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Abstract. We study an optimal consumption control problem in a jump-
diffusion model under the uncertainty. We show a verification result to the
existence of a solution of the Hamilton-Jacobi-Bellman equation associated
with the stochastic optimization problem, and then give an optimal consump-
tion policy in terms of the solution. An application to the one-sector Ramsey
theory in the economic growth is given in the appendix.

1 Introduction

We assume an asset process z(t) evolves according to the 1-dimensional SDE of jump-
diffusion type

dz(t) = {f(z(t)) − µ̃z(t) − c(t)}dt− σz(t)dB(t)

+z(t−)
∫
|ζ|<1

(eζ − 1)Ñ(dtdζ) + z(t−)
∫
|ζ|≥1

(eζ − 1)N(dsdζ), z(0) = z ≥ 0, (1)

on a complete probability space (Ω,F , P ). Here {B(t)} denotes the standard Brownian
motion, and N(dtdζ) denotes a Poisson random measure on [0,+∞) × R. The the mean
measure of N(dtdz) is dtµ(dζ), and we put Ñ(dtdζ) = N(dtdζ) − dtµ(dζ) denotes the
compensated random measure. That is, µ(dζ) is a measure satisfying

∫
R\{0} 1∧|ζ|2µ(dζ) <

+∞. The measure µ can be a singular measure such as a sum of point masses.

We assume
supp µ ⊂ [0,+∞) (A.1)∫

|ζ|≥1
(eζ − 1)µ(dζ) < +∞. (A.2)

We assume µ̃ ∈ R, σ ≥ 0, and that the growth function f(z) satisfies

f(z) : Lipschitz continuous, increasing and concave, f(0) = 0. (2)

Under (A.2) z(t) can be written by

dz(t) = {f(z(t))−µz(t)− c(t)}dt−σz(t)dB(t)+z(t−)
∫

(eζ −1)Ñ (dtdζ), z(0) = z ≥ 0,

(5)
where µ = µ̃ +

∫
|ζ|<1(e

ζ − 1 − ζ)µ(dζ) − r̃. Note that eζ − 1 ≥ −1 and that, writing
eζz = z+(eζ−1)z, the fourth term in RHS of (5) is of the Lévy-Khintchine form associated
with the jump (eζ − 1)z.

Our motivation is to maximize the expected utility

J(c) = E[
∫ τz

0
e−βtU(c(t))dt] (3)
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over the class C, with the above-mentioned condition that (1) has a non-negative solution
z(t) a.s. for z(0) = z ≥ 0. Here β > 0, τz = inf{t ≥ 0; z(t) ≤ 0}, and the set C denotes
the set of non-negative consumption policies c = {c(t)} such that it is a non-decreasing
adapted càdlàg process satisfying

∫ t

0
c(s)ds <∞, ∀t ≥ 0, a.s.. (4)

The (potential) function U(.) is regarded as a utility function following so-called
Gossen’s law which depends on the consumption rate c(t), so that the hasty invester
would like to maximize his or her utility, and β denotes the dumping rate of the utility as
time goes by. U(c) is assumed to have the following properties:

U ∈ C([0,∞)) ∩ C2((0,∞)), U(c) : strictly concave and increasing on [0,∞), (A.3)

U ′(c) : strictly decreasing, U ′(∞) = U(0+) = 0, U ′(0+) = U(∞) = ∞.

The optimal value of J(c) as a function of z = z(0) is called the value function and
is denoted by v(z) :

v(z) = sup
c∈C

J(c).

• Lévy process

• Jump-diffusion processes

• History

As for the jump-diffusion type control problem, the paper [14] has studied a model
(Xt) given by

dXt = µdt+ σdBt − dZt − dKt,X0− = x.

Here Zt denotes a càdlàg (jump) process corresponding to the company’s spending (paying
dividends to the stock holders), σ > 0 and Kt corresponds to the activity to invest. The
expected utility is measured up to time T in terms of Zt by

E[
∫ T

0
e−βtdZt],

instead of the consumption rate c(t) composed in the utility function. The paper [2]
studies in a similar framework the control in switching between paying dividend and going
to the investment. The paper [6] studies the same model Xt, but the expected utility is
measured by

E[U(
∫ T

0
e−βtdZt)],

where U(.) is a utility function. Here they measure the gross amount of dividends up to
time T by U(.) insted of the consumption rate c(t), which makes some difference in the
interpretation. In these papers the main perturbation term is the diffusion (Brownian
motion).

