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Motivation

Martin boundary

Let X = (Xt ,Px) be rotationally invariant Lévy process in Rd , D ⊂ Rd

open, XD the killed process, GD(x , y) the Green function of XD .

Fix x0 ∈ D and define MD(x , y) := GD(x ,y)
GD(x0,y) , x , y ∈ D.

D has a Martin boundary ∂MD with respect to XD satisfying the following
properties:

(1) D ∪ ∂MD is compact metric space;
(2) D is open and dense in D ∪ ∂MD, and its relative topology coincides

with its original topology;
(3) MD(x , · ) can be uniquely extended to ∂MD in such a way that,

MD(x , y) converges to MD(x , z) as y → z ∈ ∂MD, the function
x → MD(x , z) is excessive with respect to XD , the function
(x , z)→ MD(x , z) is jointly continuous on D × ∂MD and
MD(·, z1) 6= MD(·, z2) if z1 6= z2.

The minimal Martin boundary of XD is defined as

∂mD = {z ∈ ∂MD : MD(·, z) is minimal harmonic with respect to XD}.
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Motivation

Some history

The notion of Martin boundary goes back to Robert S. Martin (1941) for
the case classical harmonic functions (i.e. X is Brownian motion).

General theory of Martin boundary for strong Markov processes (in
duality) developed by Kunita and Watanabe (1965).

X is Brownian motion, D bounded Lipschitz domain D: Hunt and
Wheeden (1970) proved that the (minimal) Martin boundary can be
identified with the Euclidean boundary.

X rotationally invariant α-stable process, 0 < α < 2. Identification of the
(minimal) Martin boundary with the Euclidean boundary:

(1) Bounded Lipschitz domain: Chen and Song (1998) and Bogdan
(1999);

(2) Bounded κ-fat open set: Song and Wu (1999).

Certain subordinate BM, D bounded κ-fat open set: Kim, Song, V.
(2009).
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Zoran Vondraček (University of Zagreb) Potential theory of SBM in unbounded sets B↪edlewo, Sept. 10-14, 2012 4 / 32



Motivation

Some history

The notion of Martin boundary goes back to Robert S. Martin (1941) for
the case classical harmonic functions (i.e. X is Brownian motion).
General theory of Martin boundary for strong Markov processes (in
duality) developed by Kunita and Watanabe (1965).

X is Brownian motion, D bounded Lipschitz domain D: Hunt and
Wheeden (1970) proved that the (minimal) Martin boundary can be
identified with the Euclidean boundary.
X rotationally invariant α-stable process, 0 < α < 2. Identification of the
(minimal) Martin boundary with the Euclidean boundary:

(1) Bounded Lipschitz domain: Chen and Song (1998) and Bogdan
(1999);

(2) Bounded κ-fat open set: Song and Wu (1999).

Certain subordinate BM, D bounded κ-fat open set: Kim, Song, V.
(2009).
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Motivation

Martin boundary for unbounded sets?

In all mentioned results D is bounded. The reason: Proofs depend on the
boundary Harnack principle for non-negative harmonic functions which
implies the existence of the limit limy→z∈∂D MD(x , y).

Results for unbounded sets. Let H = {x = (x̃ , xd) ∈ Rd : xd > 0} be the
upper half-space.

For 0 < α ≤ 2, GH(x , y) known explicitly, implying that
∂MH = ∂mH = ∂H ∪ {∞}. The Martin kernel given by (with x0 = (0̃, 1))

MH(x , z) =
x
α/2
d

|x − z |d
(1 + |z |2)α/2 , MH(x ,∞) = x

α/2
d .

In case of unbounded open D, inversion through the sphere implies the
existence of MD(x ,∞) := lim|y |→∞, y∈D MD(x , y):
Bogdan, Kulczycki, Kwaśnicki (2008)
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Motivation

Finite part of Martin boundary

A point z ∈ ∂MH is called a finite Martin boundary point if there exists a
bounded sequence (yn)n≥1 converging to z in the Martin topology.

A point z is called an infinite Martin boundary point if every sequence
(wn)n≥1 converging to w in the Martin topology is unbounded.

