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The first part of this talk is joint work with Kefeng Liu and
Xiaofeng Sun. We study the geometry of the Teichmüller and the
moduli spaces of curves.

In second part, which is joint work with Liu, Sun and also Andrey
Todorov, we discuss Calabi-Yau manifolds and study their
Teichmüller and moduli spaces.
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Basics of the Teichmüller and Moduli Spaces

Fix an orientable surface Σ of genus g ≥ 2.

Uniformization Theorem
Each Riemann surface of genus g ≥ 2 can be viewed as a quotient
of the hyperbolic plane H by a Fuchsian group. Thus there is a
unique Poincaré metric, or the hyperbolic metric on Σ.

The group Diff +(Σ) of orientation preserving diffeomorphisms acts
on the space C of all complex structures on Σ by pull-back.
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Teichmüller Space

Tg = C/Diff +
0 (Σ)

where Diff +
0 (Σ) is the set of orientation preserving

diffeomorphisms which are isotopic to identity.

Moduli Space

Mg = C/Diff +(Σ) = Tg/Mod(Σ)

is the quotient of the Teichmüller space by the mapping class
group where

Mod (Σ) = Diff +(Σ)/Diff +
0 (Σ).
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Dimension

dimC Tg = dimC Mg = 3g − 3.

Tg is a pseudoconvex domain in C3g−3: Bers’ embedding theorem.
Mg is a complex orbifold, it can be compactified to a projective
orbifold by adding a normal crossing divisors D consisting of stable
nodal curves, called the Deligne-Mumford compactification, or DM
moduli.
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Tangent and Cotangent Space

By the deformation theory of Kodaira-Spencer and the Hodge
theory, for any point X ∈Mg ,

TXMg
∼= H1(X ,TX ) = HB(X )

where HB(X ) is the space of harmonic Beltrami differentials on X .

T ∗
XMg

∼= Q(X )

where Q(X ) is the space of holomorphic quadratic differentials on
X .
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For µ ∈ HB(X ) and φ ∈ Q(X ), the duality between TXMg and
T ∗

XMg is

[µ : φ] =

∫

X
µφ.

Teichmüller metric is the L1 norm and the WP metric is the L2

norm. Alternatively, let
π : X →Mg be the universal curve and let ωX/Mg

be the relative
dualizing sheaf. Then

ωWP = π∗
(
c1

(
ωX/Mg

)2
)

.
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Curvature

Let X be the total space over the Mg and π be the projection.
Pick s ∈Mg , let π−1(s) = Xs . Let s1, · · · , sn be local
holomorphic coordinates on Mg and let z be local holomorphic
coordinate on Xs .
The Kodaira-Spencer map is

∂

∂si
&→ Ai

∂

∂z
⊗ dz ∈ HB(Xs).

The Weil-Petersson metric is

hi j =

∫

Xs

AiAj dv

where dv =
√
−1
2 λdz ∧ dz is the volume form of the KE metric λ

on Xs .
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By the work of Royden, Siu and Schumacher, let

ai = −λ−1∂si ∂z log λ.

Then
Ai = ∂zai .

Let η be a relative (1, 1) form on X. Then

∂

∂si

∫

Xs

η =

∫

Xs

Lvi η

where

vi =
∂

∂si
+ ai

∂

∂z

is called the harmonic lift of ∂
∂si

. In the following, we let

fi j = AiAj and ei j = T (fi j).

Here T = (! + 1)−1 with ! = −λ−1∂z∂z , is the Green operator.
The functions fi j and ei j will be the building blocks of the
curvature formula.
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Curvature Formula of the WP Metric

By the work of Wolpert, Siu and Schumacher, the curvature of the
Weil-Petersson metric is

Ri jkl = −
∫

Xs

(ei j fkl + ei l fkj) dv .

! The sign of the curvature of the WP metric can be seen
directly.

! The precise upper bound − 1
2π(g−1) of the holomorphic

sectional curvature and the Ricci curvature of the WP metric
can be obtained by the spectrum decomposition of the
operator (! + 1).

! The curvature of the WP metric is not bounded from below.
But surprisingly the Ricci and the perturbed Ricci metrics
have bounded (negative) curvatures.