On the other hand, Framstad [4] has studied a model (Xt) given by

dXt = Xt−(µ(Xt)dt+ σ(Xt)dBt +
∫
η(Xt−, ζ)Ñ (dtdζ)) − dHt
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in the Wiener-Poisson framework. Here Ht denotes a càdlàg process corresponding to the
total amount of harvest up to time t, and σ(.) ≥ 0. Under the setting that the expected
utility is measured by

E[
∫ ∞

t0
e−βtdHt],

he describes that the optimal harvesting policy is given by a single value x∗, which plays
a role of barrier at which one reflects the process downward. The paper [6] leads also to
the similar conclusion.

However, a difficulty arises in the case (1) where there exists a degeneracy in the HJB
equation. Namely, the second order term will degenerate at z = 0, or even the coefficient
σ may be identically zero. To avoid this difficulity and obtain the value fuction, we use an
analytic method. Namely we first construct a weak solution, and then show the uniqueness
and the existence of the solution.
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2 HJB equation and Viscosity solutions

To find the value function v(z), we consider the 1-dimensional Hamilton-Jacobi-Bellman
(HJB for short) equation of integro-differential type on [0,+∞) :

Lv(z) + Ũ(v′(z)) = 0, z > 0, v(0) = 0. (6)

Here the symbol Ũ(x) is the Legendre transform of (the negative potential) −U(−x), i.e.,

Ũ(x) = max
c>0

{U(c) − cx}.

Here L is an integro-differential operator given by

Lv(z) = −βv(z) +
1
2
σ2z2v′′ + (f(z) − µz)v′

+
∫
{v(z + γ(z, ζ)) − v(z) − v′(z) · γ(z, ζ)}µ(dζ). (7)

We write
Lv = −βv + L0v,

so that
Lv = 0 ⇐⇒ βv = L0v.

When the value function is finite ?

By (A.1) the process z(t) has no negative jumps. In this setting, it is known that
the “trace” v(0+) = limz→0+ v(z) exists finite for the original non-local boundary value
problem on R

Lv(z) + Ũ(v′(z)) = 0, z > 0, v(z) = 0, z ≤ 0. (8)

By this reason it sufficies to consider the equation (8) replacing v with v.1[0,+∞), inter-
pretating v(z) = 0, z ≤ 0 with v(0) = v(0+) = 0, which is (6). The above property for L
of being able to take the trace safely at the boundary is called the transmission property.
See [7].

Finally we remark that we can rewrite (6) as

(β +
1
ε
)v(z) = L0v(z) + Ũ(v′(z)) +

1
ε
v(z), z > 0 (9)

v(0) = 0,

for ε > 0 chosen later. Whereas we remark that, comparing (6) and (9), ε > 0 is a merely
apparent parameter. We shall show later that the solution v = vε is approximated by the
solution u = uM,ε of

(β +
1
ε
)u(z) = L0u+ ŨM (u′(z)) +

1
ε
u(z), z > 0 (10)

u(0) = 0,

where ŨM (x) ≡ max{U(c) − cx; 0 < c ≤M} and M > 0.
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2.1 Viscosity solutions

We shall find the value function as a weak solution to an H-J-B equation.

Let

F (z, u, p, q, B1(z, u, p), B1(z, u, p)) = −βu+1
2
σ2z2q+(f(z)−µz)p+B1(z, u, p)+B1(z, u, p)+Ũ (p),

where

B1(z, u, p) =
∫
|ζ|>1

{u(z + γ(z, ζ)) − u(z) − p · γ(z, ζ)}µ(dζ),

and
B1(z, u, p) =

∫
|ζ|≤1

{u(z + γ(z, ζ)) − u(z) − p · γ(z, ζ)}µ(dζ).

Definition 1 Let a function v ∈ C([0,∞)) satisfy v(0) = 0.

(1) The function v is called a viscosity subsolution of (6) if for all z ∈ (0,∞) and all
(p, q) ∈ J2,+v(z) there exists φ ∈ C2((0,∞)) such that p = φ′(z), q = φ′′(z) and that the
following relation holds:

F (z, v, p, q, B1(z, v, p), B1(z, φ, φ′)) ≥ 0, z > 0.

(2) The function v is called a viscosity supersolution of (6) if for all z ∈ (0,∞) and
all (p, q) ∈ J2,−v(z) there exists φ ∈ C2((0,∞)) such that p = φ′(z), q = φ′′(z) and that
the following relation holds:

F (z, v, p, q, B1(z, v, p), B1(z, φ, φ′)) ≤ 0, z > 0.

(3) If v is both a viscosity subsolution and a viscosity supersolution, it is called a
viscosity solution.

2.2 Existence

Let M > 0 and fix it. Let ε > 0. We consider the optimization problem :

uM (z) = sup
c∈CM

E[
∫ τz

0
e−(β+ 1

ε
)t{U(c(t)) +

1
ε
uM (z(t))}dt], M > 0, (11)

where CM denotes the class of all non-negative, integrable, Ft-adapted processes c ∈ C
such that 0 ≤ c(t) ≤ M for all t ≥ 0, and the supremum is taken over all admissible
control systems [3]. By (6), we have z(t) = z(t ∧ τz) ≥ 0 for each c ∈ CM , because c(t) is
identified with c(t)1{t≤τz} in (6).

