed by a Hamiltonian system on the cotangent bundle : $\dot{u}_{t}=X_{H}\left(u_{t}\right)$.
On $\mathbf{R}^{2 d}$, the equation is $\dot{q}_{t}=\frac{\partial H}{\partial p}, \dot{p}_{t}=-\frac{\partial H}{\partial q}$.
- Reduction in complexity:

Suppose that the true dynamical system differs from this Hamiltonian system by order ϵ. After a long time of order $\frac{1}{\epsilon}$, how does the orbit deviate from that given by the Hamiltonian system, ? V.I. Arnold, ...

History: Averaging and Homogeneisation

Averaging and homogenisation of parabolic PDEs trace back to: R. Khasminskii (1963), M. Freidlin (1964),

Papanicolaou-Varadhan (1973),
Papanicolaou-Stroock-Varadhan (1977).

J.-L. Lions, G. Papanicolaou. 700 pages, expect to find everything!

Development

In elasticity theory, e.g. A. Desimon, S. Müller, R.V. Kohn; For discrete systems, e.g. A. Gloria and F. Otto.
J.-M. Bismut "Hypoelliptic Laplacian and orbital integrals", "Loops Spaces and hypoelliptic Laplacian" and cohomologies. Look for unspoken Brownian motions.

Hamilton-Jacobi equations, transport equations: E. Kosygina-F. Rezakhanlou-S.R.S. Varadhan-P.-L. Lions-P.E. Souganidis; A. Bensoussan-J. L. Lions- G. Papanicolaou.
Multi scale analysis: A.J. Majda, W. E., E. Vanden-Eijnden, A. Stuart, M. Hairer, J. Mattingly and G. Pavliotis.

Example

Let $\mathcal{L}_{2}=\sum_{i, j=1}^{d} a_{i, j}^{2}(x, y) \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}, \mathcal{L}_{1}=\sum_{i, j=1}^{d} a_{i, j}^{1}(x, y) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$,
$\frac{\partial}{\partial t}\left(u_{t}^{0}+\epsilon u_{t}^{1}+\epsilon^{2} u_{t}^{2}+\ldots\right)=\left(\mathcal{L}_{1}+\frac{1}{\epsilon} \mathcal{L}_{2}\right)\left(u_{t}^{0}+\epsilon u_{t}^{1}+\epsilon^{2} u_{t}^{2}+\ldots\right)$.

$$
0=\mathcal{L}_{2} u_{t}^{0}, \quad \frac{\partial u_{t}^{0}}{\partial t}=\mathcal{L}_{1} u_{t}^{0}+\mathcal{L}_{2} u_{t}^{1}
$$

Example

$$
\text { Let } \mathcal{L}_{2}=\sum_{i, j=1}^{d} a_{i, j}^{2}(x, y) \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}, \mathcal{L}_{1}=\sum_{i, j=1}^{d} a_{i, j}^{1}(x, y) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \text {, }
$$

$$
\begin{gathered}
\frac{\partial}{\partial t}\left(u_{t}^{0}+\epsilon u_{t}^{1}+\epsilon^{2} u_{t}^{2}+\ldots\right)=\left(\mathcal{L}_{1}+\frac{1}{\epsilon} \mathcal{L}_{2}\right)\left(u_{t}^{0}+\epsilon u_{t}^{1}+\epsilon^{2} u_{t}^{2}+\ldots\right) \\
0=\mathcal{L}_{2} u_{t}^{0}, \quad \frac{\partial u_{t}^{0}}{\partial t}=\mathcal{L}_{1} u_{t}^{0}+\mathcal{L}_{2} u_{t}^{1}
\end{gathered}
$$

Assume that \mathcal{L}_{2}^{x} is elliptic in variable y with the unique invariant measure $\mu^{x}(d y)$. Then u^{0} is a constant in y. We integrate the second equation:

Example

Let $\mathcal{L}_{2}=\sum_{i, j=1}^{d} a_{i, j}^{2}(x, y) \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}, \mathcal{L}_{1}=\sum_{i, j=1}^{d} a_{i, j}^{1}(x, y) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$,

$$
\begin{gathered}
\frac{\partial}{\partial t}\left(u_{t}^{0}+\epsilon u_{t}^{1}+\epsilon^{2} u_{t}^{2}+\ldots\right)=\left(\mathcal{L}_{1}+\frac{1}{\epsilon} \mathcal{L}_{2}\right)\left(u_{t}^{0}+\epsilon u_{t}^{1}+\epsilon^{2} u_{t}^{2}+\ldots\right) \\
0=\mathcal{L}_{2} u_{t}^{0}, \quad \frac{\partial u_{t}^{0}}{\partial t}=\mathcal{L}_{1} u_{t}^{0}+\mathcal{L}_{2} u_{t}^{1}
\end{gathered}
$$

Assume that \mathcal{L}_{2}^{x} is elliptic in variable y with the unique invariant measure $\mu^{x}(d y)$. Then u^{0} is a constant in y. We integrate the second equation:

$$
\begin{align*}
\frac{\partial}{\partial t} u_{t}^{0}(x) & =\int\left(\sum a_{i, j}^{1}(x, y) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \mu^{x}(d y)\right) u_{t}^{0}(x)+\int \mathcal{L}_{2} u_{t}^{1} \mu^{x}(d y) \\
& =\int\left(\sum a_{i, j}^{1}(x, y) \mu^{x}(d y)\right) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} u_{t}^{0}(x) \\
& =\overline{\mathcal{L}}_{1} u_{t}^{0}(x)
\end{align*}
$$

Example: stochastic dynamics

- Let the matrix $\left(\sigma_{1}^{i}, \ldots, \sigma_{m}^{i}\right)$ be a square root of the matrix $\left(a_{k, j}^{i}\right)$. Let $\left(b_{t}^{i}, w_{t}^{k}\right)$ be independent Brownian motions.
$d x_{t}^{\epsilon}=\sum_{k=1}^{m} \sigma_{k}^{1}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d b_{t}^{k}, \quad d y_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{m} \sigma_{k}^{2}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d w_{t}^{k}$.
Let $u_{t}^{\epsilon}=\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) \in \mathbf{R}^{d} \times \mathbf{R}^{d}$. By Itô's formula, the Markov generator for u_{t}^{ϵ} is $\frac{1}{\epsilon} \mathcal{L}_{2}+\mathcal{L}_{1}$.