! The WP metric is incomplete.
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Observation

The Ricci curvature of the Weil-Petersson metric is bounded above
by a negative constant, one can use the negative Ricci curvature of
the WP metric to define a new metric.
We call this metric the Ricci metric

τi j = −Ric(ωWP)i j .

We proved the Ricci metric is complete, Poincaré growth, and has
bounded geometry.
We perturbed the Ricci metric with a large constant multiple of
the WP metric to define the perturbed Ricci metric

ωτ̃ = ωτ + C ωWP .

We proved that the perturbed Ricci metric is complete, Poincaré
growth and has bounded negative holomorphic sectional and Ricci
curvatures, and bounded geometry.
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Selected Applications of These Metrics

! Royden proved that

Teichmüller metric = Kobayashi metric.

This implies that the isometry group of Tg is exactly the
mapping class group.

! Ahlfors: the WP metric is Kähler, the holomorphic sectional
curvature is negative.

! Masur-Wolpert: WP metric is incomplete.

Wolpert studied WP metric in great details and found many
important applications in topology (relation to Thurston’s work)
and algebraic geometry (relation to Mumford’s work).
McMullen proved that the moduli spaces of Riemann surfaces are
Kähler hyperbolic, by using his metric ωM which he obtained by
perturbing the WP metric.
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Theorem
All complete metrics on Tg and Mg are equivalent. Furthermore,
the Caratheódory metric, Kobayashi metric, Bergman metric and
KE metric are equivalent on general homogeneous holomorphic
regular manifolds.

Here, homogeneous holomorphic regular manifolds are those
manifolds where the Bers embedding theorem holds. We proved
this theorem using Schwarz lemma proved by me in 1973.
Subsequently, S.K. Yeung published a weaker version of this
theorem.

Theorem
The Ricci, perturbed Ricci and Kähler-Einstein metrics are
complete, have (strongly) bounded geometry and Poincaré growth.
The holomorphic sectional and Ricci curvatures of the perturbed
Ricci metric are negatively pinched.
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Together with L. Ji, we observed a consequence of the bounded
geometry of these metrics:

Theorem
The Gauss-Bonnet Theorem hold on the moduli space equipped
with the Ricci, perturbed Ricci or Kähler-Einstein metrics:
∫

Mg

cn(ωτ ) =

∫

Mg

cn(ωτ̃ ) =

∫

Mg

cn(ωKE ) = χ(Mg ) =
B2g

4g(g − 1)
.

Here χ(Mg ) is the orbifold Euler characteristic of Mg .

The proof is based on the Schoen-Yau’s construction of canonical
exhaustion functions for complete manifolds whose Ricci curvature
has a lower bound.
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The detailed curvature properties of the Kähler-Einstein metric can
be used to prove the conjecture that the Teichmüller space cannot
be embedded into the Euclidean space as a bounded smooth
domain.

Algebraic-geometric consequences

Theorem
The log cotangent bundle E = T ∗

Mg
(log D) of the DM moduli of

stable curves is stable with respect to its canonical polarization.

Corollary
Orbifold Chern number inequality

c1(E )2 ≤ 6g − 4

3g − 3
c2(E ).
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Asymptotic

! Deligne-Mumford Compactification: For a Riemann surface
X , a point p ∈ X is a node if there is a neighborhood of p
which is isomorphic to the germ

{(u, v) | uv = 0, |u| < 1, |v | < 1} ⊂ C2.

A Riemann surface with nodes is called a nodal surface.
A nodal Riemann surface is stable if each connected
component of the surface subtracting the nodes has negative
Euler characteristic. In this case, each connected component
has a complete hyperbolic metric.
The union of Mg and moduli of stable nodal curves of genus
g is the Deligne-Mumford compactification Mg , the DM
moduli.
D = Mg \Mg is a divisor of normal crossings.
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! Principle: To compute the asymptotic of the Ricci metric and
its curvature, we work on surfaces near the boundary of Mg .
The geometry of these surfaces localize on the pinching
collars.