Taking κ so that
0 < κ ≤ µ, (12)

we assume that there exists A > 0 satisfying

f(z) − κz < A (13)
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for all z ∈ (0,∞). Further We assume

κ+ µ < β. (A.3)

Furthermore, we observe by (A.3) and (13) that the linear function

ϕ(z) ≡ z +B (14)

satisfies
−βϕ(z) + L0ϕ(z) + Ũ(ϕ′(z)) ≤ −βB +A+ Ũ(1) < 0, z ≥ 0 (15)

for some constant B > 0. Let B = Bϕ denote the set

B = {h;h is measurable on [0,+∞) and satisfies that there exists Cρ > 0 (16)

for any ρ > 0 such that |h(z) − h(z̃)| ≤ Cρ|z − z̃| + ρ(ϕ(z) + ϕ(z̃)), z, z̃ ∈ [0,∞)},
and denote the norm ‖h‖ = supz≥0 |h(z)|/ϕ(z) <∞.

Lemma 1 Let M > 0. We assume that there exists a concave function ψ ∈ B ∩
C2((0,+∞)) such that

−βψ(z) + L0ψ(z) + Ũ(ψ′(z)) ≤ 0, z > 0,

ψ′(z) > 0, z > 0 and ψ(0) = 0. (17)

Then, under (A.3), (2), for each M > 0 there exists a unique solution u = uM ∈ B of
(11) for some ε > 0 such that 1

ε > κ+ µ− β.

Remark. The condition (17) refers to the existence of the C2 function related to the
viscosity supersolution of (11). The existence of such function, given L0, depends on the
form of Ũ . Analytically, we are assuming the existence of a Lyapunov function associated
to the equation. Instead of providing a sufficient condition for the existence of ψ ∈ B∩C2

to (17), we give an example for it.

Example. Let U(c) = 1
r c

r (0 < r < 1). Then ψ(z) = R
r z

r for R > 0 sufficiently large
satisfies the condition (17).

This u = uM is a viscosity solution :

Proposition 1 We assume (A.3), (2) and (17). Then u = uM ∈ B of (11) is a viscosity
solution of (10), and is concave. Here

(β +
1
ε
)u(z) = L0u+ ŨM (u′(z)) +

1
ε
u(z), z > 0 (10)

u(0) = 0,

where ŨM (x) ≡ max{U(c) − cx; 0 < c ≤M} and ε > 0 is a parameter.

We let M → +∞ and obtain the solution v(z) as a limit as a weak solution.

Proposition 2 We assume (A.3), (2) and (17). Then there exists a concave viscosity
solution v of (6).

Proofs of these propositions continue in the next section.
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3 Bellman principle (dynamic programing principle)

To prove that u = uM is a viscosity solution to (10), we need the Bellman principle.

Idea of proof of Prop. 2

3.1 Use of Bellman principle

In this paper we assume the dynamic programming principle (Bellman principle) that u(z)
is continuous on (0,+∞) and satisfies

u(z) = sup
c∈CM

E[
∫ τz∧τ

0
e−βt{U(c(t))}dt+ e−βτz∧τu(z(τz ∧ τ))]

for any bounded stopping time τ .

The proof of the Bellman principle in the general setting (i.e., without continuity
or measurability assumptions) is not easy. Occasionally one is advised to decompose the
equality into 2 parts ([1] Cor. 3.1) :

(i) u(z) ≤ sup
c∈CM

E[lim sup
z′→z

∫ τz′∧τ

0
e−(β+ 1

ε
)t{U(c(t))+

1
ε
u(z(t))}dt+e−(β+ 1

ε
)τz′∧τu(z(τz′∧τ ))],

and the converse

(ii) u(z) ≥ sup
c∈CM

E[lim inf
z′→z

∫ τz′∧τ

0
e−(β+ 1

ε
)t{U(c(t))+

1
ε
u(z(t))}dt+e−(β+ 1

ε
)τz′∧τu(z(τz′∧τ ))].

The proof for (i) is relatively easy. The proof for (ii) is difficult if it is not assumed to be
continuous.

This principle is proved in the diffusin case in [10] Theorem 4.5.1, and in a 2-
dimensional case for some jump-diffusion process in [8] Lemma 1.5.

3.2 From the Bellman principle to the viscosity solution

By the above we assume u is in C([0,+∞)). Then we prove that u is a viscosity solution
of (10) in the following way.

(a) u is a viscosity supersolution.