Example: stochastic dynamics

- Let the matrix $\left(\sigma_{1}^{i}, \ldots, \sigma_{m}^{i}\right)$ be a square root of the matrix ($a_{k, j}^{i}$). Let $\left(b_{t}^{i}, w_{t}^{k}\right)$ be independent Brownian motions.

$$
d x_{t}^{\epsilon}=\sum_{k=1}^{m} \sigma_{k}^{1}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d b_{t}^{k}, \quad d y_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{m} \sigma_{k}^{2}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d w_{t}^{k} .
$$

Let $u_{t}^{\epsilon}=\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) \in \mathbf{R}^{d} \times \mathbf{R}^{d}$. By Itô's formula, the Markov generator for u_{t}^{ϵ} is $\frac{1}{\epsilon} \mathcal{L}_{2}+\mathcal{L}_{1}$.

- The special feature of u_{t}^{ϵ} is that it consists of two components, living in the product space $\mathbf{R}^{d} \times \mathbf{R}^{d}$, one of which is clearly the fast variable.

Example: stochastic dynamics

- Let the matrix $\left(\sigma_{1}^{i}, \ldots, \sigma_{m}^{i}\right)$ be a square root of the matrix $\left(a_{k, j}^{i}\right)$. Let $\left(b_{t}^{i}, w_{t}^{k}\right)$ be independent Brownian motions.

$$
d x_{t}^{\epsilon}=\sum_{k=1}^{m} \sigma_{k}^{1}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d b_{t}^{k}, \quad d y_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} \sum_{k=1}^{m} \sigma_{k}^{2}\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) d w_{t}^{k} .
$$

Let $u_{t}^{\epsilon}=\left(x_{t}^{\epsilon}, y_{t}^{\epsilon}\right) \in \mathbf{R}^{d} \times \mathbf{R}^{d}$. By Itô's formula, the Markov generator for u_{t}^{ϵ} is $\frac{1}{\epsilon} \mathcal{L}_{2}+\mathcal{L}_{1}$.

- The special feature of u_{t}^{ϵ} is that it consists of two components, living in the product space $\mathbf{R}^{d} \times \mathbf{R}^{d}$, one of which is clearly the fast variable.
- In general there will be more interactions, intertwinnings such as rotations. We may consider u_{t}^{ϵ} lives in a space upstairs; x_{t}^{ϵ} or y_{t}^{ϵ} the projection. The total space, where u_{t}^{ϵ} lives, is locally a product space.

Examples

We note three classes of spaces, where singular perturbation problem occurs naturally.
(1) Symplectic manifolds, e.g. with a completely integrable family of Hamiltonian. [L. 08]
(2) The frame bundles of a Riemannian manifold M [L.12]. Why is it interesting? $\dot{u}_{t}=H_{u_{t}}\left(e_{0}\right), u_{0}\left(e_{0}\right)=v_{0}$ gives the geodesic flow.

Manifolds for Sale
Great deals on quality manifolds. Start saving now! affiliate. www.eBay.com

(3) The Hopf fibration: $\pi: S^{3} \rightarrow S^{2}$, with Berger's metrics. This is expected to extend to manifolds with contact structures.

Examples

We note three classes of spaces, where singular perturbation problem occurs naturally.
(1) Symplectic manifolds, e.g. with a completely integrable family of Hamiltonian. [L. 08]
(2) The frame bundles of a Riemannian manifold M [L.12]. Why is it interesting? $\dot{u}_{t}=H_{u_{t}}\left(e_{0}\right), u_{0}\left(e_{0}\right)=v_{0}$ gives the
geodesic flow.

Manifolds for Sale
Great deals on quality manifolds. Start saving now! affiliate. www.eBay.com

(3) The Hopf fibration: $\pi: S^{3} \rightarrow S^{2}$, with Berger's metrics. This is expected to extend to manifolds with contact structures.
Something in common: there is an almost symplectic structure for (2) and a contact structure for (3). J. Grav 59.

The Hopf Fibration

$$
\text { Let } S U(2)=\left\{\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right)\left|z, w \in \mathcal{C},|z|^{2}+|w|^{2}=1\right\}\right.
$$

The Hopf Fibration

Let $S U(2)=\left\{\left(\begin{array}{cc}z & w \\ -\bar{w} & \bar{z}\end{array}\right)\left|z, w \in \mathcal{C},|z|^{2}+|w|^{2}=1\right\}\right.$.
(1) There is a right action by $U(1)$ on $S U(2)$, defined below:

$$
[z, w] \stackrel{e^{i \theta}}{\Longrightarrow}\left[e^{i \theta} z, e^{i \theta} w\right]=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right) .
$$

The Hopf Fibration

Let $S U(2)=\left\{\left(\begin{array}{cc}z & w \\ -\bar{w} & \bar{z}\end{array}\right)\left|z, w \in \mathcal{C},|z|^{2}+|w|^{2}=1\right\}\right.$.
(1) There is a right action by $U(1)$ on $S U(2)$, defined below:

$$
[z, w] \stackrel{e^{i \theta}}{\Longrightarrow}\left[e^{i \theta} z, e^{i \theta} w\right]=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right)
$$

(2) Denote by $M=S U(2) / U(1)$, the space of of orbits. Define: π to be the projection to the orbit.

The Hopf Fibration

Let $S U(2)=\left\{\left(\begin{array}{cc}z & w \\ -\bar{w} & \bar{z}\end{array}\right)\left|z, w \in \mathcal{C},|z|^{2}+|w|^{2}=1\right\}\right.$.
(1) There is a right action by $U(1)$ on $S U(2)$, defined below:

$$
[z, w] \stackrel{e^{i \theta}}{\Longrightarrow}\left[e^{i \theta} z, e^{i \theta} w\right]=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right)
$$

(2) Denote by $M=S U(2) / U(1)$, the space of of orbits.

Define: π to be the projection to the orbit.
(3) The action by $U(1)$ is smooth, effective and proper.