! Model degeneration: Earle-Marden, Deligne-Mumford,
Wolpert: Consider the variety

V = {(z ,w , t) | zw = t, |z |, |w |, |t| < 1} ⊂ C3

and the projection Π : V → ∆ given by

Π(z ,w , t) = t

where ∆ is the unit disk.
If t ∈ ∆ with t += 0, then the fiber Π−1(t) ⊂ V is an annulus
(collar).
If t = 0, then the fiber Π−1(t) ⊂ V is two transverse disks
|z | < 1 and |w | < 1.
This is the local model of degeneration of Riemann surfaces.
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Asymptotic in pinching coordinates

Theorem
Let (t1, · · · tm, sm+1, · · · sn) be the pinching coordinates. Then WP
metric h has the asymptotic:

(1) hi i = 1
2

u3
i

|ti |2 (1 + O(u0)) for 1 ≤ i ≤ m;

(2) hi j = O(
u3

i u
3
j

|ti tj | ) if 1 ≤ i , j ≤ m and i += j ;

(3) hi j = O(1) if m + 1 ≤ i , j ≤ n;

(4) hi j = O(
u3

i
|ti |) if i ≤ m < j .

Here ui = li
2π , li ≈ − 2π2

log |ti | and u0 =
∑

ui +
∑

|sj |.
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Theorem
The Ricci metric τ has the asymptotic:

(1) τi i = 3
4π2

u2
i

|ti |2 (1 + O(u0)) if i ≤ m;

(2) τi j = O

(
u2

i u
2
j

|ti tj | (ui + uj)

)
if i , j ≤ m and i += j ;

(3) τi j = O
( u2

i
|ti |

)
if i ≤ m < j ;

(4) τi j = O(1) if i , j ≥ m + 1.

Finally we derive the curvature asymptotic:

Theorem
The holomorphic sectional curvature of the Ricci metric τ satisfies

R̃i i i i = − 3u4
i

8π4|ti |4
(1 + O(u0)) > 0 if i ≤ m

R̃i i i i = O(1) if i > m.
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To prove that the holomorphic sectional curvature of the perturbed
Ricci metric

ωτ̃ = ωτ + C ωWP

is negatively pinched, we notice that it remains negative in the
degeneration directions when C varies and is dominated by the
curvature of the Ricci metric.
When C large, the holomorphic sectional curvature of τ̃ can be
made negative in the interior and in the non-degeneration
directions near boundary from the negativity of the holomorphic
sectional curvature of the WP metric.
The estimates of the bisectional curvature and the Ricci curvature
of these new metrics are long and complicated computations.
The lower bound of the injectivity radius of the Ricci and perturbed
Ricci metrics and the KE metric on the Teichmüller space is
obtained by using Bers embedding theorem, minimal surface theory
and the boundedness of the curvature of these metrics.
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Bounded Geometry of the KE Metric

The first step is to perturb the Ricci metric by using the
Kähler-Ricci flow {

∂gij

∂t = −(Ri j + gi j)

g(0) = τ

to avoid complicated computations of the covariant derivatives of
the curvature of the Ricci metric.
For t > 0 small, let h = g(t) and let g be the KE metric. We have

! h is equivalent to the initial metric τ and thus is equivalent to
the KE metric.

! The curvature and its covariant derivatives of h are bounded.
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Then we consider the Monge-Amperé equation

log det(hi j + ui j)− log det(hi j) = u + F

where ∂∂u = ωg − ωh and ∂∂F = Ric(h) + ωh.

! Equivalences: ∂∂u has C 0 bound.

! The strong bounded geometry of h implies ∂∂F has C k

bounds for k ≥ 0.
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Stability of the Log Cotangent Bundle E

The proof of the stability needs the detailed understanding of the
boundary behaviors of the KE metric to control the convergence of
the integrals of the degrees.

! As a current, ωKE is closed and represent the first Chern class
of E .

[ωKE ] = c1(E ).

! The singular metric g∗
KE

on E induced by the KE metric

defines the degree of E .

deg(E ) =

∫

Mg

ωn
KE

.
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! The degree of any proper holomorphic sub-bundle F of E can
be defined using g∗

KE
|F .

deg(F ) =

∫

Mg

−∂∂ log det
(
g∗

KE
|F

)
∧ ωn−1

KE
.

Also needed is a basic non-splitting property of the mapping class
group and its subgroups of finite index.
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Goodness and Negativity

Now I will discuss the goodness of the Weil-Petersson metric, the
Ricci and the perturbed Ricci metrics in the sense of Mumford, and
their applications in understanding the geometry of moduli spaces.

