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Chapter 1

Noncommutative algebraic topology

1.1 What is noncommutative (algebraic) topology?

We can distinguish three stages of noncommutative algebraic topology:

1. K-theory of C*-algebras.

2. Topological invariants of C*-algebras.

3. Bivariant K-theory - KK-theory.

In this section we will deal with the second point. A topological invariant for C*-algebras
is a functor F on the category of C*-algebras and *-morphisms, with certain formal properties.
These properties are

(H) Homotopy invariance. If f0, f1 : A→ B are two *-morphisms, then a homotopy be-
tween them is a *-homomorphism f : A→ C([0, 1], B) such that evt ◦f = ft. Homotopy
invariance states that if f0, f1 are homotopic, then F (f0) = F (f1).

(E) Exactness. For any C*-algebra extension

I � E � Q (1.1)

the sequence
F (I)→ F (E)→ F (Q) (1.2)

is exact.

Since KK-theory does not have this property we also allow functors that are semi-split
exact, that is, a sequence (1.2) is exact only for semi-split extensions. We say that the
extension (1.1) is semi-split if it has completely positive contractive section s : Q→ E.
Recall that a map s : Q → E is positive if and only if x ≥ 0 implies s(x) ≥ 0. It is
completely positive if and only if Mn(s) : Mn(Q)→Mn(E) is positive for all n ≥ 0. A
map s : Q→ E is called contractive if ‖s‖ ≤ 1.

Theorem 1.1. The extension I � E � Q with Q nuclear is semi-split.

Theorem 1.2 (Stinespring). If s : Q → E is a completely positive contractive map,
then there exists a C*-morphism π : Q → B(H), and adjointable contractive isometry
T : E → HE (HE is a Hilbert E-module) such that s(q) = T ∗π(q)T .
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We say that a functor F is split-exact if for every split extension

I // // E // // Q

s
||

(1.3)

The sequence

F (I) // F (E) // F (Q)

F (s)
vv

is exact, that is F (E) ' F (I)⊕ F (Q).

K-theory is homotopy invariant, exact and split-exact.

Proposition 1.3. Let F be a homotopy invariant and (semi-split) exact functor. Then
for any (semi-split) extension I � E � Q there is a natural long exact sequence

. . .→ F (S2Q)→ F (SI)→ F (SE)→ F (SQ)→ F (I)→ F (E)→ F (Q) (1.4)

where SA := C0((0, 1), A) is the suspension functor.

(M) Morita equivalence or C*-stability. The third condition for a topological invariant
is Morita equivalence. It is of different nature than homotopy invariance and exactness.
It is a special feature of the non-commutative world.

For all C*-algebras A the corner embedding

A→ K(l2N)⊗A

induces an isomorphism F (A) ' F (K ⊗A).

We say that two C*-algebras A, B are Morita equivalent if there exists a two sided
Hilbert module AHB over Aop ⊗B such that

(AHB)⊗B (BH∗A) ' AAA

(BH∗A)⊗A (AHB) ' BBB

Theorem 1.4 (Brown–Douglas–Rieffel). Two separable C*-algebras A, B are Morita
equivalent, A ∼M B, if and only if A⊗K ' B ⊗K.

Definition 1.5. A topological invariant for C*-algebras is a functor F : C ∗−Alg→ Ab
which is C*-stable, split exact, semi-split exact and homotopy invariant.

Theorem 1.6 (Higson). If F : C ∗ −Alg → Ab is C*-stable and split exact then it is
homotopy invariant.

Alse if F : C ∗ −Alg→ Ab is semi-split exact and homotopy invariant then it is split exact.
Actually, any topological invariant has many more formal properties like Bott periodicity,

Pimsner–Voiculescu exact sequence for crossed product by Z, Connes–Thom isomorphism for
crossed products by R, Mayer-Vietoris sequences.

Bott periodicity states that F (S2A) ' F (A) with a specified isomorphism. To prove it
one can use two extensions

K� T � C(U(1)) (Toeplitz extension)
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C0((0, 1))→ C0((0, 1]) ev1−−→ C (cone extension)

K // // T // // C(U(1))

T0
// //

⊂

OO

C0(U(1) \ {1})

⊂

OO

From the long exact sequence in proposition (1.4) we get boundary maps

F (S2A)→ F (K ⊗A) ' F (A)

The theorem is that this natural map is invertible for any topological invariant.

Corollary 1.7. For any topological invariant F , and any split extension

I � E � Q

there is a cyclic six-term exact sequence

F (I) // F (E) // F (Q)

��
F (SQ)

OO

F (SE)oo F (SI)oo

If F is a topological invariant, A C*-algebra, then D 7→ F (A ⊗ D) is also a topological
invariant. Therefore Bott periodicity is equivalent to the fact, that F (C) ' F (C0(R2)) for
all topological invariants F .

1.1.1 Kasparov KK-theory

The reason why topological invariants have these nice properties is bivariant K-theory (also
called KK-theory or Kasparov theory). Both functors B 7→ KK(A,B) and A 7→ KK(A,B)
are topological invariants.

There is a natural product

KK(A,B)⊗KK(B,C)→ KK(A,C)
(x, y) 7→ x⊗B y

This turnes Kasparov theory into a category KK.
We can characterize KK using the universal property.

Definition 1.8. C ∗−Alg→ KK is the universal split exact, C*-stable (homotopy) functor.

This means that the functor C ∗ −Alg → KK, which maps a *-homomorphism A → B
into its class in KK(A,B), is split exact, and C*-stable. Moreover, for any other functor
F from (separable) C*-algebras to some additive category C there is a unique factorisation
through KK

C ∗ −Alg //

F
%%LLLLLLLLLL KK

���
�
�

C

This abstract point of view explains why KK-theory is so important. It is the universal
topological invariant. To be useful, we need existence and a concrete description of KK.

We will describe cycles for A, B. Then homotopies will be cycles in KK0(A,C([0, 1], B)).
Next we define KK0(A,B) as the set of homotopy classes of cycles. Cycles consist of
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• a Hilbert B-module E that is Z/2-graded, E = E+ ⊕ E−

• a *-homomorphism ϕ : A→ B(E)even

• an adjointable operator F ∈ B(E)odd

such that

• F = F ∗ (or (F − F∗)ϕ(a) ∈ K(E) for all a ∈ A)

• F 2 = 1 (or (F 2 − 1)ϕ(a) ∈ K(E) for all a ∈ A)

• [F,ϕ(a)] ∈ K(E) for all a ∈ A.

Addition is the direct sum.
For the odd case we can take

KK1(A,B) ' KK0(A,SB) ' KK0(SA,B)

or more concretely drop Z/2-grading in the definition of KK0.
Kasparov uses Clifford algebras to unify KK0 and KK1 and the extend the definition to

the real case. We do not treat the real case here but mention the following result

Theorem 1.9. Let AR and BR be real C*-algebras and let AC = AR ⊗R C, BC = BR ⊗R C
be their complexifications. Then there is a map

KKR(AR, BR)→ KKC(AC, BC), fR 7→ fC.

Moreover fR is invertible if and only if fC is invertible. In particular BR ∼ 0 if and only if
BC ∼ 0.

1.1.2 Connection between abstract and concrete description

Take a cycle X = (E , ϕ, F ) for KK1(A,B). Form EX = K(E) + ϕ(A)(1+F
2 ). This is a C*-

algebra because, modulo K(E), P := 1+F
2 is a projection which commutes with ϕ(A). By

construction there is an extension

K(E) � EX � A′

with ϕ : A→ A′, K(E) ∼M I / B. We can assume E is full and ϕ(A) is injective as a map to
B(E)/K(E). Even E = l2N⊗B is possible by Kasparov’s Stabilisation Theorem

E ⊕ (l2N⊗B) ' l2N⊗B

After simplifying using K(l2N⊗B) ' K(l2N)⊗B we get a C*-extension

K ⊗B � EX � A

which is semi-split by a 7→ Pϕ(a)P .
Conversely, this process can be inverted using Stinespring’s Theorem, and any semi-split

extension
K ⊗B � E � A

gives a class in KK1(A,B).
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Thus we can describe KK1(A,B) as the set of homotopy classes of semi-split extensions
of A by K ⊗ B. A deep result of Kasparov replaces homotopy invariance by more rigid
equivalence relation: unitary equivalence after adding split extensions. Two extensions are
unitarily equivalent if there is a commuting diagram

K ⊗B // //

Ad(u)

��

E1
// //

'
��

A

K ⊗B // // E2
// // A

with u ∈ K ⊗B unitary.