In case X is a subordinate Brownian motion satisfying certain condition,
the finite part of the Martin boundary of H can be identified with the
Euclidean boundary ∂H, Kim, Song, V. (2011).
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Motivation

Goal of the talk

Show that ∂MH = ∂mH = ∂H ∪ {∞} for a class of subordinate Brownian
motions. Equivalently, there is only one infinite Martin boundary point and
it corresponds to a minimal harmonic function.

Remark 1: One needs assumptions on the behavior of the process for large
time – large space.

Remark 2: Case d = 1. M. Silverstein proved in 1980 that
∂m(0,∞) = {0,∞} (two minimal harmonic functions: renewal function of
the ladder height process and its density).

The full Martin boundary can
be larger.
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Description of the class of processes - subordinate BM

Subordinators

S = (St)t≥0 a subordinator with the Laplace exponent φ:

E[e−λSt ] = e−tφ(λ) , φ(t) =

∫
(0,∞)

(1− e−λt)µ(dt)

Assumptions on φ: φ is CBF – µ(dt) = µ(t) dt where µ is CM.
Consequence: the renewal measure has a CM density u. WLOG φ(1) = 1.

Upper and lower scaling conditions at infinity and at zero:
(H1): There exist constants 0 < δ1 ≤ δ2 < 1 and a1, a2 > 0 such that

a1λ
δ1φ(t) ≤ φ(λt) ≤ a2λ

δ2φ(t), λ ≥ 1, t ≥ 1 .

(H2): There exist constants 0 < δ3 ≤ δ4 < 1 and a3, a4 > 0 such that

a3λ
δ4φ(t) ≤ φ(λt) ≤ a4λ

δ3φ(t), λ ≤ 1, t ≤ 1 .
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Description of the class of processes - subordinate BM

Examples

If 0 < α < 2 and ˜̀ slowly varying at infinity, then

φ(λ) � λα/2 ˜̀(λ) , λ→∞ ,

implies (H1). Assumption on the behavior of the subordinator (hence
SBM) for small time, small space.

If 0 < β < 2 and ` slowly varying at infinity, then

φ(λ) � λβ/2`(λ) , λ→ 0 ,

implies (H2). Assumption on the behavior of the subordinator (hence
SBM) for large time, large space.
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Description of the class of processes - subordinate BM

Properties of the potential and the Lévy density

There exists a constant C = C (φ) > 0 such that

u(t) ≤ Ct−1φ(t−1)−1 , µ(t) ≤ Ct−1φ(t−1) , ∀ t ∈ (0,∞) .

(H1): u(t) ≥ C−1t−1φ(t−1)−1 , µ(t) ≥ C−1t−1φ(t−1) , ∀ t ∈ (0, 1] ,

(H2): u(t) ≥ C−1t−1φ(t−1)−1 , µ(t) ≥ C−1t−1φ(t−1) , ∀ t ∈ [1,∞)

We write

u(t) � t−1φ(t−1)−1 , µ(t) � t−1φ(t−1) , t ∈ (0,∞) .

Zoran Vondraček (University of Zagreb) Potential theory of SBM in unbounded sets B↪edlewo, Sept. 10-14, 2012 11 / 32



Description of the class of processes - subordinate BM

Properties of the potential and the Lévy density
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Description of the class of processes - subordinate BM

Subordinate Brownian motion

W = (Wt ,Px) d-dimensional Brownian motion, S = (St) and independent
subordinator with the Laplace exponent φ satisfying (H1), (H2) and CBF.

The SBM is the process X = (Xt)t≥0 defined as Xt := WSt .

X is a Lévy process with characteristic exponent Φ(x) = φ(|x |2) and Lévy
measure with density J(x) = j(|x |) where

j(r) =

∫ ∞
0

(4πt)−d/2e−r
2/4t µ(t) dt , r > 0 .

Assume X is transient (⇐⇒
∫ 1

0 φ(λ)−1λd/2−1 dλ <∞); then X has the
Green function G (x , y) = G (x − y) = g(|x − y |) where

g(r) =

∫ ∞
0

(4πt)−d/2e−r
2/4t u(t) dt , r > 0 .
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Description of the class of processes - subordinate BM

Renewal measure of the ladder height process

Let W be the one-dimensional Brownian motion. Then Xt := WSt is
one-dimensional Lévy process. The ladder height process H = (Ht)t≥0 is a
subordinator.