The question that WP metric is good or not has been open for
many years, according to Wolpert. Corollaries include:

! Chern classes can be defined on the moduli spaces by using
the Chern forms of the WP metric, the Ricci or the perturbed
Ricci metrics; the L2-index theory and fixed point formulas
can be applied on the Teichmüller spaces.

! The log cotangent bundle is Nakano positive; vanishing
theorems of good cohomology; rigidity of the moduli spaces.
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Goodness of Hermitian Metrics

For an Hermitian holomorphic vector bundle (F , g) over a closed
complex manifold M, the Chern forms of g represent the Chern
classes of F . However, this is no longer true if M is not closed
since g may be singular.

! X : quasi-projective variety of dimCX = k by removing a
divisor D of normal crossings from a closed smooth projective
variety X .

! E : a holomorphic vector bundle of rank n over X and
E = E |X .

! h: Hermitian metric on E which may be singular near D.
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Mumford introduced conditions on the growth of h, its first and
second derivatives near D such that the Chern forms of h, as
currents, represent the Chern classes of E .
We cover a neighborhood of D ⊂ X by finitely many polydiscs

{
Uα =

(
∆k , (z1, · · · , zk)

)}

α∈A

such that Vα = Uα \ D = (∆∗)m ×∆k−m. Namely,
Uα ∩ D = {z1 · · · zm = 0}. We let U =

⋃
α∈A Uα and

V =
⋃

α∈A Vα. On each Vα we have the local Poincaré metric

ωP,α =

√
−1

2

(
m∑

i=1

1

2|zi |2 (log |zi |)2
dzi ∧ dz i +

k∑

i=m+1

dzi ∧ dz i

)
.
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Definition
Let η be a smooth local p-form defined on Vα.

! We say η has Poincaré growth if there is a constant Cα > 0
depending on η such that

|η(t1, · · · , tp)|2 ≤ Cα

p∏

i=1

‖ti‖2ωP,α

for any point z ∈ Vα and t1, · · · , tp ∈ TzX .

! η is good if both η and dη have Poincaré growth.
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Definition
An Hermitian metric h on E is good if for all z ∈ V , assuming
z ∈ Vα, and for all basis (e1, · · · , en) of E over Uα, if we let
hi j = h(ei , ej), then

!
∣∣∣hi j

∣∣∣ , (det h)−1 ≤ C (
∑m

i=1 log |zi |)2n for some C > 0.

! The local 1-forms
(
∂h · h−1

)
αγ

are good on Vα. Namely the
local connection and curvature forms of h have Poincaré
growth.

29



Properties of Good Metrics

! The definition of Poincaré growth is independent of the choice
of Uα or local coordinates on it.

! A form η ∈ Ap(X ) with Poincaré growth defines a p-current
[η] on X . In fact we have

∫

X
|η ∧ ξ| < ∞

for any ξ ∈ Ak−p(X ).

! If both η ∈ Ap(X ) and ξ ∈ Aq(X ) have Poincaré growth, then
η ∧ ξ has Poincaré growth.

! For a good form η ∈ Ap(X ), we have d [η] = [dη].

The importance of a good metric on E is that we can compute the
Chern classes of E via the Chern forms of h as currents.
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Mumford has proved:

Theorem
Given an Hermitian metric h on E, there is at most one extension
E of E to X such that h is good.

Theorem
If h is a good metric on E, the Chern forms ci (E , h) are good
forms. Furthermore, as currents, they represent the corresponding
Chern classes ci (E ) ∈ H2i (X , C).

With the growth assumptions on the metric and its derivatives, we
can integrate by part, so Chern-Weil theory still holds.
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Good Metrics on Moduli Spaces

Now we consider the metrics induced by the Weil-Petersson metric,
the Ricci and perturbed Ricci metrics on the logarithmic extension
of the holomorphic tangent bundle over the moduli space of
Riemann surfaces.

Our theorems hold for the moduli space of Riemann surfaces with
punctures.

Let Mg be the moduli space of genus g Riemann surfaces with
g ≥ 2 and let Mg be its Deligne-Mumford compactification. Let
n = 3g − 3 be the dimension of Mg and let D = Mg \Mg be the
compactification divisor.

Let E = T ∗
Mg

(log D) be the logarithmic cotangent bundle over

Mg .
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For any Kähler metric p on Mg , let p∗ be the induced metric on
E . We know that near the boundary {t1 · · · tm = 0},

(
dt1
t1

, · · · ,
dtm
tm

, dtm+1, · · · , dtn

)

is a local holomorphic frame of E .