The Hopf Fibration

Let $S U(2)=\left\{\left(\begin{array}{cc}z & w \\ -\bar{w} & \bar{z}\end{array}\right)\left|z, w \in \mathcal{C},|z|^{2}+|w|^{2}=1\right\}\right.$.
(1) There is a right action by $U(1)$ on $S U(2)$, defined below:

$$
[z, w] \stackrel{e^{i \theta}}{\Longrightarrow}\left[e^{i \theta} z, e^{i \theta} w\right]=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right)
$$

(2) Denote by $M=S U(2) / U(1)$, the space of of orbits.

Define: π to be the projection to the orbit.
(3) The action by $U(1)$ is smooth, effective and proper.

The Hopf Fibration

Let $S U(2)=\left\{\left(\begin{array}{cc}z & w \\ -\bar{w} & \bar{z}\end{array}\right)\left|z, w \in \mathcal{C},|z|^{2}+|w|^{2}=1\right\}\right.$.
(1) There is a right action by $U(1)$ on $S U(2)$, defined below:

$$
[z, w] \stackrel{e^{i \theta}}{\Longrightarrow}\left[e^{i \theta} z, e^{i \theta} w\right]=\left(\begin{array}{cc}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right)\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right)
$$

(2) Denote by $M=S U(2) / U(1)$, the space of of orbits.

Define: π to be the projection to the orbit.
(3) The action by $U(1)$ is smooth, effective and proper.

There is, hence, a unique manifold
structure on M s.t. π is smooth, surjective, a submersion ($T p$ is surjective), and a fibration with fibre S^{1}.

The Hopf fibration $\pi: S^{3} \rightarrow S^{2}$

Hopf constructed a map from S^{3} to S^{2} to showed that $H_{3}\left(S^{2}\right)=Z$. We identify $S U(2)$ with S^{3}, the set of unit quaternion with non-abelian group multiplication.

The Hopf map is:
$\pi:[z, w] \mapsto\left(2 \operatorname{Re}(z \bar{w}), 2 \operatorname{lm}(z \bar{w}),|z|^{2}-|w|^{2}\right)$. Indeed,

The Hopf fibration $\pi: S^{3} \rightarrow S^{2}$

Hopf constructed a map from S^{3} to S^{2} to showed that $H_{3}\left(S^{2}\right)=Z$. We identify $S U(2)$ with S^{3}, the set of unit quaternion with non-abelian group multiplication.

The Hopf map is:
$\pi:[z, w] \mapsto\left(2 \operatorname{Re}(z \bar{w}), 2 \operatorname{lm}(z \bar{w}),|z|^{2}-|w|^{2}\right)$. Indeed,
(1) $S U(2) / U(1) \sim C P^{1}$, the complex projective space. It consists of equivalent classes in $\mathcal{C}^{2},[z, w] \sim[\lambda z, \lambda w]$, $\lambda \neq 0$.

The Hopf fibration $\pi: S^{3} \rightarrow S^{2}$

Hopf constructed a map from S^{3} to S^{2} to showed that $H_{3}\left(S^{2}\right)=Z$. We identify $S U(2)$ with S^{3}, the set of unit quaternion with non-abelian group multiplication.

The Hopf map is:
$\pi:[z, w] \mapsto\left(2 \operatorname{Re}(z \bar{w}), 2 \operatorname{lm}(z \bar{w}),|z|^{2}-|w|^{2}\right)$. Indeed,
(1) $S U(2) / U(1) \sim C P^{1}$, the complex projective space. It consists of equivalent classes in $\mathcal{C}^{2},[z, w] \sim[\lambda z, \lambda w]$, $\lambda \neq 0$.
(2) $C P^{1} \sim S^{2}$. Let $\phi: \mathbf{R}^{2} \rightarrow S^{2}-\{$ North Pole $\}$ be the stereographic projection. Take $[z: w] \in C P^{1}$ with $w \neq 0$, define $[z: w] \rightarrow \frac{z}{w} \in C \sim \mathbf{R}^{2} \xrightarrow{\phi} S^{2}$.

The projection $T \pi: T S^{3} \rightarrow T S^{2}$

Consider S^{3} as a subset of \mathbf{R}^{4}. Take $z=y_{1}+i y_{2}, w=y_{3}+i y_{4}$.

$$
T_{y} \pi=2\left(\begin{array}{cccc}
y_{3} & y_{4}, & y_{1} & y_{2} \\
-y_{4} & y_{3} & y_{2}, & -y_{1} \\
y_{1}, & y_{2}, & -y_{3}, & -y_{4}
\end{array}\right) \text {. }
$$

The vertical tangent spaces are the kernels of $T_{u} \pi$.

It is easy to check that $V\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=-y_{2} \partial_{1}+y_{1} \partial_{2}-y_{4} \partial_{3}+y_{3} \partial_{4}$ is vertical. The vertical space is one dimensional. In fact at $[z, w]$ the vertical vector fields are generated by $\frac{d}{d t}\left[e^{i t} z, e^{i t} w\right]$.

The Riemannian Structures, $\pi: S^{3} \rightarrow S^{2}$

- Let S^{3} be given the standard Riemannian structure, that of sub-manifold of \mathbf{R}^{4}.
- There is a unique Riemmanian structure on S^{2} such that π is a Riemannian submersion.
Let $T_{u} S^{3}=\left[\operatorname{ker} T_{u} \pi\right] \oplus H T_{u} S^{3}$ be the orthogonal
decomposition.

$T_{u} \pi: H T_{u} \pi \rightarrow T_{\pi(u)} S^{2}$ is an isometry.
- With the above Riemannian metric, S^{2} has constant sectional curvature $\frac{1}{4}$.

The Riemannian Structures, $\pi: S^{3} \rightarrow S^{2}$

- Let S^{3} be given the standard Riemannian structure, that of sub-manifold of \mathbf{R}^{4}.
- There is a unique Riemmanian structure on S^{2} such that π is a Riemannian submersion.
Let $T_{u} S^{3}=\left[\operatorname{ker} T_{u} \pi\right] \oplus H T_{u} S^{3}$ be the orthogonal
decomposition.

$T_{u} \pi: H T_{u} \pi \rightarrow T_{\pi(u)} S^{2}$ is an isometry.
- With the above Riemannian metric, S^{2} has constant sectional curvature $\frac{1}{4}$.
The holonomy group is S^{1} : any two points in $\pi^{-1}(x)$ can be connected by a horizontal curve. (Non-integrability).