Corollary 1.10. For any topological invariant F there is a map

KK1(Q, I)⊗ Fk(Q)→ Fk+1(I),

where Fk(A) := F (SkA).

Proof. Use the boundary map from proposition (1.3) for the extension associated to a class
in KK1(Q, I).

Similar construction works in even case. We take

E = E+ ⊕ E−, ϕ = ϕ+ ⊕ ϕ−, F =
(

0 u∗
u 0

)
with u unitary.

ϕ : A→ B(E+), Ad(u) ◦ ϕ− : A→ B(E+)

ϕ+(a)−Ad(u)ϕ−(a) ∈ K(E+)

for all a ∈ A. From a split extension K(E+) + ϕ+(A) we get an extension

K(E+) � E � A

that splits by ϕ+ and Ad(u) ◦ ϕ−.
Let F be a topological invariant, then

F (E) ' F (B)⊕ F (A),

F (ϕ+)− F (Ad(u) ◦ ϕ−) : F (A)→ F (B) ⊂ F (E).

Hence we get a map
KK0(A,B)⊗ F (A)→ F (B).

Consider two extensions

C � E2 � B, B � E1 � A

These give a map
F (A)→ F (S−2C) ' F (C).

The miracle of the Kasparov product is that this composite map is described by a class in
KK0(A,C).

Definition 1.11. Operator F is Fredholm if ker(F ) and coker(F ) have finite dimension.
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The operator F in the definition of Kasparov cycles is something like a Fredholm operator.
A cycle in KK0(C,C) consists of a Hilbert spaceH = H+⊕H− and an operator F : H+ → H−,
FF ∗ − id ∈ K, F ∗F − id ∈ K, so F is Fredholm.

The index map gives an isomorphism

Index: KK0(C,C) '−→ Z
Index(F ) = dim(kerF )− dim(cokerF )

In the odd case we have KK1(C,C) = 0.
A pair of *-homomorphisms f, g : A→ B with (f−g)(A) ⊂ K ideal in B gives a morphism

qA→ K.

KK(A,B) = [qA,B ⊗K] (homotopy classes of *-homomorphisms)

A B

qA

∼

OO

// B ⊗K

∼

OO

qA // // A ∗A
id∗id

// // A
zz
dd

Here qA is the target of the universal quasi-homomorphism.

1.1.3 Relation with K-theory

KK-theory is very close to K-theory. If some construction gives a map K∗A → K∗B it
probably gives a class in KK∗(A,B).

Theorem 1.12. KK∗(C, A) ' K∗(A).

The proof requires the concrete description of KK.
Hence there is a canonical map

γ : KK∗(A,B)→ Hom(K∗A,K∗B).

In many cases, this map is injective and has kernel Ext1(K∗A,K∗+1B).
Take α ∈ KK1(Q, I), α = [I � E � Q]. Assume γ(α) = 0. There is an exact sequence

K0(I) // K0(E) // K0(Q)

γ(α)
��

K1(Q)

γ(α)

OO

K1(E)oo K1(I)oo

We get an extension of Z/2-graded abelian groups.

K∗(I) � K∗(E) � K∗(Q).

This defines a natural map

KK∗(A,B) ⊃ ker γ → Ext1(K∗+1(A),K∗(B)).

In many cases this map and γ provide the Universal Coefficient Sequence (1.5)
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Theorem 1.13. Let B be the smallest category of separable C*-algebras closed under suspen-
sions, semi-split extensions, KK-equivalence, tensor products, and containing C. Then there
exists a natural exact sequence

Ext1(K∗+1A,K∗B) � KK∗(A,B)→ Hom(K∗A,K∗B) (1.5)

for A,B ∈ B

Corollary 1.14. Let X and Y be locally compact spaces. If K∗(X \ {x}) ' K∗(Y \ {y}) then
F (C0(X \ {x})) ' F (C0(Y \ {y})) for any topological invariant for C*-algebras.

Proof. Denote X̃ := X \ {x}, Ỹ := Y \ {y}.

α : K∗(X \ {x}) ' K∗(C0(X \ {x})) '−→ K∗(C0(Y \ {y}))

By the universal coefficients theorem, α lifts to α̂ ∈ KK0(C0(X̃), C0(Ỹ )). Because Ext1 ◦Ext1 =
0 we know that α̂ is invertible. Since KK is universal, F (α̂) is invertible for any topological
invariant F .

There are analogies and contrasts between homotopy theory and noncommutative topol-
ogy. We will summarize them in a table:

Homotopy theory Noncommutative topology
Spaces C*-algebras
Stable homotopy category KK
Stable homotopy groups of spheres Morphisms from C to C in KK
πs∗(S

0) = Mor∗(pt,pt) KK∗(C,C) = Z[β, β−1], deg(β) = 2
Bott periodicity

Homology H∗(−) K-theory K∗(−)
Adams spectral sequence Universal coefficients theorem for KK
Always works but complicated Not always works, but it is easy when it works
Interesting topology - no analysis Simple topology - interesting analysis

1.2 Equivariant theory

In equivariant bivariant Kasparov theory additional symmetries create interesting topology,
making tools from homotopy theory more relevant.

What equivariant situations are being considered?

• Group actions (of locally compact groups)

• Bundles of C*-algebras (Ax)x∈X over some space X

• Locally compact groupoids

• locally compact quantum group actions (Baaj-Skandalis)

• C*-algebras over non-Hausdorff space (Kirchberg)

In each case, there is an equivariant K-theory with similar properties as the nonequivariant
one, with a similar concrete description – add equivariance condition – and an universal
property.
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Proposition 1.15. If G is a group, then KKG(C,C) is a graded commutative ring, and
the exterior product coincides with composition product. Furthermore KKG(C,C) acts on
KKG(A,B) for all A,B ∈ C∗ − algG by exterior product.

Let G be a groupoid, and A a C*-algebra. Then we say that G acts on A, G y A, if A is
a bundle over G0, G acts fiberwise on this bundle. Continuity of the action is expressed by
the existence of a bundle isomorphism α : s∗A → r∗A, where r, s are the range and source
maps of G.

G1
r //

s
// G0 , s∗A

α−→ r∗A, (s∗A)y = Ax.

g : x→ y =⇒ αg : Ax → Ay *-isomorphism

We fix some category of C*-algebras with symmetries, equivariant *-homomorphisms. We
denote it C∗ − algG. We study functors F from C∗ − algG to an additive category, such
that if

I // // E // // Q
||

is a split extension in C∗ − algG, then

F (I) // F (E) // F (Q)
vv

Split exactness is considered for equivariant *-homomorphisms in extensions, and the section
is supposed to be also equivariant.

Let A be an object of C∗ − algG and H a G-equivariant full Hilbert module over A. Then
F is stable if both maps

A→ K(H⊕A)← K(H)

coming from inclusions of Hilbert modules A ↪→ H ⊕ A ←↩ H become isomorphisms after
applying F

F (A)→ F (K(H⊗A))← F (K(H))

In the cases mentioned above, KKG is the universal split-exact stable functor on C∗ − algG
(separable), that is, any other functor with this properties factors uniquely through KKG.

KKG(A,B)× F (A) // F (B)

HomG(A,B)× F (A)

OO 66nnnnnnnnnnnnn

1.2.1 Tensor products

The following discussion also shows how the universal property of KK can be used to construct
functors between KK-categories and to prove adjointness relations between such functors.

The minimal tensor product of two G-C∗-algebras is again a G-C∗-algebra if G is a
groupoid. Here we use the diagonal action of the groupoid. This yields a functor

⊗ : C∗ − algG ×C∗ − algG → C∗ − algG, (A,B) 7→ A⊗B.