In these notations, near the boundary the log tangent bundle
F = TMg

(− log D) has local frame

{
t1

∂

∂t1
, · · · , tm

∂

∂tm
,

∂

∂tm+1
, · · · ,

∂

∂tn

}
.

We have proved several results about the goodness of the metrics
on moduli spaces. By very subtle analysis on the metric,
connection and curvature tensors.
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We first proved the following theorem:

Theorem
The metric h∗ on the logarithmic cotangent bundle E over the DM
moduli space induced by the Weil-Petersson metric is good in the
sense of Mumford.

Based on the curvature formulae of the Ricci and perturbed Ricci
metrics we derived before, we have proved the following theorem
from much more detailed and harder analysis: estimates over 80
terms.

Theorem
The metrics on the log tangent bundle TMg

(− log D) over the DM
moduli space induced by the Ricci and perturbed Ricci metrics are
good in the sense of Mumford.
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A direct corollary is

Theorem
The Chern classes ck

(
TMg

(− log D)
)

are represented by the

Chern forms of the Weil-Petersson, Ricci and perturbed Ricci
metrics.

This in particular means we can use the explicit formulas of Chern
forms of the Weil-Petersson metric derived by Wolpert to represent
the classes, as well as those Chern forms of the Ricci and the
perturbed Ricci metrics.
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Another important corollary of the goodness of these metrics is the
Gauss-Bonnet theorem of the WP metric:

Theorem
The Gauss-Bonnet Theorem hold on the moduli space equipped
with the Weil-Petersson metric:

∫

Mg

cn(ωWP) = χ(Mg ) =
B2g

4g(g − 1)
.

The proof depends on the goodness of the WP and Ricci metrics
which give control of the Bott-Chern forms between them.
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Dual Nakano Negativity of WP Metric

It was shown by Ahlfors, Royden and Wolpert that the
Weil-Petersson metric have negative Riemannian sectional
curvature.

Schumacher showed that the curvature of the WP metric is
strongly negative in the sense of Siu.

In 2005, we showed that the curvature of the WP metric is dual
Nakano negative.
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Applications

As corollaries of goodness and the positivity or negativity of the
metrics, first we directly obtain:

Theorem
The Chern numbers of the log cotangent bundle of the moduli
spaces of Riemann surfaces are positive.

We have several corollaries about cohomology groups of the moduli
spaces. More generally, we setup the theory of good cohomology
for general quasi-projective manifolds equipped with good metrics.

Let X be a projective manifold (orbifold) of dimension dimC X = n
and let D ⊂ X be a divisor of normal crossings. Let X = X \ D.
Let ωg be a good Kähler metric on X with respect to the log
extension of the holomorphic tangent bundle.
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An important and direct application of the goodness of the WP
metric and its dual Nakano negativity together with the goodness
of the Ricci metrics is the vanishing theorem of the good
cohomology group:

Theorem
The good cohomology groups

H0,q
G

(
(Mg , ωτ ) ,

(
TMg

(− log D), ωWP

))
= 0

unless q = n.

We put the Ricci metric on the base manifold to avoid the
incompleteness of the WP metric.
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To prove this, we first consider the Kodaira-Nakano identity

!∂ = !∇ +
√
−1

[
∇2,Λ

]
.

We then apply the dual Nakano negativity of the WP metric to get
the vanishing theorem by using the goodness to deal with
integration by part. There is no boundary term.

Remark

! As corollaries, we also have: the moduli space of Riemann
surfaces is rigid: no infinitesimal holomorphic deformation.

! We are proving that the KE and Bergman metric are also
good metrics and other applications to algebraic geometry
and topology.
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Calabi-Yau Teichmüller Spaces

The Calabi-Yau (CY) manifolds and their Teichmüller and moduli
spaces are central objects in many subjects of mathematics and
string theory. A CY n-fold is a complex manifold X of dimension n
such that the canonical bundle KX is trivial and the Hodge
numbers hp,0(X ) = 0 for 0 < p < n.