The Pauli matrices

- $\operatorname{SU}(2)$ is a simply connected Lie group. Its Lie algebra $\mathfrak{s u}(2)$ consists of matrices of the form, $\left(\begin{array}{cc}i a & \beta \\ -\bar{\beta} & -i a\end{array}\right)$ where $a \in \mathbf{R}, \beta \in \mathcal{C}$. Define $\langle A, B\rangle=\frac{1}{2} \operatorname{trace}\left(A B^{*}\right)$.

The pauli matrices form an o.n.b.:

$$
X_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), X_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), X_{3}=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right) .
$$

The Pauli matrices

- $\operatorname{SU}(2)$ is a simply connected Lie group. Its Lie algebra $\mathfrak{s u}(2)$ consists of matrices of the form, $\left(\begin{array}{cc}i a & \beta \\ -\bar{\beta} & -i a\end{array}\right)$ where $a \in \mathbf{R}, \beta \in \mathcal{C}$. Define $\langle A, B\rangle=\frac{1}{2} \operatorname{trace}\left(A B^{*}\right)$.

The pauli matrices form an o.n.b.:

$$
X_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), X_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), X_{3}=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right) .
$$

- The structural constants are $\{-2,-2,-2\}$, see J. Milnor [Mil76] for a discussion on classifications of three dimensional Lie groups.

The Pauli matrices

- $\operatorname{SU}(2)$ is a simply connected Lie group. Its Lie algebra $\mathfrak{s u}(2)$ consists of matrices of the form, $\left(\begin{array}{cc}i a & \beta \\ -\bar{\beta} & -i a\end{array}\right)$ where $a \in \mathbf{R}, \beta \in \mathcal{C}$. Define $\langle A, B\rangle=\frac{1}{2} \operatorname{trace}\left(A B^{*}\right)$.

The pauli matrices form an o.n.b.:

$$
X_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), X_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), X_{3}=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right) .
$$

- The structural constants are $\{-2,-2,-2\}$, see J. Milnor [Mil76] for a discussion on classifications of three dimensional Lie groups.
- Let X_{i} denote also the corresponding left invariant vector fields.

$$
\left[X_{2}, X_{3}\right]=-2 X_{1},\left[X_{3}, X_{1}\right]=-2 X_{2},\left[X_{1}, X_{2}\right]=-2 X_{3} \text {. The }
$$ horizontal distributions are not integrable.

Berger's Spheres

The right invariant vector field $X_{1} \sim \frac{d}{d \theta}$ is the action field. $\rightarrow 3$ Riemannian metric m_{ϵ} on S^{3} by keeping the left invariant vector fields X_{1}, X_{2}, X_{3} orthogonal, but scaling the circle direction by $\epsilon:\left|X_{1}\right|_{m_{\epsilon}}=\epsilon$.

Berger's Spheres

The right invariant vector field $X_{1} \sim \frac{d}{d \theta}$ is the action field. $\rightarrow 8$
Riemannian metric m_{ϵ} on S^{3} by keeping the left invariant vector fields X_{1}, X_{2}, X_{3} orthogonal, but scaling the circle direction by $\epsilon:\left|X_{1}\right|_{m_{\epsilon}}=\epsilon$.

- The spaces $\left(S^{3}, m_{\epsilon}\right)$ are Berger's spheres.

Berger's Spheres

The right invariant vector field $X_{1} \sim \frac{d}{d \theta}$ is the action field.

Define left invariant (reps. right invariant)
Riemannian metric m_{ϵ} on S^{3} by keeping the left invariant vector fields X_{1}, X_{2}, X_{3} orthogonal, but scaling the circle direction by $\epsilon:\left|X_{1}\right|_{m_{\epsilon}}=\epsilon$.

- The spaces $\left(S^{3}, m_{\epsilon}\right)$ are Berger's spheres.

- Collapsing: The diameter of the orbits of Berger's spheres is ϵ, which shrinks to zero. The injectivity radius of $\left(S^{3}, m_{\epsilon}\right) \rightarrow 0$ as $\epsilon \rightarrow 0$. The volume of S^{3} shrinks to zero.

Collapsing of $\left(S^{3}, m_{\epsilon}\right)$

- Berger: $\left(S^{3}, m_{\epsilon}\right)$ converges to $S^{2}\left(\frac{1}{2}\right)$ in Gromov-Hausdorff distance. The limit space is a lower dimensional manifold.

- Gromov-Cheeger, [CG86], would like to see collapsings of manifold sequences while keeping sectional curvatures uniformly bounded.
For Berger's spheres:

$$
K^{\epsilon}\left(X_{1}, X_{2}\right)=\epsilon^{2}, K^{\epsilon}\left(X_{1}, X_{3}\right)=\epsilon^{2}, K^{\epsilon}\left(X_{2}, X_{3}\right)=4-3 \epsilon
$$

Why bounded sectional curvature?

Let us look at an example for some intuition on the requirement 'bounded sectional curvature'.
Consider Riemannian manifold $\left(M, g_{t}\right)$, where $g_{t} \in\left(\wedge^{2} T_{M}\right)^{*}$ satisfies:

$$
\dot{g}_{t}=-2 R i c_{g_{t}}, \quad g_{0} \text { smooth. }
$$

R. S. Hamilton 82 proved short time existence and uniqueness. Let $g_{t}, t \in(0, T)$ be a maximal flow.

- For $t<T$, the metrics are equivalent:

$$
e^{-2 C t} g(0) \leq g(t) \leq e^{2 C t} g(0)
$$

- The norm of the Riemannian curvature blows up as $t \uparrow T$ unless $T=\infty$ (Hamilton).

Gromov-Hausdorff Convergence

A sequence $\left(M_{n}, g_{n}\right)$ converges strongly to (M, g) if there are diffeomorphisms $\phi_{n}: M_{n} \rightarrow M$ such that $\left(\phi_{n}\right)^{*} g_{n} \rightarrow g$.