For a group(oid) diagonal action of G on A⊗B, if G acts on A,B. This descends to

C∗ − alg ×C∗ − algG //

����

C∗ − algG

��
KK×KKG // KKG
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We will provide the concrete description. Let β ∈ KKG ∗(B1, B2), α ∈ KKG(A1, A2). The
tensor product is given by

α⊗ β = (α⊗ idB2) ◦ (idA1 ⊗ β)
= (idA2 ⊗ β) ◦ (α⊗ idB1).

A1 ⊗B1

idA1
⊗β
//

α⊗idB1

��

A1 ⊗B2

α⊗idB2

��
A2 ⊗B1 idA2

⊗β
// A2 ⊗B2

In the abstract approach we fix A and consider functor

C∗ − algG → C∗ − algG → KKG

B 7→ A⊗B 7→ A⊗B
which is split-exact, stable. The functor KKG → KKG exists by the universal property.

In general, if F1, F2 : C∗ − algG → Ab are split exact and stable, and Φ: F1 → F2 is a
natural transformation, then there exist F1, F2 : KKG → Ab and a natural transformation
Φ: F1 → F2 such that the following diagram commutes for α ∈ KKG(A1, A2)

F1(A1)
ΦA1 //

F1(α)

��

F2(A1)

F2(α)

��
F1(A2)

ΦA2 // F2(A2)

The diagram above commutes for α, β KK-morphisms provided it commutes for α, β equiv-
ariant *-homomorphisms. This is a part of the universal property of KKG.

If A,B are G-C*-algebras, then A ⊗ B gives a tensor product in KKG . Descent functor
KKG → KK is obtained by taking crossed products on objects and *-homomorphisms.

The functor
A 7→ Gnr A

is split-exact, stable, so it descends to KKG

KKG(A,B)→ KK(Gnr A,Gnr B).

If H ≤ G is a closed subgroup, H y A, then IndGH A x G, where

IndGH A := {f ∈ C0(G,A) | f(gh) = (αhf)(g), ‖f‖ ∈ C0(G/H)}.

(On the level of spaces the induction is IndGH : X 7→ G×H X). It induces

IndGH : KKH → KKG .

The composition

C∗ − algH
IndGH //

−nrH
**VVVVVVVVVVVVVVVVVVVVVVVVVVV

C∗ − algG
−nrG // C∗ − alg

M.E.

�O
�O
�O
�O
�O

C∗ − alg

, A
� IndGH //�

−nrH
))TTTTTTTTTTTTTTTTTTTTTTTTTTT IndGH A

� −nrG// Gnr IndGH A

M.E.

�O
�O
�O
�O
�O

H nr A
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becomes a natural isomorphism in KK(HnrA,GntIndGH A) forH-equivariant *-homomorphisms
or for KKH -morphisms (equivalent by the universal property of KKH).

For open H ≤ G
KKG(IndGH A,B) ' KKH(A,ResGH B)

the following compositions

IndGH ResHG A ' C0(G/H)⊗A ↪→ K(l2(G/H))⊗A ∼M.E. A.

B 7→ ResHG IndGH B

are natural for *-homomorphisms, hence KK-morphisms.

1.3 KK as triangulated category

The category KK is additive, but not abelian. However it can be triangulated. This notion is
motivated by examples in homological algebra: derived category of an abelian category, ho-
motopy category of chain complexes over an additive category, homotopy category of spaces.

The additional structure in a triangulated category consists of

• translation/suspension functor. In KKG :

A[−n] := C0(Rn)⊗A, for n ≥ 0.

• exact triangles
A→ B → C → A[1].

Merely knowing the KK-theory class of i, p in a C*-algebra extension

I //
i // E

p // // Q

does not determine the boundary maps. This requires a class in KK1(Q, I).

Definition 1.16. A diagram
A

u−→ B
v−→ C

w−→ A[1]

in KKG is called an exact triangle if there are KK-equivalences α, β, γ such that the following
diagram commutes

A
u //

'α

��

B
v //

'β

��

C
w //

'γ

��

A[1]

'α[1]
��

A′
[i]
// B′

[p]
// C ′

δ
// A′[1]

where A′ � B′ � C ′ is a C*-algebra semi-split extension, and δ is its class in KK1(C,A).

Proposition 1.17. With this additional structure KKG is a triangulated category.

In general the structure of a triangulated category consists of an additive category T , an
automorphism Σ: T → T , and a class E ⊆ Triangles(T ) of exact triangles.
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Example 1.18. Homotopy category of chain complexes over A

Σ(Cn, dn) = (Cn−1,−dn−1), Σ(fn) = fn−1(fn- chain map)

Triangle is exact if it is isomorphic to an exact triangle

I //
i // E

p // // Q,

s
||

where I, E, Q are chain complexes, i, p are chain maps, s is a morphism in A. Define

δs : Q→ I[1], δs = dE ◦ s− s ◦ dQ

Then
I

i−→ E
p−→ Q

δs−→ I[1]

is an extension triangle. However the diagram

E

dE

��

Q

dQ

��

soo

E[1] Q[1]
s[1]
oo

is not commutative.

It is easier to work with mapping cone triangles instead of extension triangles. Let f : A→
B be a *-homomorphism. Then we define its cone as the algebra

Cf := {(a, b) ∈ A⊕ C0([0, 1])⊗B | f(a) = b(1)}

SB � Cf � A

is a C*-algebra semi-split extension.
On the level of spaces, if f : X → Y is a map, then

Cf = x× [0, 1]q Y/(x, 0) ∼ (x′, 0) ∼ (∗, t), (x, 1) ∼ f(x)

K∗(Cf ) gives a relative K-theory for f . The Puppe exact sequence for F is a long exact
sequence

. . .→ F (SCf )→ F (SA)→ F (SB)→ F (Cf )→ F (A)
F (f)−−−→ F (B)

Long exact sequence, say for KK, are often estabilished by first checking exactness of the
Puppe sequence, then getting other extensions from that.

Definition 1.19. A mapping cone triangle is a triangle that is isomorphic to

SB → Cf → A
f−→ B

for some f in KKG.

Theorem 1.20. A triangle in KKG is exact (isomorphic to an exact triangle) if and only if
it is isomorphic to a mapping cone triangle.
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Proof. Consider extension

SQ
δ // I

i //

i
��

E
p // Q

SQ // Cp // E // Q

Exact sequences for KK are estabilished by showing that I ↪→ Cp is a KK-equivalence if the
extension is semi-split.

Cuntz-Skandalis: exact triangles are isomorphic to mapping cone triangles.
Conversely, consider a mapping cylinder for a *-homomorphims f : A→ B, that is

Zf := A⊕B B ⊗ C([0, 1]),

and two extensions
SB

δ // Cf
i //

i
��

zf
p // B

SB // Cf // A //

j

OO

B

where j : A→ Zf is a homotopy equivalence. If the triangle

C[−1]→ A→ B → C

is exact, then it is isomorphic to

SY → Cf → X
f−→ Y.

Next we get an extension triangle

SX
−Sf−−−→ SY � Cf � X,

so the triangle
B[−1] −w−−→ C[−1] u−→ A

v−→ B

is exact.

1.4 Axioms of a triangulated categories

Triangulated category consists of an additive category with suspension automorphism and a
class of exact triangles. These are supposed to satisfy the following axioms (TR0-TR4)

(TR0) If a triangle is isomorphic to an exact triangle, then it is exact. Triangles of the form

0→ A
id−→ A→ 0

are exact.

(TR1) Any morphism f : A→ B can be embedded in an exact triangle

ΣB → C → A
f−→ B

(we will see that this triangle is unique up to isomorphism and call C a cone for f).
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The best proof of this for KK uses extension triangles. Let f ∈ KK0(A,B) ' KK1(ΣA,B) '
Ext(ΣA,B). Hence f generates a semi-split extension

B ⊗K︸ ︷︷ ︸
K(HB)

� E � GA,

which yields an extension triangle

Σ2A //

' Bott

��

K(HB)

' M.E.