The renewal measure of H is defined by

V (A) := E
∫ ∞

0
1(Ht∈A) dt ,

and V (t) := V ([0, t]) is the renewal function.

It holds that
V (t) � φ(r−2)−1 , for all r > 0 .

Zoran Vondraček (University of Zagreb) Potential theory of SBM in unbounded sets B↪edlewo, Sept. 10-14, 2012 13 / 32



Description of the class of processes - subordinate BM

Renewal measure of the ladder height process

Let W be the one-dimensional Brownian motion. Then Xt := WSt is
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one-dimensional Lévy process. The ladder height process H = (Ht)t≥0 is a
subordinator. The renewal measure of H is defined by

V (A) := E
∫ ∞

0
1(Ht∈A) dt ,

and V (t) := V ([0, t]) is the renewal function.

It holds that
V (t) � φ(r−2)−1 , for all r > 0 .
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Description of the class of processes - subordinate BM

Green function and Lévy measure

Theorem: Assume (H1) and (H2).

(a) Then

J(x) � |x |−dφ(|x |−2) , x 6= 0 .

(b) X is transient and if d > 2(δ2 ∨ δ4), then

G (x) � |x |−dφ(|x |−2)−1 , x 6= 0 .

Corollary: (Doubling property) J(2x) � J(x), x 6= 0.
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Description of the class of processes - subordinate BM

Scaling properties

For a > 0, let φa(λ) := φ(λa−2)/φ(a−2), Sa corresponding subordinator,
X a = XSa

t
SBM.

{X a
t }t≥0

law
= {a−1Xt/φ(a−2)}t≥0.

Ja(x) � |x |−dφa(|x |−2) , G a(x) � |x |−dφa(|x |−2)−1

(constant independent of a).

Define Φa(r) := φa(r−2)−1, r > 0. Then

a5

(
R

r

)2(δ1∧δ3)

≤ Φa(R)

Φa(r)
≤ a6

(
R

r

)2(δ2∨δ4)

a > 0, 0 < r < R <∞ .

X a satisfies conditions of Chen-Kumagai, PTRF (2008)
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Description of the class of processes - subordinate BM

Uniform BHP

Recall that u : Rd → [0,∞) is regular harmonic in open D ⊂ Rd with
respect to X if

u(x) = Ex [u(XτD ) : τD <∞] , for all x ∈ D .

Theorem: There exists a constant c = c(φ, d) > 0 such that for every
z0 ∈ Rd , every open set D ⊂ Rd , every r > 0 and for any nonnegative
functions u, v in Rd which are regular harmonic in D ∩ B(z0, r) with
respect to X and vanish in Dc ∩ B(z0, r), we have

u(x)

v(x)
≤ c

u(y)

v(y)
for all x , y ∈ D ∩ B(z0, r/2) .
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Description of the class of processes - subordinate BM

Lemma: For every z0 ∈ Rd , every open set U ⊂ B(z0, r) and for any
nonnegative function u in Rd which is regular harmonic in U with respect
to X and vanishes a.e. in Uc ∩ B(z0, r) it holds that

u(x) � Ex [τU ]

∫
B(z0,r/2)c

j(|y − z0|)u(y)dy , x ∈ U ∩ B(z0, r/2) .

For all r ∈ (0, 1] under (H1) (Kim, Song, V. (2011)), for all r ∈ (0,∞)
under (H1) and (H2).
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Description of the class of processes - subordinate BM

Take z0 = 0. Then the above reads:

u(x) �
∫
U
GU(x , y) dy

∫
B(0,r/2)c

j(|y |)u(y)dy , x ∈ U ∩ B(0, r/2) .

In case of rotationally invariant α-stable process, M. Kwaśnicki (2009)
used the inversion through the sphere B(0,

√
r) to obtain a BHP at infinity.

Zoran Vondraček (University of Zagreb) Potential theory of SBM in unbounded sets B↪edlewo, Sept. 10-14, 2012 18 / 32



Description of the class of processes - subordinate BM

Take z0 = 0. Then the above reads:

u(x) �
∫
U
GU(x , y) dy

∫
B(0,r/2)c

j(|y |)u(y)dy , x ∈ U ∩ B(0, r/2) .