- Let A, B be sets in a metric space (X, d), define

$$
d_{H}(A, B)=\inf \left\{\epsilon>0: B \subset A_{\epsilon}, A \subset B_{\epsilon}\right\}
$$

For any point x in A there is a point y in B s.t.

$$
d(x, y) \leq \epsilon
$$

- Gromov-Hausdorff distance between metric spaces:

$$
d_{G H}\left(\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)\right)=\inf _{\left(\phi_{i}:\left(X_{i}, d_{i}\right) \rightarrow(X, d)\right)}\left\{d_{H}\left(\phi_{1}\left(X_{1}\right), \phi_{2}\left(X_{2}\right)\right)\right\}
$$

Here ϕ_{i} are isometric embeddings.
Two metric spaces are isometric if their distance equals zero. The set of equivalent classes of compact metric spaces with diameter bounded above is compact.

Measured G-H convergence

If $\left(M_{n}, g_{n}\right) \rightarrow(M, g)$ how about the spectral of the Laplacian?

- K. Fukaya introduced Measured Gromov-Hausdorff convergence: consider the metric spaces $\left(M_{n}, g_{n}, \mu_{n}\right)$ where μ_{n} is a probability measure.
$\lim _{n \rightarrow \infty}\left(M_{n}, g_{n}\right)=(M, g)$ in measured Gromov-Hausdorff distance if there is a family of measurable maps: $\psi_{n}: M_{n} \rightarrow M$ and positive numbers $\epsilon_{n} \rightarrow 0$ such that $\left|d\left(\psi_{n}(p), \psi_{n}(q)\right)-d(p, q)\right|<\epsilon_{n},\left(\psi_{n}\left(M_{n}\right)\right)_{\epsilon_{n}}=M$ and $\left(\psi_{n}\right)_{*}\left(\mu_{n}\right) \rightarrow \mu$ weakly.
- One a Riemannian manifold of finite volume, we take the measure to be the volume measure normalised to 1 .
- Berger's sphere converges in measured Gromov-Hausdorff distance.

Fukaya's theorem on spectral convergence

Theorem (Fukaya [Fuk87])

Let $\mathcal{D} M(n, D)$ be the closure of the class of Riemannian manifolds whose sectional curvature K is bounded between -1 and 1 in the measured Gromov-Hausdorff distance. Let $\lambda_{k}(M)$ be the kth-eigenvalue of a manifold $M \in \mathcal{D} M(n, D)$.
Then λ_{k} can be extended to a continuous function on $\mathcal{D} M(n, D)-\{($ point, 1$)\}$. For each element $(X, \mu) \in \mathcal{D} M(n, D), \lambda_{k}(X)$ is the $k t h$ eigenvalue of a selfadjoint operator on $L^{2}(X, \mu)$.

Fukaya's theorem on spectral convergence

Theorem (Fukaya [Fuk87])

Let $\mathcal{D} M(n, D)$ be the closure of the class of Riemannian manifolds whose sectional curvature K is bounded between -1 and 1 in the measured Gromov-Hausdorff distance. Let $\lambda_{k}(M)$ be the kth-eigenvalue of a manifold $M \in \mathcal{D} M(n, D)$.
Then λ_{k} can be extended to a continuous function on $\mathcal{D} M(n, D)-\{($ point, 1$)\}$. For each element $(X, \mu) \in \mathcal{D} M(n, D), \lambda_{k}(X)$ is the kth eigenvalue of a selfadjoint operator on $L^{2}(X, \mu)$.
Y. Ogura [Ogu01], Y. Ogura-S. Taniguchi [OT96] studied the convergence of Brownian motions, in a suitable sense, a family of Riemannian manifolds $\left(M_{n}, g_{n}\right)$ that converges in Kasue-Kumura's spectral distance, where the distance between heat kernels at time t (weighted by $e^{-(t+1 / t)}$) are involved.

The Spectrum on $\left(S^{3}, m_{\epsilon}\right)$

The k-th eigenvalue of S^{d} is $\lambda_{k}=k(d+k-1), k \geq 0$ with multiplicity $\mu_{k}=C_{k}^{d+k}-C_{k-2}^{d+k-2}$.

$$
\begin{aligned}
& S^{3}: \lambda_{k}=k(k+2): 0,3,8, \ldots \\
& S^{2}: \lambda_{k}=k(k+1): 0,4,6,12, \ldots \\
& S^{1}: \lambda_{k}=k^{2}: 0,1^{2}, 4,9, \ldots
\end{aligned}
$$

$\Delta^{\epsilon}=\frac{1}{\epsilon} \mathcal{L}_{X_{1}^{*}} \mathcal{L}_{X_{1}^{*}}+\mathcal{L}_{X_{2}^{*}} \mathcal{L}_{X_{2}^{*}}+\mathcal{L}_{X_{3}^{*}} \mathcal{L}_{X_{3}^{*}}=\Delta_{S^{1}}^{\epsilon}+\Delta_{h}$. Facts:

- $\Delta_{S^{3}}, \Delta_{h}, \Delta_{S^{1}}^{\epsilon}$ commute. See L. Bérard-Bergery and J.-P. Bourguignon[BBB82], O'Neill [O'N67]
- $\Delta(f \circ \pi)=\Delta_{S^{2}} f \circ \pi$. c.f. [ELJL99]. The spectrum of Δ and Δ_{h} contains that of S^{2}.
- $\lambda_{1}\left(\Delta^{\epsilon}\right) \rightarrow \lambda_{1}\left(S^{2}\left(\frac{1}{2}\right)\right)=4 \cdot 1(1+1)=8$,

$$
\lambda_{1}\left(\Delta^{\epsilon}\right)=\min \left\{8+0,2+\frac{1}{\epsilon} 1^{2}\right\}=8, \text { when } \epsilon^{2}<\frac{1}{6}
$$

S. Tanno [Tan80][BBB82]. Fukaya's Theorem Applies, easily!

Convergences associated to collapsing of the

 manifolds
Horizontal Lifts

The orthogonal splitting, $T_{u} S^{3}=H_{u} T S^{3} \oplus \operatorname{ker}\left(T_{u} \pi\right)$, of the tangent space induces a S^{1}-invariant connection on S^{3}. Note that the kernel $\operatorname{ker}(T \pi)$ consists of the right invariant vector field from X_{1}^{*}. The horizontal tangent space is clearly given by the right invariant vector fields X_{2}^{*} and X_{3}^{*} : the Riemannian metric on S^{1} is right invariant.