��

// E // ΣA

A
f

// B

Now rotate this sequence to bring f to the right place.

(TR2) The triangle
ΣB u−→ C

v−→ A
w−→ B

is exact if and only if the triangle

ΣA −Σw−−−→ ΣB −u−−→ C
−v−−→ A

is exact. We can get rid of some minus signs by taking

ΣA

id
��

−Σw // ΣB

id
��

−u // C

−id
��

−v // A

−id
��

ΣA −Σw
// ΣB u

// C v
// A

By applying three times we get that

Σ2B
−Σu−−−→ ΣC −Σv−−−→ ΣA −Σw−−−→ ΣB

is exact. The reason for a sign is that the suspension of a mapping cone triangle for
f is the mapping cone triangle for Σf but this involves a coordinate flip on R2 on
Σ2B = C0(R2, B), which generates a sign.

Definition 1.21. A functor F from a triangulated category to an abelian category is
called homological if

F (C)→ F (A)→ F (B)

is exact for any exact triangle

ΣB → C → A→ B.

Example 1.22. If F is a semi-split exact, split exact, C*-stable functor on C∗ − alg,
then its extension to KK is homological.

Proposition 1.23. If F is homological, then any exact triangle yields a long exact
sequence

. . . Fn(C)→ Fn(A)→ Fn(B)→ Fn−1(C)→ . . .

where Fn(A) := F (ΣnA), n ∈ Z.

15



Proof. Use axiom (TR2).

(TR3) Consider a commuting diagram with exact rows

ΣB

Σβ
��

// C

∃γ
���
�
�

// A

α

��

// B

β
��

ΣB′ // C ′ // A′ // B′

There exists γ : C → C ′ making the diagram commutative (but it is not unique).

We will proof (TR3) for KK. We may assume that rows are mapping cone triangles

ΣB

Σβ

��

// Cf // A

α

��

f // B

β

��
ΣB′ // C ′f ′ // A′

f ′
// B′

We know that α is a KK-cycle for A → A′, β is a KK-cycle for B → B′, and there
exists a homotopy H from β ◦ f to f ′ ◦ α (because the classes [β ◦ f ] = [f ′ ◦ α] in KK).

Denote
α = (HαA, ϕα, Fα ∈ B(Hα)),

β = (HβB, ϕ
β, F β ∈ B(Hβ)),

H = (HHC([0,1],B′), ϕ
H , FH ∈ B(HH)),

such that
H|0 = β ◦ f = (Hβ, ϕβ ◦ f, F β),

H|1 = f ′ ◦ α = (Hα ⊗f ′ B′, ϕα ⊗ idB′ , Fα ⊗ idB′).

Then
Hβ ⊗ C([0, 1

2 ])⊕
Hβ at

1
2
HH ⊕Hα⊗f ′B′ H

α

is a mapping cone of f ′. Now ϕβ⊗C([0, 1
2 ]), ϕH , ϕα glue to ϕγ : A→ B(Hγ). Similarly

for F .

Many results use only axioms (TR0)-(TR3). The last one, (TR4) will be given at the end.
Before that we will prove

Proposition 1.24. Let D be an object of a category T . Then the functor A → T (D,A) is
homological. Dually A 7→ T (A,B) is cohomological for every object B in T .

Proof. Let
ΣB → C → A→ B

be an exact triangle in T . We have to verify the exactness of

T (D,C)→ T (D,A)→ T (D,B).

We use the fact that in an exact triangle, the composition C → A→ B is zero. Hence

T (D,C) //

0

88
T (D,A) // T (D,B)

16



Now we use (TR3) to complete diagram

0 //

0
��

D

f̂
���
�
� D //

��

0

0
��

ΣB // C // A // B

with f̂ : D → C.

Example 1.25. KKG(−, D) is homological, and KKG(D,−) is cohomological.

Lemma 1.26 (Five lemma). Consider morphism of exact triangles

• //

Σβ
��

• //

γ

��

• //

α

��

•
β
��

• // • // • // •

If two of α, β, γ are invertible, then so is the third.

Proof. Assume α, β are invertible. Then T (D,α), T (D,β), and T (D,Σα), T (D,Σβ) are
invertible. We can use exact sequences from the proposition (1.24) and write a diagram

T (D,ΣA)

T (D,Σα) '
��

// T (D,Σβ)

T (D,Σβ) '
��

// T (D,C) //

T (D,γ)
��

T (D,A)

T (D,α) '
��

// T (D,B)

T (D,β) '
��

T (D,GA′) // T (D,ΣB′) // T (D,C ′) // T (D,A′) // T (D,B′)

Rows are exact chain complexes, so the five lemma yields T (D, γ) invertible.

Proposition 1.27. Let f : A → B be a morphism. There is up to isomorphism a unique
exact triangle

ΣB → C → A
f−→ B

Proof. Existence comes from (TR1). From the (TR3) we get γ in the following diagram

ΣB // C //

γ

���
�
� A // B

ΣB // C ′ // A // B

From the five lemma (1.26) we get that γ is invertible, which gives uniqueness.

Lemma 1.28. Let
ΣB u−→ C

v−→ A
w−→ B

be an exact triangle. Then

1. B = 0 if and only if v is invertible

2. u = 0 if and only if C → A→ B is a split extension (A ' C ⊕B)

17



Proof. 1. If v is invertible, then
0→ C

v−→ A→ 0

is an exact triangle by (TR0) and

0 // C
v //

'
��

A // 0

0 // A A // 0

For the converse we use long exact sequence for T (D,−). We have T (D,B) = 0 if and
only if T (D, v) invertible. Then we use the Yoneda lemma.

2. If A → B is split epimorphism, then B → Σ−1C vanishes because A → B → Σ−1C
vanishes.

Assume u = 0. We use exactness of

T (B,A)→ T (B,B)→ T (B,Σ−1C)

to get s : B → A
s 7→ idB 7→ 0

which gives a section for w : A→ B, w ◦ s = idB.
Exactness of

. . .
0−→ T (D,C)→ T (D,A)→ T (D,B) 0−→ . . .

implies that T (D, v) and T (D, s) give isomorphism

T (D,C)⊕ T (D,B)→ T (D,A)

for all D, so (s, v) give isomorphism C⊕B '−→ A. Given B,C embed B⊕C → B in an exact
triangle

ΣB → D → B ⊕ C → B

Since B ⊕ C w−→ B is an epimorphism we have u = 0. From the long exact sequence

. . .
0−→ T (X,D)→ T (X,B ⊕ C)→ T (X,B) 0−→ . . .

we get T (X,D) ' T (X,C) for all X ∈ T , so D ' C.

Proposition 1.29. If
ΣBi → Ci → Ai → Bi

are exact triangles for all i ∈ I, and direct sums exist, then⊕
i∈I

ΣBi →
⊕
i∈I

Ci →
⊕
i∈I

Ai →
⊕
i∈I

Bi

is exact. The same holds for products.

Definition 1.30. A square
X

β
��

α // Y

β′

��
X ′

α′ // Y ′

18



is called homotopy Cartesian with differential γ : ΣY ′ → X if

ΣY ′
γ−→ X

0@ α
β

1A
−−−−−→ Y ⊕X ′ β

′,−α′−−−−→ Y ′

is exact.

Given α, β in the definition we get α′, β′, γ′ unique up to isomorphism by embedding(
α
β

)
in an exact triangle (homotopy pushout). Dually, given α′, β′ there are α, β, γ unique

up to isomorphism (homotopy pullback).