We fix a CY manifold X , an ample line bundle L over X and a basis
B of Hn(X , Z)/Tor (marking). Let T = TL(X ) be the Teichmüller
space of X with respect to the polarization L which leaves the
marking B invariant. We let M = ML(X ) be the moduli space.
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Metrics on the Teichmüller and Moduli Spaces
There are two natural and important metrics on T and M: the
Weil-Petersson metric which is the induced L2 metric, and the
Hodge metric which is the pull-back of the Griffiths-Schmid metric
on the classifying space by the period map.

For any point p ∈ T , let Xp be the corresponding CY manifold. By
the Kodaira-Spencer theory, we have the identification
T 1,0

p T ∼= H1(Xp,T
1,0
Xp

) ∼= H0,1(Xp,T
1,0
Xp

) where the last
identification is with respect to the CY metric. For any harmonic
Beltrami differentials φ, ψ ∈ H0,1(Xp,T

1,0
Xp

) the WP metric is the

L2 metric

(φ, ψ)WP =

∫

Xp

φi
j
ψl

k
gi lg

kj dVg

where ωg is the CY metric and dVg is its volume form.

There are explicit formulae for the curvature of the WP metric. In
the case n = 3, the curvature is due to Strominger by using
Yukawa couplings.
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Flat Coordinates

By the Kodaira-Spencer theory, if π : X → B is a holomorphic map
between complex manifolds such that π∗ has full rank everywhere
and the fibers are connected, if 0 ∈ B then every vector v ∈ T 1,0

0 B

can be identified with a Beltrami differential φ ∈ Ȟ1(X0,T
1,0
X0

).

In general, if M0 = (X , J0) is a complex manifold and
φ ∈ A0,1(M0,T

1,0
M0

) is a Beltrami differential with small norm, we
can define a new almost complex structure Jφ by requiring

Ω1,0
φ = (I + φ)(Ω1,0

0 ) and Ω0,1
φ = (I + φ)(Ω0,1

0 ).

The almost complex structure Jφ is integrable and Mφ = (X , Jφ) is
a complex manifold if

∂φ =
1

2
[φ, φ]

which implies H([φ, φ]) = 0 (Kuranishi map).
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Fix a Kähler manifold M0 and let η1, · · · , ηm be an orthonormal
basis of H0,1(M0,T

1,0
M0

). The Kuranishi equation is

φ(t) =
m∑

i=1

tiηi +
1

2
∂
∗
G [φ(t), φ(t)].

This equation together with H([φ(t), φ(t)]) = 0 imply

∂φ(t) =
1

2
[φ(t), φ(t)]

∂
∗
φ(t) =0

H(φ(t)) =
m∑

i=1

tiηi .
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Fix p ∈ T and let Mp be the corresponding CY n-fold. Let
N = hn−1,1(Mp) be the dimension of the Teichmüller and the

moduli spaces. Let φ1, · · · , φN ∈ H0,1(Mp,T
1,0
Mp

) be a harmonic
basis with respect to the polarized CY metric. Then there is a
unique power series φ(τ) =

∑N
i=1 τiφi +

∑
|I |≥2 τ IφI which

converges for |τ | < ε such that

∂φ(τ) =
1

2
[φ(τ), φ(τ)]

∂
∗
φ(τ) = 0

φI"Ω0 = ∂ψI

for |I | ≥ 2 where we use the polarized CY metric and Ω0 is a
nowhere vanishing holomorphic (n, 0)-form on Mp. The
coordinates τ = (τ1, · · · , τN) is the flat coordinates at p (Todorov
gauge).
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Canonical Family

Fix Ω0 on Mp and pick local coordinates z on Mp such that

Ω0 = dz1 ∧ · · · ∧ dzn.

For |τ | < ε let

Ωτ =
n∧

i=1

(dzi + φ(τ)(dzi )).

The family Ωτ is a canonical holomorphic family of nowhere
vanishing holomorphic (n, 0)-forms. In the cohomology level, it has
the expansion

[Ωτ ] = [Ω0] +
N∑

i=1

τi [φi"Ω0] + Ξ

where Ξ ∈
⊕n

k=2 Hn−k,k(Mp).
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A powerful method to study T is to use the variation of Hodge
structures. Let D be the classifying space of polarized Hodge
structures associated to X . It is well known that D is a complex
homogeneous manifold. Furthermore, D = GR/K1 is a quotient of
a real semisimple Lie group by a compact subgroup.