(b) u is a viscosity subersolution.
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4 Uniqueness and Smoothness of the viscosity solution

Proposition 3 Let fi, i = 1, 2, satisfy (2) and let vi ∈ C([0,∞)) be the concave viscosity
solution of (6) for fi in place of f such that 0 ≤ vi ≤ ϕ. Suppose

f1 ≤ f2. (24)

Then, under (A.3), (2) and (17), we have

v1 ≤ v2.

This proposition proves the uniqueness of v(z).

Proposition 4 Under (A.3), (2), (17) and that σ > 0, we have v ∈ C2((0,∞)) and
v′(0+) = ∞.

See [9] Theorems 2.7, 3.1 for the proofs.

5 Optimal consumption policy

Now we consider the equation of the form:

dz∗(t) = (f(z∗(t))−µz∗(t)−c∗(t))dt+σz∗(t)dB(t)+z∗(t−)
∫

(eζ−1)Ñ(dtdζ), z∗(0) = z > 0,

(35)
where

c∗(t) = (U ′)−1(v′(z∗(t−)))1{t≤τz∗ }. (36)

Here c∗(t) is the consumption rate which maximizes the Hamilton function (associated
with L) operated to v. For a typical case U(c) = 1

r c
r (r ∈ (0, 1)),

c∗(t) = (v′(z∗(t−)))
1

r−1 .1{t≤τz∗}.

Proposition 5 Under (A.0), (2) and (17), there exists a unique solution z∗(t) ≥ 0 of
(35).

We assume the S.D.E. (35) has a strong solution. The optimal consumption policy
is given by as follows.

Proposition 6 We make the assumptions of Theorem 3.1. Then an optimal consumption
c∗ = {c∗(t)} is given by (36).
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6 Application - Ramsey theory

Define the following quantities:

y(t) = labour supply at time t ≥ 0,
x(t) = capital stock at time t ≥ 0,
λ = the constant rate of depreciation (written as β in the text), λ ≥ 0,
F (x, y) = production function producing

the commodity for the capital stock x ≥ 0 and the labour force y ≥ 0.

We now state the setting in the model. Suppose that the labour supply y(t) at time t, and
the capital stock x(t) at t are governed by the following stochastic differential equations

dy(t) = ry(t)dt+ σy(t)dB(t), y(0) = y > 0, r �= 0, σ ≥ 0, (a.1)

dx(t) = (F (x(t), y(t)) − λx(t) − c(t)y(t))dt (a.2)

+x(t−)
∫
|ζ|<1

(eζ − 1)Ñ(dtdζ) + x(t−)
∫
|ζ|≥1

(eζ − 1)N(dtdζ), x(0) = x > 0.

An intuitive explaination is as follows. Suppose there exists a farm (or a company, a
small country, ...) who makes economical activities based on labour and capital. At time
t, he or she makes production, which is expressed by F (x(t), y(t)). At the same time, he
or she has to consume the capital at the rate c(t), and the capital may depreciate as time
goes by. The second and third terms in RHS of (a.2) corresponds to a random fluctuation
in capital.

Under this interpretation we may even assume that the labour supply y(t) is con-
stant, and consider the optimal consumption under the randomly fluctuated capital. This
assumption has a due economical meaning, since the labour supply is not easy to control
(i.e., make decrease) in short time.

This type of problem is called the stochastic Ramsey problem. For reference, see [5].
We denote by V (x, y) the value function associated with x(t) and y(t). The HJB equation
associated with this problem reads as follows:

βV (x, y) =
1
2
σ2y2Vyy(x, y) + ryVy(x, y) + (F (x, y) − λx)Vx(x, y)

+
∫
{V (eζx, y) − V (x, y) − Vx(x, y) · x(eζ − 1)}µ(dζ) + Ũ(Vx(x, y)y),

V (0, y) = 0, x > 0, y > 0. (a.3)

We seek for the solution V (x, y) in a speacial form, namely

V (x, y) = v(z), z =
x

y
. (a.4)

Then (a.3) turns into the form (6)-(7) with f(z) = F (z+, 1), µ = r − r̃ + λ − σ2. Here
we assume the homogeneity of F with respec to y : F (x, y) = F (x

y , 1)y. 1 We can show
1 A well-known Cobb-Douglas model of the production function satisfies this requirement.

9



that V (x, y) defined as above is a viscosity solution of (a.3), and that if σ > 0 then it is
in C2((0,∞)× (0,∞)). The condition z(t) ≥ 0 a.s. implies that the economy can sustain.

Although it is not implied in general that we can find the solution of (a.3) as in
(a.4) in the setting (a.1)-(a.2), under the same token as above (i.e., the labour supply is
constant), the problem will exactly correspond to what we have studied in the main text.
That is, we can identify the value function in the form v(z) = V (z, 1).
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