Definition 1.31. Let (An, αn+1
n : An → An+1)n∈N be an inductive system in a triangulated

category. We define its homotopy colimit holim
−→

(An, αn+1
n : An → An+1)n∈N as the desus-

pended cone of the map ⊕
n∈N

An
id−S−−−→

⊕
n∈N

An

S|An = αn+1
n : An → An+1

It is unique up to isomorphism but not functorial.⊕
n∈N

An
id−S−−−→

⊕
n∈N

An → holim
−→

(An, αn+1
n )→

⊕
n∈N

Σ−1An

Proposition 1.32. Let F : T → Ab be homological and commuting with ⊕, then

F (holim
−→

An) = lim
−→

F (An)

If F̃ : T → Abop is contravariant cohomological and F̃ (
⊕
An) =

∏
F̃ (An), then there is an

exact sequence
lim
←−

1 F̃ (An) � F̃ (holim
−→

An) � lim
←−

F̃ (An)

Proof. Apply F to the exact triangle defining holim
−→⊕

Fn(Am) id−S−−−→
⊕

Fn(Am)→ Fn(holim
−→

An)→
⊕

Fn−1(Am) �
⊕

Fn−1(Am)→ . . .

coker(id− S) = lim
−→

Fn(Am), ker(id− S) = 0.

Fact 1.33. If A→ B → C → D → E is exact, then

coker(A→ B) � C → ker(D → E)

is an extension.

Example 1.34. Let e : A → A be an idempotent morphism. Then holim
−→

(A, e : A → A),

A
e−→ A

e−→ A
e−→ . . . is a range object for e and A ' eA⊕ (1− e)A.

There are two questions concerning C*-algebras:
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1. Let
X

β
��

α // Y

β′

��
X ′

α′ // Y ′

be a pullback diagram of C*-algebras, so that

X = {(x′, y) ∈ X ′ × Y |α′(x′) = β′(y)}.

When is this image in KK homotopy Cartesian?

2. Let (An, αn) be an inductive system of C*-algebras. Is lim
−→

(An, αn) also a homotopy
colimit?

Ad 1. Compare X to the homotopy pullback

H = {(x′, y′, y) ∈ X ′ × C(I, Y )× Y | α′(x′) = y′(0), β′(y) = y′(1)}

H is a part of an extension
ΣY ′ � H � X ′ ⊕ Y

which is semisplit. Its class in KK1(X ′ ⊕ Y,ΣY ) ' KK0(X ′ ⊕ Y, Y ′) is (β′,−α′), so H
is a homotopy pullback.

ΣY ′ // // H // // X ′ ⊕ Y

ΣY ′ // // Cα′ // // X ′
OO

OO

ΣY ′ // // H // // X ′ ⊕ Y

ΣY ′ // // Cβ′ // // Y
OO

OO

Definition 1.35. The pullback square is admissible if X → H is a KK-equivalence.

Proposition 1.36. If α′ is a semisplit epimorphism then so is α, and the pullback
square is admissible. Thus we get a long exact sequence

. . .→ Fn(X)→ Fn(X ′)⊕ Fn(Y )→ Fn(Y ′)→ . . .

for any semisplit-exact C*-stable homotopy functor.

Proof. If α′ is semisplit epimorphism, then α is a semisplit epimorphism.

Cα //
α // H // // Y

K // //

OO

X // //

OO

��

Y

��
X // // X ′

α′ // // Y ′
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Cα′ // // Zα′ // // Y ′

X // //

OO

X ′
α′ // //

OO

Y ′

The map X ′ → Zα′ is a homotopy equivalence, and K → Cα′ is a KK-equivalence
because the extension K � X ′ � Y ′ is semisplit. Now use five lemma in KK to get
that X → H is a KK-equivalence.

Ad 2. If all An are nuclear, then lim
−→

(An, αn) is a homotopy colimit.

There is a fourth axiom of triangulated categories which is about exactness properties of
cones of maps.

(TR4)

X
α1 // Y

β1

��

α2 // Z

δ1
���
�
�

α3 // ΣX

X
γ1 // Z

γ2 //

β2

��

V
γ3 //

δ2
���
�
� ΣX

Σα1

��
W

β3

��

W
β3 //

δ3
���
�
� ΣY

ΣY
Σα2 // ΣZ

Given solid arrows so that (α1, α2, α3), (β1, β2, β3), (γ1, γ2, γ3) are exact triangles, we
can find exact triangle (δ1, δ2, δ3) making the diagram commute.

We should warn the reader that the arrows are reversed here compared to the previous
convention.

There are equivalent versions of the axiom (TR4):

(TR4’) Every pair of maps

X
α //

��

Y

X ′

can be completed to a morphism of exact triangles

X //

��

Y //

���
�
� Z // ΣX

��
X ′ // Y ′ // Z // ΣX ′

such that the first square is homotopy Cartesian with differential Y ′ → ΣX ′.

(TR4”) Given a homotopy Cartesian square

X //

��

Y

��
X ′ // Y ′
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and differential δ : Y ′ → ΣX, it can be completed to a morphism of exact triangles

X //

��

Y //

��

Z // ΣX

��
X ′ // Y ′ //

δ

66mmmmmmmmmmmmmm
Z // ΣX ′

Proposition 1.37. The axioms (TR4), (TR4’), (TR4”) are equivalent.

1.5 Localisation of triangulated categories

Roughly speaking localisation enlarges a ring (or a category) by adding inversions of cer-
tain ring elements (or morphisms). However strange things can happen here due to non-
commutativity. Actually in all examples we are going to study the localisation is just a
quotient of the original category.

The motivating example is the derived category of an abelian category, which is defined
as a localisation of its homotopy category of chain complexes. For any additive category A,
the homotopy category of chain complexes in A is a triangulated category. The suspension
is a shift here.

Mapping cones for chain maps behave as in homotopy theory. If f : K → L is a chain
map, then

K
f−→ L→ Cf → K[1]

is a mapping cone triangle. For C*-algebras the contravariance of the functor Spaces →
C∗ − alg, X 7→ C(X) causes confusion about direction of arrows.

If F : A→ A′ is additive functor, then the induced functor

Ho(F ) : Ho(A)→ Ho(A′)

is exact - preserves suspensions and exact triangles.

Example 1.38. Let Σ: T → T be a suspension functor, and

A
u−→ B

v−→ C
w−→ A[1]

an exact triangle. The triangle

A[1]
−u[1]−−−→ B[1]

−v[1]−−−→ C
−w[1]−−−→ A[2]

could be non-exact. To correct it we use an isomorphism

Σ(A[1]) −id−−→ (ΣA)[1]

Passage to the derived category introduces homological algebra. The quasi-isomorphisms
class, that is maps that induce an invertible maps on homology, is the class of morphisms
which should be inverted in derived category.

Example 1.39. The following map is a quasi-isomorphism

0 // Z ·2 // Z //

��

0

0 // 0 // Z/2 // 0
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Definition 1.40. The localisation of a category C in a family of morphisms S is a category
C[S] together with a functor F : C→ C[S−1] such that

1. F (s) is invertible for all s ∈ S

2. F is universal among functors with this property, that is if G : C → C′ is another
functor with G(s) invertible for all s ∈ S, then there is a unique factorisation

C
F //

G ��???????? C[S−1]

∃!
{{xxxxxxxxx

C

In good cases there are some ”commutation relations”. We can introduce also a calculus
of fractions. The pair

•
s
'��~~~~~~~

f

��@@@@@@@

A B

can be rewritten as •
f

��@@@@@@@

A

g
??~~~~~~~

B

In good cases:

• For all f ∈ C, s ∈ S there exist g, t such that tf = gs =⇒ fs−1 = t−1g

• S ◦ S ⊆ S - compositoin of morphisms in S is in S.

• s · t ∈ S =⇒ t ∈ S - cancelation law.

In triangulated categories it is easier to specify which objects should become zero. Indeed for
an exact triangle

A
f−→ B → C → A[1]

if G is an exact functor, then G(f) invertible implies G(C) ' 0.

Definition 1.41. A class N of objects in a triangulated category T is calles thick if it
satisfies the following conditions

1. 0 ∈ N ,

2. If A⊕B ∈ N then A,B ∈ N ,

3. If the triangle A→ B → C → A[1] is exact, and A,B ∈ N , then C ∈ N .

Notice that the object kernel {A ∈ T | G(A) ' 0} of an exact functor satisfies this.

Definition 1.42. Given a thick subcategory N ∈ T an N -equivalence is a morphism in T
which cone belongs to N .