Let K be the maximal compact subgroup containing K1. We have
the following composition of maps

TL(X ) → GR/K1 → GR/K

where the first map is the period map and the second map is the
natural projection. Since GR/K is symmetric of noncompact type,
by using the local Torelli theorem and the Griffiths transversality,
we know that the pull-back of the Killing metric on GR/K define a
metric on T which is called the Hodge metric.

It was proved by Griffiths and Schmid that the Hodge metric ωH is
Kähler and its bisectional curvature is nonpositive and its
holomorphic sectional curvature has negative upper bound.
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Corollary
(Local Torelli) For distinct points q1, q2 ∈ T which are sufficiently
close to r ∈ T , we have

p(q1) += p(q2) ∈ GR/K1.

Corollary
For each point p ∈ T , let ωp be the Kähler form of the unique CY
metric on Mp in the polarization class [L]. Then ωp is invariant.
Namely,

∇GMωp = 0.

Furthermore, since T is simply connected, we know that ωp is a
constant section of the trivial bundle A2(X , C) over T .
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Global Transversality Theorem
An important observation of the period map from the Teichmüller
space to the period domain is the global transversality theorem.
Fix a point p ∈ T , the Hodge filtration F n(p) ⊂ · · · ⊂ F 0(p) = HC
of Mp satisfies

F k(p)⊕ F n−k+1(p) = HC.

We showed

Theorem
For any point q ∈ T , one has

F k(p)⊕ F n−k+1(q) = HC.

Namely, if Prkp : HC → F k(p) is the natural projection map. Then

Prkp

∣∣∣∣
Fk (q)

: F k(q) → F k(p)

is a linear isomorphism.
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Global Torelli Theorem

Let GR/K1 be the classifying space of polarized Hodge structures
with data from a Calabi-Yau M. Let p : T → GR/K1 be the period
map. Then we proved the following global Torelli theorem

Theorem
The period map

p : T → GR/K1

is injective.

The proof relies on tracing the cohomology classes of the
holomorphic (n, 0)-forms by using the canonical expansion. We
extend the flat coordinate lines by realizing them as geodesics of a
holomorphic flat connection on T . This connection tied to the
“Frobineous” structure on T closely. Another important ingredient
is to extend the canonical family across singularities in T with
finite Hodge distance.
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Existence of Kähler-Einstein Metric

Theorem
The extended Teichmüller space T̃ is a domain of holomorphy.
Thus there exists a unique Kähler-Einstein metric on T̃ , the Hodge
metric completion of the Teichmüller space.

In order to prove this, we construct a potential function of the
Hodge metric on T which is a nice exhaustion function. The
existence of Kähler-Einstein metric follows from the general
construction of S.-Y. Cheng and Yau.
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Holomorphic Embedding Theorem

Based on the global transversality theorem, the global Torelli
theorem and the expansion of canonical family, we can embed the
Teichmüller space holomorphically into the Euclidean space of
same dimension.

Theorem
For any point p ∈ T , let T 1,0

p T be the holomorphic tangent space.

Then there is a natural map gp : T → T 1,0
p T which is holomorphic

and injective.
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For higher-dimensional algebraic varieties, there is a natural
generalization of the Poincaré metric which is given by the
Kähler-Einstein metric. However, the Weil-Petersson metric
associated to the Kähler-Einstein metric with negative scalar
curvature does not seem to have very good properties.

The Weil-Petersson metric for the Calabi-Yau manifold is more
interesting. Its curvature tensor contains the important information
of the Yukawa coupling tensor.
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For the rest of this talk, I will describe some joint work with
Chen-Yu Chi.

We look at birational geometry of an algebraic variety M. Consider
the vector space

V = H0(M,mKM)

where m > 0 and KM is the canonical line bundle. There is a
natural norm defined on V given by

‖s‖ =

∫

M
(ss)

1
m .
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The vector space (V , ‖ ‖) is an invariant of the birational geometry
of M.

This normed space is very rich in geometry. We demonstrate this
by proving a Torelli type theorem.

Theorem
(V , ‖ ‖) determines M birationally, at least when mKM has no
based point and m ≥ C . The constant C does not depend on M if
dimCM = 2 .
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The above theorem can be considered as a Torelli type theorem for
birational geometry. We are in the process of characterizing these
normed vector spaces that come from algebraic varieties, We will
also give effective methods to compute such invariants.
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