If σ is a semi-martingale on S^{3}, denote by $\tilde{\sigma}$ one of its

horizontal lifts. This exists c.f. [ELJL10].
 On the orthonormal frames of semi-martingales, this is well known and is related to the stochastic parallel transport (K. Itô) and to the stochastic development map (J. Eells-D.

Invariant vector fields on S^{3}

As a Lie group there are three left invariant X_{i}^{L} and right invariant vector fields X_{i}^{R}. Since the metric on the sphere with round metric is bi-invariant, they form an o.n.b at each point. The right invariant vector fields are horizontal, and $\pi_{*}\left(X_{2}^{R}\right), \pi_{*}\left(X_{3}^{3}\right)$ is orthonormal at $\pi(u)$. However the projection do not induce vector fields on S^{2}. This can also be easily deduced from the fact that on S^{2} there is no nowhere vanishing vector fields.
The left invariant vector fields do projects to vector fields on S^{2}. By the same reason the projection cannot be generate two everywhere independent vector fields. Hence the left invariant vector fields cannot lie in the horizontal distribution, and the left invariant vector field X_{1}^{L} is not in the kernel of $T \pi$.

Sub-Riemannian Geometry on S^{3}

The horizontal distribution has the following properties:
Any point can be reached from a given one by a horizontal curve (Hörmander condition).
The horizontal lift of a geodesic on S^{3}, or on $\left(S_{3}, m_{\epsilon}\right)$ given below, is a horizontal geodesic (of minimal length among all horizontal curves).

SDE's on Berger's spheres

Using unit vectors on Berger's spheres, we arrive at a number of singularly perturbed SDE's:

- Brownian motion on $\left(S^{3}, m_{\epsilon}\right)$: $d x_{t}^{\epsilon}=\frac{1}{\epsilon} X_{1}\left(x_{t}^{\epsilon}\right) \circ d b_{t}^{1}+\sum_{i=2}^{3} X_{i}\left(x_{t}^{\epsilon}\right) \circ d b_{t}^{i}$. What we like to do: converges of the processes, the derivative process, propose a convergence corresponding to collapsing with bounded geometry.
- Hypoelliptic SDE's with the hypo-elliptic Laplacians as Markov generator:

$$
\begin{aligned}
& d x_{t}^{\epsilon}=X_{2}\left(x_{t}\right) \circ d b_{t}^{2}+X_{3}\left(x_{t}\right) \circ d b_{t}^{3} \\
& d x_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} X_{1}\left(x_{t}^{\epsilon}\right) \circ d b_{t}^{1}+X_{2}\left(x_{t}^{\epsilon}\right) \circ d b_{t}^{2} \\
& d x_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} X_{1}\left(x_{t}^{\epsilon}\right) \circ d b_{t}+X_{3}\left(x_{t}^{\epsilon}\right) d t
\end{aligned}
$$

- Degenerate system: $d x_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} X_{1}\left(x_{t}^{\epsilon}\right) \circ d b_{t}^{1}+X_{2}\left(x_{t}^{\epsilon}\right) \circ d t$.

Effective Hypoelliptic Diffusions

Let $x_{t}=\pi\left(u_{t}^{\epsilon}\right)$ and \tilde{x}_{t}^{ϵ} its horizontal lift. Take $Y_{0} \in \operatorname{span}\left\{X_{2}, X_{3}\right\}$. We investigate rotations of the vector Y_{0} by elements of $\left(S^{1}, g_{\epsilon}\right)$:

Theorem ([Li12c])

Take $u_{0} \in S U(2)$. Consider the $S D E$ on $S U(2) \times U(1)$,

$$
\begin{array}{ll}
d u_{t}^{\epsilon}=\left(Y_{0} g_{t}^{\epsilon}\right)^{*}\left(u_{t}^{\epsilon}\right) d t+\frac{1}{\sqrt{\epsilon}} X_{1}^{*}\left(u_{t}^{\epsilon}\right) \circ d b_{t}, & u_{0}^{\epsilon}=u_{0} \\
d g_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} g_{t}^{\epsilon} X_{1} \circ d b_{t}, & g_{0}^{\epsilon}=1
\end{array}
$$

Then \tilde{x}_{t}^{ϵ} converges in probability to the hypoelliptic diffusion with generator $\overline{\mathcal{L}} F=\frac{1}{2}\left|Y_{0}\right|^{2} \Delta_{H}$.

If $\left|Y_{0}\right|=1, x_{t}^{\epsilon}$ converges in law to the Brownian motion on S^{2}.

Remark

We have mentioned that a Brownian motion on S^{2} cannot be constructed by an SDE on \mathbf{R}^{2} driven than less than 3 independent Brownian motion, e.g.

$$
d x_{t}=\sum_{i=1}^{m} V_{i}\left(x_{t}\right) \circ d b_{t}^{i}
$$

with $m<3$.
In the above we constructed a Brownian motion on S^{2} with one driving Brownian motion. We remark that: (1) The SDE on S^{3} does not project to an SDE on S^{2}.
(2) With one single driving Brownian motion, we obtain a hypoelliptic Brownian motion.

Check the scaling is correct

Note that if $g \in S^{1}, Y_{0} \in \operatorname{span}\left\{X_{2}, X_{3}\right\}$. Then

$$
Y_{0} g \in \operatorname{span}\left\{X_{2}, X_{3}\right\}
$$

We make a multi scale analysis to confirm that we have the correct scaling and that there is indeed an effective motion. Let $F: S U(2) \times U(1) \rightarrow \mathbf{R}$ be C^{∞}. Then

$$
\mathcal{L}^{\epsilon}(g) F(u)=\frac{1}{\epsilon} \mathcal{L}_{0} F(u)+\frac{1}{\sqrt{\epsilon}} \mathcal{L}_{Z_{1}^{g}} F(u)+\mathcal{L}_{Z} F
$$