Denote
T /N := T [(N − equivalences)−1]

Theorem 1.43. Given a thick subcategory N in a (small) triangulated category T , the N -
equivalences have a calculus of fractions, T /N is again a trianguleated category, and T →
T /N is an exact functor.
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Definition 1.44. Left orthogonal complement of a class of objects N in T

N⊥ := {P ∈ T | T (P,N) = 0 ∀ N ∈ N}

Definition 1.45. Two thick classes of objects P,N in T are called complementary if

• P ⊆ N `

• For all A ∈ T there is an exact triangle

P → A→ N → P [1], P ∈ P, N ∈ N .

Theorem 1.46. Let (P,N ) be complementary. Then

1. P = N `, N = Pa

2. the exact triangle P → A → N → P [1] with P ∈ P, N ∈ N is unique up to canonical
isomorphism and functorial in A

3. the functors T → P, A 7→ P , T → N , A 7→ N are exact.

4. P → T toT /N and N → T → T /P are equivalences of categories.

Example 1.47. Take Ho(A), A abelian, N = {exact complexes}. If P ∈ A is projective, then
homotopy classes of chain maps P → C• (there is an inclusion A ↪→ Ho(A)) are in bijection
with maps P → Ho(C•).

C1
d1 // C0

d0 // C−1

0 // P //

f

OO

0

Notice that N ` is always thick and closed under direct sums. Subcategories with both
properties are called localising.

Example 1.48. Let P0, P1 be projective in A, and f : P1 → P0. Then its cone

Cf := (. . .→ 0→ P1︸︷︷︸
0

f−→ P0︸︷︷︸
−1

→ 0→ . . .)

Theorem 1.49 (Boekstadt-Neemann). Suppose that A is abelian category with enough pro-
jectives and countable direct sums. Let N ⊆ Ho(A) be the full subcategory of exact chain
complexes, and let P be the localising subcategory generated by the projective objects of
A ↪→ Ho(A). Then (P,N ) are complementary.

The functor P : Ho(A)→ P replaces a module by a projective resolution of the module

P (M) = (. . .→ P2︸︷︷︸
3

→ P1︸︷︷︸
2

→ P0︸︷︷︸
1

→ M︸︷︷︸
0

→ 0→ . . .)

Example 1.50. Let T = KK, N = {A ∈ KK | K∗(A) = 0}. Then C ∈ N ` because
KK∗(C, A) = K∗(A) = 0 for A ∈ N . Let B be the localising subcategory generated by C.

Theorem 1.51. (B,N ) are complementary.
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P : KK→ B replaces a separable C*-algebra by one in the bootstrap class with the same
K-theory.

Let (P,N ) be complementary subcategories. Then

1. P = N `. From the assumption P ⊆ N `. Take A ∈ N ` and embed it into an exact
triangle

P︸︷︷︸
∈P

→ A
0−→ N︸︷︷︸

N

→ P [1]

There is a splitting A→ P , so A is a direct summand of P , hence A ∈ P, because P is
thick.

2. Let A,A′ ∈ T , f : A→ A′. Then there is a map of exact triangles

P // A //

f

��

N // P [1]

P ′ // A′ // N ′ // P ′[1]

with P, P ′ ∈ P, N,N ′ ∈ N .

We use long exact sequence

. . .→ T (P,N ′)︸ ︷︷ ︸
=0

→ T (P, P ′) '−→ T0(P,A′)→ T (P,N ′)︸ ︷︷ ︸
=0

→ . . .

to get P
Pf−→ P ′ in the diagram

P //

Pf

��

A //

f

��

N //

���
�
� P [1]

ΣPf
��

P ′ // A′ // N ′ // P ′[1]

Then use (TR3) to extend (f, Pf ) to a morphism of exact triangles by N
Nf−−→ N ′, which

is unique making the diagram

A //

f
��

N

Nf
��

A′ // N ′

commute.

3. P, N are exact.

From (TR1) there is X in the exact triangle

PA → PB → X → PA[1]

25



From (TR3) we can find X
f−→ C in the diagram

PA

πA

��

// PB

πB

��

// X

f

��

// PA[1]

��
A

��

// B

��

// C

��

// A[1]

��
NA

��

// NB

��

// Cone(f)

��

// NA[1]

��
PA[1] // PB[1] // X[1] // PA[1]

Thus X = PC and Cone(f) = NC and f must be the canonical map PC → C.

T∗(Q, πA) and T∗(Q, πB) are invertible because NA ∈ N , NB ∈ N . Now we use the five
lemma for

T (Q,PA)

'
��

// T (Q,PB)

'
��

// T (Q,X) // T (Q,PA[1])

'
��

// T (Q,PB[1])

'
��

T (Q,A) // T (Q,B) // T (Q,C) // T (Q,A[1]) // T (Q,B[1])

There is an isomorphism PA[1] ' PA[1].

For an exact triangle
P

u−→ A
v−→ N

w−→ P [1]

the triangle
P [1] u−→ A[1] v−→ N [1] −w−−→ P [2]

is exact.
We have seen along the way that T (Q,PA) ' T (Q,A) for all Q ∈ P, which means that

the functor P : T → P is right adjoint to the embedding P ↪→ T .
Define T ′ as the category with the same objects as T and T ′(A,B) := T (PA, PB). Let

F : T → T ′ be the functor that is the identity on objects and P on morphisms. This satisfies
the universal property of T [(N − equivalences)−1]. Notice that PA ' A if A ∈ P. Also
PA → A is an N -equivalence.

If the triangle
A

Pu−→ B
Pv−→ C

Pw−−→ A[1]

is exact in T ′, then the triangle

PA
Pu−→ PB

Pv−→ PC
Pw−−→ PA[1]

is exact in T .
P maps N -equivalences to isomorphisms because P (A) = 0 for A ∈ N . If G maps

N -equivalences to isomorphisms we get

G(PA) //

'
��

G(PB)

'
��

G(A) //___ G(B)
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so T ′(A,B) gives a map G(A)→ G(B).
Let T be triangulated and monoidal, and let P,N be thick subcategories with P⊗T ⊆ P,

N ⊗P ⊆ N . If there is an exact triangle

P → 1→ N → P [1],

where 1 is the tensor unit, P ∈ P, N ∈ N , and P ⊆ N `, then (P,N ) are complementary.
Also for an arbitrary A the triangle

P ⊗A→ 1⊗A→ N ⊗A→ P ⊗A[1],

is exact.
We expect that KKG has a (symmetric) monoidal structure also if G is a quantum group.

Example 1.52. Let G be finite group, A, B algebras with G-coaction (grading). Then A⊗B
carries a diagonal coaction

(A⊗B)g =
⊕
h∈G

Ah ⊗Bh−1g

We want to equip A⊗B with a multiplication that is equivariant for the canonical coaction
of G on A ⊗ B. The usual product does not work, because if a ∈ Ah, b ∈ Bg, then a · b =
b · a ∈ (A ⊗ B)hg but we need b · a ∈ (A ⊗ B)gh. We must therefore impose a commutation
relation that is non-trivial. We define

bg · ah := αg(ah) · bg, for ah ∈ Ah, bg ∈ Bg,

where αg : A → A for g ∈ G is some linear map. Associativity dictates that αg(a1 · a2) =
αg(a1)αg(a2), and αg1αg2 = αg1g2 . It is natural to require also α1 = idA, so that α is an action
of G on A by algebra automorphisms. Finally covariance dictates that αg(Ah) ⊆ Aghg−1 for
all g, h ∈ G.

The extra structure α should always exist on a stabilisation EA := End(A ⊗ C[G]) with
the coaction of G induced by the tensor product coaction on A ⊗ C[G]. Ah ⊗ |δg〉〈δl| maps
(A⊗ C[G])x to Axl−1h ⊗ C[G]g ⊆ (A⊗ C[G])xl−1hg, hence

(EA)g =
∑

x,y,z∈G, x−1yz=g

Ay ⊗ |δz〉〈δx|

Let G act on A⊗C[G] by the regular representation. This induces an action α : G×EA → EA
by conjugation. We check that if x−1yz = h, then

αg(Ay ⊗ |δz〉〈δx|) = Ay ⊗ |δzg−1〉〈δxg−1 | ∈ (EA)gx−1yzg−1 = (EA)ghg−1

Thus EA ⊗B carries a canonical algebra structure.