In case of rotationally invariant α-stable process, M. Kwaśnicki (2009)
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Boundary Harnack inequality at infinity

1 Motivation

2 Description of the class of processes - subordinate BM

3 Boundary Harnack inequality at infinity

4 Martin boundary of the half-space
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Boundary Harnack inequality at infinity

Boundary Harnack inequality at infinity

Recall that the Poisson kernel KU(x , z) is the exit density from an open
set U: Px(XτU ∈ B) =

∫
B KU(x , z) dy , B ⊂ U

c
,

KU(x , z) =

∫
U
GU(x , y)j(|y − z |) dy , x ∈ U, z ∈ U

c
.

If u regular harmonic in U, then u(x) =
∫
U

c KU(x , z)u(z) dz .

Additional technical assumption:

(A): 2δ2 − δ1 < 1 and 2δ4 − δ3 < 1 .
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Boundary Harnack inequality at infinity

BHP at infinity – continuation

Theorem: There exists C = C (φ) > 1 such that for all r ≥ 1, for all open
sets U ⊂ B(0, r)c and all nonnegative functions u on Rd that are regular
harmonic in U and vanish on B(0, r)c \ U, it holds that

1

C
≤ u(x)

KU(x , 0)
∫
B(0,2r) u(z) dz

≤ C , for all x ∈ U ∩ B(0, 2r)c .

u(x) �
∫
U
GU(x , y)j(|y |) dy

∫
B(0,2r)

u(z) dz , x ∈ U ∩ B(0, 2r)c .
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Boundary Harnack inequality at infinity

Corollaries

Corollary: There exists C = C (φ) > 1 such that for all r ≥ 1, for all open
sets U ⊂ B(0, r)c and all nonnegative functions u and v on Rd that are
regular harmonic in U and vanish on B(0, r)c \ U, it holds that

C−1 u(y)

v(y)
≤ u(x)

v(x)
≤ C

u(y)

v(y)
, for all x , y ∈ U ∩ B(0, 2r)c .

Corollary: Let r ≥ 1 and U ⊂ B(0, r)c . If u is a non-negative function on
Rd which is regular harmonic in U and vanishes on B(0, r)c \ U, then

lim
|x |→∞

u(x) = 0 .

Remark: Not true if regular harmonic is replaced by harmonic:
w(x) = w(x̃ , xd) := V ((xd)+) is harmonic in the upper half-space
H ⊂ B((0̃,−1), 1)c , vanishes on B((0̃,−1), 1)c \ H, but
limxd→∞ w(x) =∞.
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Boundary Harnack inequality at infinity

Ingredients of the proof

Upper bound on the Green function B(0, r)c , r ≥ 1: Let 1 < p < q < 4
and b > 0. There exist a constant C = C (φ, p, q, b) > 0 such that for all
r ≥ 1, all x ∈ A(0, pr , qr) and all y ∈ B(0, r)c such that δB(0,r)c (y) < r

and br < |x − y | it holds that

GB(0,r)c (x , y) ≤ C
V (δB(0,r)c (x))

V (|x − y |)
V (δB(0,r)c (y))

V (|x − y |)
G (x , y) .
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Upper bound on the Green function B(0, r)c , r ≥ 1: Let 1 < p < q < 4
and b > 0. There exist a constant C = C (φ, p, q, b) > 0 such that for all
r ≥ 1, all x ∈ A(0, pr , qr) and all y ∈ B(0, r)c such that δB(0,r)c (y) < r

and br < |x − y | it holds that

GB(0,r)c (x , y) ≤ C
V (δB(0,r)c (x))

V (|x − y |)
V (δB(0,r)c (y))

V (|x − y |)
G (x , y) .
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Boundary Harnack inequality at infinity

Ingredients of the proof – continuation

Upper bound for the Poisson kernel of B(0, r)c , r ≥ 1: Let 1 < p < q < 4.
There exists C = C (φ, p, q) > 1 such that for all r ≥ 1, all
x ∈ A(0, pr , qr) and z ∈ B(0, r) it holds that