Here $Z=\left(Y_{0} g\right)^{*}, Z_{1}^{g}=\frac{1}{2}\left(Y_{0} g X_{1}\right)^{*}, \mathcal{L}_{0}=\frac{1}{2} \mathcal{L}_{X_{1}^{*}} \mathcal{L}_{X_{1}^{*}}$. The middle term comes from interaction between u and g. Let F be solution to $\frac{\partial F}{\partial t}=\mathcal{L}^{\epsilon}(g) F$. Expand F in ϵ,

$$
F=F_{0}+\sqrt{\epsilon} F_{1}+\epsilon F_{2}+o(\epsilon)
$$

Multi-scale Analysis

$$
\frac{\partial F}{\partial t}=\mathcal{L}^{\epsilon}(g) F, \quad F=F_{0}+\sqrt{\epsilon} F_{1}+\epsilon F_{2}+o(\epsilon)
$$

Expand the equation in $\sqrt{\epsilon}, \dot{F}_{0}+\sqrt{\epsilon} \dot{F}_{1}+\epsilon \dot{F}_{2}+o(\epsilon)=$ $\left(\frac{1}{\epsilon} \mathcal{L}_{0}+\frac{1}{\sqrt{\epsilon}} \mathcal{L}_{Z_{1}^{g}}+\mathcal{L}_{Z}\right)\left(F_{0}+\sqrt{\epsilon} F_{1}+\epsilon F_{2}+o(\epsilon)\right)$.
$\mathcal{L}_{0} F_{0}=0$
$\Longrightarrow F_{0}$ does not depend on the θ-vari
$\mathcal{L}_{Z_{1}} F_{0}=-\mathcal{L}_{0} F_{1}$

$$
\Longrightarrow F_{1}=\mathcal{L}_{0}^{-1}\left(\mathcal{L}_{Z_{1}} F_{0}\right)
$$

$$
\dot{F}_{0}=\mathcal{L}_{Z} F_{0}+L_{Z_{1}} F_{1}+\mathcal{L}_{0} F_{2}
$$

$$
\int \mathcal{L}_{0} F_{2} d \theta=0
$$

$\mathcal{L}_{0}=\frac{1}{2} \mathcal{L}_{X_{1}^{*}} \mathcal{L}_{X_{1}^{*}}$, Integrate lat equation with respect to $d \theta$,

$$
\int \dot{F}_{0}=\int \mathcal{L}_{Z} F_{0}+\int L_{Z_{1}} F_{1}+\int \mathcal{L}_{0} F_{2} . \text { Define } \bar{F}_{0}=\int F_{0}
$$

$$
\frac{d}{d t} \bar{F}_{0}=\mathcal{L}_{Z} \bar{F}_{0}+L_{z_{1}} \bar{F}_{1}=\mathcal{L}_{Z} \bar{F}_{0}+L_{z_{1}} \mathcal{L}_{0}^{-1}\left(L_{z_{1}} \bar{F}_{0}\right)
$$

We have a second order differential operator.

Idea of Proof

- Observe that \tilde{x}_{t}^{ϵ} and u_{t}^{ϵ} live in the same fibre, there is an element $a_{t}^{\epsilon} \in S^{1}$ such that $u_{t}^{\epsilon}=R_{a_{t}^{\epsilon}} \tilde{X}_{t}^{\epsilon}$. Then

$$
d u_{t}^{\epsilon}=T R_{a_{t}^{\epsilon}}\left(d x_{t}^{\epsilon}\right)+\left(\left(a_{t}^{\epsilon}\right)^{-1} d a_{t}^{\epsilon}\right)^{*}\left(u_{t}^{\epsilon}\right)
$$

We apply the connection 1 -form ϖ to the above equation and to the SDE for u_{t}^{ϵ}. Note that the horizontal distribution is right invariant and $T R_{a_{t}^{\epsilon}}\left(d x_{t}^{\epsilon}\right)$ is horizontal. Also $\varpi_{u} A^{*}(u)=A$ for any $u \in \mathfrak{u}(1)$. This means,

$$
\frac{1}{\sqrt{\epsilon}} X_{1} \circ d b_{t}=\left(a_{t}^{\epsilon}\right)^{-1} d a_{t}^{\epsilon}
$$

Thus $a_{t}^{\epsilon}=g_{t}^{\epsilon}$.

- Deduce an equation for \tilde{x}_{t}^{ϵ} :

$$
\begin{aligned}
d \tilde{x}_{t}^{\epsilon} & =T R_{\left(g_{t}^{\epsilon}\right)^{-1}} \circ d u_{t}^{\epsilon}+\left(g_{t}^{\epsilon} d\left(g_{t}^{\epsilon}\right)^{-1}\right)^{*}\left(\tilde{x}_{t}^{\epsilon}\right) \\
& =T R_{\left(g_{t}^{\epsilon}\right)^{-1}}\left(g_{t}^{\epsilon} Y_{0}\right)^{*}\left(u_{t}^{\epsilon}\right) d t=\left(g_{t}^{\epsilon} Y_{0}\right)^{*}\left(\tilde{x}_{t}^{\epsilon}\right) d t
\end{aligned}
$$

Proof

- $\frac{d}{d t} \tilde{x}_{t}^{\epsilon}=\left(g_{t}^{\epsilon} Y_{0}\right)^{*}\left(\tilde{x}_{t}^{\epsilon}\right)$. This bounded variation term will leads to a diffusion term in the limit.
- We prove the tightness of relevant measures for the weak convergence.
- Let $F: S^{3} \rightarrow \mathbf{R}$ be any smooth function. Since $Y_{0} \in \operatorname{span}\left\{X_{2}, X_{3}\right\}$,

$$
F\left(\tilde{x}_{t}^{\epsilon}\right)=F\left(u_{0}\right)+\sum_{j=2}^{3} \int_{0}^{t} d F\left(\tilde{x}_{s}^{\epsilon} X_{j}\right)\left\langle X_{j}, g_{s}^{\epsilon} Y_{0}\right\rangle d s
$$

- Note the right hand side is bounded variation term. However we seek an approximate 'semi-martingale' decomposition, of the form, 'martingale + drift + $o(\epsilon)$-terms. To the drift term we may apply the ergodic theorem.
- Solve a Poisson Equation and use Stroock-Varadhan's martingale method to identify the limits.