Even in homological algebra, in Ho(R −Mod) it is not obvious that the exact chain
complexes are part of a complementary pair.

Der(R−Mod) := Ho(R−Mod)/(exact chain complexes)

Recall (L,N ) is complementary if

• Hom(L,N ) = 0
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• For all A ∈ T there exist an exact triangle

L→ A→ N → L[1]

With L ∈ L, N ∈ N .

We will explain a general method for doing homological algebra in a triangulated categories
that also, eventually solves this problem.

Assume we want to understand a triangulated category T . As a probe to explore it, we
use some homological functor F : T → A, where A is some abelian category.

Examples 1.53.

• T = Ho(A), A an abelian category, and F is a homology functor Ho(A)→ AZ.

• T = KK, F = K∗ : KK→ AbZ/2.

• T = KK(C,∆), where (C,∆) is a quantum group, F = K∗ : KK→ AbZ/2.

In the examples above, the target category has its own translation (suspension) automor-
phism, and F intertwines these translation automorphisms, we call F stable if this happens.

Actually, all the relevant information about F is contained in its morphism-kernel

(kerF )(A,B) := {ϕ : A→ B | F (ϕ) = 0}

This is a finer invariant than the object kernel. kerF is called a homological ideal. Using
homological ideal we can carry over various notions from homological algebra to our category
T .

Definition 1.54. Let (Cn, dn) be a chain complex in T . We call it kerF -exact in degree n if

F (Cn+1)→ F (Cn)→ F (Cn−1)

is exact at F (Cn)

Here F is exact, but it depends only on kerF , so we call it kerF -exact.

Definition 1.55. An object A ∈ T is kerF -projective if the functor T (A,−) maps kerF -
exact chain complexes in T to exact chain complexes.

Denote J := kerF .

Lemma 1.56. The following statements are equivalent

1. an object A ∈ T is J -projective

2. for all f ∈ J (B,C) the map T (A,B)
f∗−→ T (A,C) vanishes

3. for all C ∈ T J (A,C) = 0

Definition 1.57. A projective resolution of A ∈ T is a J -exact chain complex

. . .→ P2 → P1 → P0 → A→ 0→ . . .

with Pi J -projective.

Now we can ask the following questions:
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• What are the projective objects in examples?

• Are there many of them? That is does every object have a J -projective resolution?

We use (partially defined) left adjoints to decide this. Let F : T → A be stable homological
with kerF = J . Its left adjoint F` is defined on B ∈ A if there is B′ := F`(B) with
T (B′, D) ' A(B,F (D)) for all D ∈ T , natural in D. This defines a functor on a subcategory
of A.

The functor T (F`(B),−) factors as follows

T F−→ A A(B,−)−−−−−→ Ab

D 7→ F (D) 7→ A(B,F (D))

and therefore vanishes on J = kerF .

Examples 1.58. 1. Let T = Ho(A), F = H∗ : Ho(A) → AZ. Assume that A has enough
projectives. Recall that if P ∈ A is projective, then T (P,C•) = A(P,H∗(C•)). Thus
H`∗ is defined on projective objects of A or AZ and it produces a chain complex with
vanishing boundary map.

2. Let T = KK, F = K∗ : KK→ AbZ/2. Because

KK(C, A) = K∗(A) = Hom(Z,K∗(A))

we have
K`∗ ( Z[0]︸︷︷︸

Z in degree 0

) = C

K`∗ (Z[1]) = C[1] = C0(R)

Left adjoints commute with direct sums, hence K`∗ is defined on free Z/2 graded abelian
groups.

3. Let T = KKZ be an equivariant KK-theory for integers, and F : KKZ → AbZ/2,
F (A,α) = K∗(A). If A ∈ KK, b ∈ KKZ then

KKZ(C0(Z)⊗A,B) = KK(A,B)

More generally, if H ⊆ G is an open subgroup, then

KKG(IndGH A,B) ' KKH(A,ResHG B)

Here we had G = Z, H = {1}.
Since (F ◦ G)` = G` ◦ F`. F` is defined on all free Z/2-graded abelian groups, and
given by

F`(Z[0]) = C0(G), (G = Z)

Proposition 1.59. Let F : T → A be a stable homological functor whose left adjoint is
defined on all projective objects of an abelian category A. If A has enough projectives, then
there are enough kerF -projective objects in T , and any kerF -projective object is a retract of
F`(B) for some projective object B ∈ A.
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Proof. Let D ∈ T , we need B ∈ A projective and a morphism π ∈ T (F`(B), D) such that
F (π) is an epimorphism. This is the beginning of a recursive construction of a projective
resolution. We have

T (F`(B), D) ' A(B,F (D))
ρ∗ ← ρ

We claim that F (ρ∗) is an epimorphism. There is a commutative diagram

FF`(B)
F (ρ∗) // F (D)

B

εB

ccHHHHHHHHH ρ

<< <<zzzzzzzz

where ε : Id→ FF` is a unit of adjointness.

Once we have J -projective resolution, we get J -derived functors. The question is how
to compute them?

There are three conditions:

1. F ◦ F` = idProjA

2. ProjJ
F−→ ProjA

3. {
J − projective resolutions of D ∈ T

up to isomorphism

}
'−→
{

projective resolutions of F (D)
up to isomorphism

}
Example 1.60. Let D ∈ KK, and there is a free resolution of its K-theory

. . .→ 0→ P1
d1−→ P0

d0−→ K∗(D)→ 0

Then
KK(K`∗ (P1),K`∗ (P0)) = HomAbZ/2(P1, P0)

By (2) we can lift d1 to d̂1 : K`∗ (P1)→ K`∗ (P0)

KK(K`∗ (P0), D) ' KK(P0,K∗(D))

d̂0 7→ d0

Then
0→ K`∗ (P1)→ K`∗ (P0)→ 0→ 0

is an J -projective resolution, J = ker(K∗). Both K`∗ (P0) and K`∗ (P1) are direct sums of C
and C0(R), and

K∗(K`∗ (Pj)) = Pj

Hence we have lifted a projective resolution in AbZ/2 to one in KK.

In the nice case where (2) and hance (1) and (3) hold, the derived functors with respect to J
are the same as derived functors in the abelian category A because resolutions are the same.
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Proposition 1.61. Assuming (1), any homological functor, H : T → C induces a right-exact
functor H : A → C, and LjpH = LjpH ◦ F

Extn(T ,J )(D,E) ' ExtnA(F (D), F (E))

Example 1.62. Because

Extn(KK,ker(K∗))
(D,E) = Extn

AbZ/2(K∗(D),K∗(E))

for all n ≥ 1, we have

Ext0
(KK,ker(K∗))

= Hom, Extn(KK,ker(K∗))
= 0

There is a canonical map

T (D,E)/J (D,E) � Ext0
(T ,J )(D,E)

The general feature is that J acts by 0 on all derived functors.

Definition 1.63. Let D ∈ T , (Pn, ∂n) be an J -projective resolution of D. Then Extn(T ,J )(D,E)
is the n-th cohomology of

. . .← sT (Pn, E)← T (Pn−1, E)← . . .← T (P0, E)← 0

For example
Ext0

T ,J = ker(T (P0, E)→ T (P1, E))

P1
// P0

//

  AAAAAAA D //

��

0

E

Assume we want to understand a triangulated category T , that may have nothing to do with
algebra, using the tools from homological algebra. We have been able to define projective
resolutions and thus derived functors. How to achieve F ◦F` = id? Is there abelian category
that describes the derived functors?

Definition 1.64. Let J ⊆ T be a homological ideal. A stable homological functor F : T → A
with kerF = J is called universal (for J ) if any other stable homological functor H : T → A′
with kerH ⊇ J factors through F uniquely up to equivalence.

Theorem 1.65. If the left adjoint F` is defined on all projective objects and F ◦F` = idProjA
then F is universal for kerF .