KB(0,r)c (x , z) ≤ C
(
|x − z |−d

(
φ(r−2)−1/2φ((r − |z |)−2)1/2 + 1

)
+ r−d

)
.
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Boundary Harnack inequality at infinity

Ingredients of the proof – continuation

Exit probability estimate: For every a ∈ (1,∞), there exists a positive
constant C = C (φ, a) > 0 such that for any r ∈ (0,∞) and any open set
U ⊂ B(0, r)c we have

Px

(
XτU ∈ B(0, r)

)
≤ CrdKU(x , 0) , x ∈ U ∩ B(0, ar)c .
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Boundary Harnack inequality at infinity

Ingredients of the proof – continuation

Regularization of the Poisson kernel in the spirit of Bogdan, Kulczycki and
Kwaśnicki (2008) leading to

KU(x , z) � KU(x , 0)

(∫
U∩B(0,2r)

KU(y , z) dy + 1

)
.
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Martin boundary of the half-space

1 Motivation

2 Description of the class of processes - subordinate BM

3 Boundary Harnack inequality at infinity

4 Martin boundary of the half-space
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Martin boundary of the half-space

Oscillation reduction

Recall that H = {x = (x̃ , xd) : xd > 0} is the upper half-space,

MH(x , y) = GH(x ,y)
GH(x0,y) where x0 = (0̃, 1). For any r > 0 let Ar := (0̃, 2r).

Lemma: For r > 0 and k = 1, 2, . . . , let Bk = B(0, 4k r). There exist
c1 = c1(φ, d) > 0 and c2 = c2(φ, d) ∈ (0, 1) such that for any r > 1 and
any non-negative function h which is regular harmonic in H ∩ B(0, 4r)c

and vanishes in Hc ∩ B(0, 4r)c we have

Ex

[
h(Xτ

H∩Bc
k
) : Xτ

H∩Bc
k
∈ B(0, r)

]
≤ c1c

k
2 h(x) , x ∈ H∩Bc

k , k = 1, 2, . . .
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Martin boundary of the half-space

Oscillation reduction – continuation

Lemma: There exist C = C (φ, d) > 0 and ν = ν(d , φ) > 0 such that for
all r ≥ 1 and all non-negative functions u and v on Rd which are regular
harmonic in H ∩ B(0, r/2)c , vanish in Hc ∩ B(0, r/2)c and satisfy
u(Ar ) = v(Ar ), there exists the limit

g = lim
|x |→∞, x∈H

u(x)

v(x)
,

and we have ∣∣∣∣u(x)

v(x)
− g

∣∣∣∣ ≤ C

(
|x |
r

)−ν
, x ∈ H ∩ B(0, r)c .
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Martin boundary of the half-space

The proof is analogous to the proof in Bogdan (1997) Lemma 16. Instead
of shrinking the balls to the boundary point, we use larger and larger balls,
and apply BHP at infinity.
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Martin boundary of the half-space

Martin kernel at infinity

Theorem: For each x ∈ H there exists the limit

MH(x ,∞) := lim
y∈H, |y |→∞

MH(x , y) .

This immediately implies that the every infinite Martin boundary point can
be identified with {∞}. Since Martin kernels for different Martin boundary
points are different, this gives that the infinite part of the Martin boundary
is exactly {∞}.
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Zoran Vondraček (University of Zagreb) Potential theory of SBM in unbounded sets B↪edlewo, Sept. 10-14, 2012 31 / 32



Martin boundary of the half-space

Minimality

Theorem: The function MH(·,∞) is harmonic in H with respect to X .

Lemma: (Kim, Song, V. (2011)) For every R > 0 and ε ∈ (0, 1), there
exists a constant c(R, ε) = c(d , φ,R, ε) > 0 such that for all z ∈ ∂H with
|z | < R, all x ∈ H ∩ B(z , ε), and all w ∈ ∂MH \ (∂H ∩ B(z , 2ε)) it holds
that

c−1V (δH(x)) ≤ MH(x ,w) ≤ cV (δH(x)) .

Consequently, limx→z MH(x ,∞) = 0 for every z ∈ ∂H.

Theorem: The function MH(·,∞) is a minimal harmonic function.

Consequently, MH(x ,∞) = w(x) = V ((xd)+).
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