Further Investigations

- Generalise the results to manifolds with the following structures: almost contact structures. Homogeneous spaces, Nioptent Li Groups, Warped product manifolds.
- Dynamics associated with collapsing with bounded sectional curvature. The study of exchange limit with homogenisation.

Discussions can be found in [Li12a, Li12b].

Collapsing with bounded sectional curvature

Collapsing with bounded sectional curvature or convergence with bounded derivative flows?
Let ∇ be the Levi-Civita connection. Then

$$
D v_{t}^{\epsilon}=\frac{1}{\sqrt{\epsilon}} \nabla_{v_{t}^{\epsilon}} X_{1} \circ d b_{t}^{1}+\sum_{i=2}^{3} \nabla_{v_{t}^{\epsilon}} X_{i} \circ d b_{t}^{i}, \quad v_{t}^{\epsilon}=v_{0} .
$$

In general, let $P_{t}^{\epsilon} f\left(u_{0}\right)=\mathbf{E} f\left(u_{t}^{\epsilon}\right)$. Then $d\left(P_{t}^{\epsilon}\right) f\left(v_{0}\right)=\mathbf{E} d f\left(v_{t}^{\epsilon}\right)$.
Then $W_{t}^{\epsilon}\left(v_{0}\right)=\mathbf{E}\left\{v_{t}^{\epsilon} \mid \mathcal{F}_{t}^{u^{\epsilon}}\right\}$ solves $\frac{D W_{t}^{\epsilon}\left(v_{0}\right)}{d t}=-\frac{1}{2} R i c^{\#}\left(W_{t}\left(v_{0}\right)\right)$ and $W_{0}=v$. If Ric $\geq K$ then

$$
\left|d\left(P_{t} f\right)\left(v_{0}\right)\right|=\left|\mathbf{E} d f\left(W_{t}(v)\right)\right| \leq e^{K t} \mathbf{E}|d f|_{u_{t}^{\epsilon}} .
$$

Convergence with bounded derivatives

Since Ric bounded from below is equivalent to $\left|\nabla P_{t} f\right|^{2} \leq e^{2 K t}|\nabla f|^{2}$, we propose to study collapsing of manifolds with one of the following constraints: (1)
$\left|\nabla P_{t}^{\epsilon} f\right|_{\epsilon}^{2} \leq e^{2 K t}|\nabla f|_{\epsilon}^{2}$ or (2) the derivative flows
$\left|\mathbf{E}\left\{\boldsymbol{v}_{t}^{\epsilon} \mid \mathcal{F}_{t}^{\epsilon}\right\}\right|_{\epsilon} \leq C\left|v_{0}\right|_{\epsilon}$.

Some Estimates

In our case, the terms $\nabla_{X_{2}} X_{1}=\epsilon X_{3}, \nabla_{X_{3}} X_{1}=-\epsilon X_{2}, \ldots$ can be computed explicitly.
Since $/ / t$ is an isometry, we see that $\left|v_{t}^{\epsilon}\right|$ is nicely bounded. This can also follow from the following computation:

$$
\operatorname{Ric}^{\epsilon}\left(X_{2}\right)=4-2 \epsilon, \operatorname{Ric}^{\epsilon}\left(X_{1}, X_{1}\right)=2 \epsilon^{2}
$$

Proposition

Consider the SDE with $\left(X_{1}, X_{2}^{L}, X_{3}^{L}\right)$. With respect to the round metric, $\left|v_{t}^{\epsilon}\right|_{1}$ is a constant in t. The eigenvalues of $\left(u_{t}^{\epsilon}\right)^{-1} v_{t}^{\epsilon}$ is constant in t.

Remark: Suppose that $v_{0} \neq 0$. The derivative flow of the equation for \tilde{x}_{t}^{ϵ} satisfies that $\left(\tilde{x}_{t}^{\epsilon}\right)^{-1} v_{t}^{\epsilon}$ is hypoelliptic on the unit sphere $\left\{h \in \mathfrak{s u}(2):|h|=\left|v_{0}\right|\right\}$.

Selected Refrences

Rionel Bérard-Bergery and Jean-Pierre Bourguignon. Laplacians and Riemannian submersions with totally geodesic fibres.
Illinois J. Math., 26(2):181-200, 1982.
R A. Bensoussan, J.L. Lions, and G. Papanicolaou. Homogénéisation, correcteurs et problèmes non-linéaires. C. R. Acad. Sci. Paris Sér. A-B, 282(22):1277-A1282, 1976.
(i-i Jeff Cheeger and Mikhael Gromov.
Collapsing Riemannian manifolds while keeping their curvature bounded. I.
J. Differential Geom., 23(3):309-346, 1986.

囦 K. D. Elworthy, Y. Le Jan, and Xue-Mei Li.
On the geometry of diffusion operators and stochastic flows, volume 1720 of Lecture Notes in Mathematics.

Springer－Verlag，Berlin， 1999.
围 K．David Elworthy，Yves Le Jan，and Xue－Mei Li．
The geometry of filtering．
Frontiers in Mathematics．Birkhäuser Verlag，Basel， 2010.
围 Kenji Fukaya．
Collapsing Riemannian manifolds to ones of lower dimensions．
J．Differential Geom．，25（1）：139－156， 1987.
图 Xue－Mei Li．
Collapsing Brownian motions on the Hopf fibration．
In Preparation， 2012.
圊 Xue－Mei Li．
Effective derivative flows and commutation of linearisation and averaging．
Preprint， 2012.

围 Xue－Mei Li．
Effective diffusions with intertwined structures．
Preprint， 2012.
國 John Milnor．
Curvatures of left invariant metrics on Lie groups．
Advances in Math．，21（3）：293－329， 1976.
目 Yukio Ogura．
Weak convergence of laws of stochastic processes on Riemannian manifolds．
Probab．Theory Related Fields，119（4）：529－557， 2001.
围 Barrett O＇Neill．
Submersions and geodesics．
Duke Math．J．，34：363－373， 1967.
－Yukio Ogura and Setsuo Taniguchi．
A probabilistic scheme for collapse of metrics．
J. Math. Kyoto Univ., 36(1):73-92, 1996.

目 Shûkichi Tanno.
A characterization of the canonical spheres by the spectrum.
Math. Z., 175(3):267-274, 1980.