Conversely, if kerF has enough projectives, and F is universal, then F` is defined on all
projective objects and F ◦ F` = idProjA.

Proof. Assume we have a functor H : T → C

T F //

H   @@@@@@@@ A
H
���
�
�

C

We want to prove that there is a unique H : A → C. There is a following sequence of functors

A → Ho(ProjA) ' Ho(ProjJ ) ⊆ Ho(T ) H−→ Ho(C) H0−−→ C

First functor is taking the projective resolution, on objects B 7→ (Pn, αn).
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Example 1.66. The functor

KKZ → AbZ/2

(D,α) 7→ K∗(D)

is not universal. The universal functor F̃ here is defined on all projective objects and satisfies
F̃ ◦ F̃` = idProj

AbZ/2 . Notice that the Z-action on D induces an action on K∗(D). We enrich
F to a functor

F̃ : KKZ →Mod(Z[Z])Z/2

F̃ (D) := KK∗(C, D) = KKZ(C0(Z), (D,α))

Then ker F̃ and F̃ is universal. Furthermore

HomZ[Z](Z[Z], F̃ (D)) = F̃ (D)

Thus F̃ (Z[Z]) = C0(Z) and F̃ ◦ F̃`(Z[Z]) = Z[Z].

Example 1.67. Take the homology functor

F = H∗ : (R−Mod)→ AbZ

Passing from F to the universal functor for kerF reconstructs H∗ : Ho(R −Mod) → (R −
Mod)Z. The left adjoint H`∗ is defined on projective modules, and H∗ ◦H`∗ = id.

Example 1.68. Let (C,∆) be a discrete quantum group, T = KK(C,∆), F (A,∆A) = K∗(A)
for a separable C*-algebra with coaction ∆A : A→M(A⊗ C).

F is a poor invariant - it forgets too much. Say C = C∗(G) for finite G. Then

KK(C,∆)(C ⊗A,B) ' KK(A,B)

The left adjoint F` is defined on free abelian groups. From Baaj-Skandalis duality

KK(C,∆)(A,B) = KK( bC,b∆)(Ao Ĉ, B o Ĉ)

Ao Ĉ o C ' A⊗K(HC) ∼ A

There turns out to be a canonical Rep(Ĉ)-module structure on K∗(Ao C) =: K bC
∗ (A).

In Baaj-Skandalis duality example

KKZ
∗ (A,B) ' KKU(1)(Ao Z, B o Z)

Let T be a triangulated category (with direct sums), and F : T → A be a stable homo-
logical functor into some abelian category (commuting with direct sums). The left adjoint of
F is defined on all projecive objects in A.

Examples 1.69.

• T = Ho(Ã), F : T → ÃZ, F (C•) = H∗(C•)

• T = KK, F : KK→ AbZ/2, F (B) = K∗(B)

• T = KKZ, F : KK→ AbZ/2, F (B, β) = K∗(B), F`(Z) = C0(Z) with free action of Z
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Let L be the smallest subcategory of T that is thick, contains all kerF -projective objects,
and is closed under direct sums. Let N = {A ∈ T | F (A) = 0}. Then if L ∈ L, N ∈ N
we have T (L,N) = 0 because it holds if L is kerF -projective, and {A | T (A,N) = 0} is
localising. For L, N to be complementary, we need that any B ∈ T can be embedded in an
exact traingle

L→ B → N → L[1], L ∈ L, N ∈ N

Theorem 1.70. If F : T → A commutes with direct sums and T has enough kerF -projectives,
then (L,N ) are complementary.

Example 1.71. For K∗ on KK
L = 〈C〉

N = {B ∈ KK | K∗(B) = 0}

Example 1.72. For K∗ on KKZ

L = 〈C0(Z)〉 = {(B, β) ∈ KKZ | B is the bootstrap class}

The inclusion ⊂ is obvious, and ⊃ is closely related to the Pimsner-Voiculescu sequence and
the Baum-Connes conjecture for Z. We will give a sketch of the proof.

Take (B, β) ∈ KKZ. Look at the extension

C0(R, B) � C0(R ∪ {+∞}, B) � B

Here we have an action of Z on R by translation. This extension does not have an equivariant
completely positive section. But an argument by Baaj-Skandalis shows that it yields an
extension triangle nevertheless.

C0(Z× (0, 1)) � C0(R, B) � C0(Z, B)

If B ∈ 〈C〉, then C0(Z, B) and C0(Z× (0, 1)) belong to 〈C0(Z)〉, hence so does C0(R, B).

Theorem 1.73. C0((−∞,∞], B) ' 0 in KKZ with diagonal action.

This is where the work has to be done. More generally, if (B, β) ∈ KKZ satisfies B ' 0 in
KK, then (B, β) ' 0 in KKZ. Equivalently if f ∈ KKZ(B1, B2) is invertible in KK(B1, B2),
then f is invertible in KKZ.

More generally we can replace Z by any torsion-free (that is without compact subgroups)
a-T-menable locally compact group. It is implied by the proof of the Baum-Connes conjecture
by Higson and Kasparov.

The full proof of the fact that (L,N ) are complementary is in Ralf Meyer, ”Homological
algebra in triangulated category”, part II. We will prove a weaker fact, that is (N `,N ) are
complementary. The proof uses phantom tower (maps in kerF are called phantom maps).

Definition 1.74. Let B ∈ T . Phantom tower is a diagram of the form

B N0

ι10 // N1

ι21 //

~~||||||||
N2

ι32 //

~~||||||||
N3

ι43 //

~~||||||||
. . .

P0

``BBBBBBBB

P1

``BBBBBBBB
oo P2

``BBBBBBBB
oo P3

``BBBBBBBB
oo

(1.6)
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where all Pn are kerF -projective, ιn+1
n ∈ kerF , and all triangles

Nn
ιn+1
n // Nn+1

||yyyyyyyy

Pn

``BBBBBBBB

are exact. This means that the maps Nn+1 → Pn−1 are of degree 1, that is actually Nn+1 →
Pn−1[1]. The bottom row

P0 ← P1 ← P2 ← P3 ← . . .

is a chain complex with differential of degree 1.

Proposition 1.75. Given a phantom tower (1.6), the complex

B ← P0 ← P1 ← P2 ← P3 ← . . .

is a projective resolution. Conversely, any projective resolution embeds uniquely in a phantom
tower.

Proof. The sequence
B ← P0 ← P1 ← P2 ← P3 ← . . .

is kerF -exact. We know that

F∗+1(Nj+1) � F∗(Pj) � F∗(Nj)

is a short exact sequence because F (ιj+1
j ) = 0. The Yoneda product of these extensions is

the chain complex
F (B)← F (P0)← F (P1)← . . .

This is exact as a Yoneda product of extensions. Now take a projective resolution

B ← P0 ← P1 ← P2 ← P3 ← . . .

Recursively construct Nj starting with N0 = B. Now embed Nj ← Pj in an exact triangle

Pj → Nj

ιj+1
j−−→ Nj+1 → Pj [1].

Induction assumption tells that Nj ← Pj is kerF -epimorphism, that is F (Pj)→ F (Nj) is
an epimorphism. Then F (ιj+1

j ) = 0 because F is homological. Now we must lift the boundary
map Pj+1 → Pj [1] to a map Pj+1 → Nj+1. and check that then it is kerF -epimorphism.

In the sequence

T (Pj+1, Nj)→ T (Pj+1, Nj+1)→ T (Pj+1, Pj+1[1])→ T (Pj+1, Nj [1])

the first map is zero, because Pj+1 is projective and ii+1
j is phantom.

Because the composition
Pj+1 → Pj [1]→ Pj−1[2]

vanishes, the boundary map goes to 0 in T (Pj+1, Nj [1]), hence comes from T (Pj+1, Nj+1).
Now routine check that it is an epimorphism.
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Now we will prove that for any B ∈ T there is N ∈ N and a map f : B → N such that

T∗(N,M)→ T∗(B,M)

is invertible for all M ∈ N . Then B 7→ N is a functor T → N that is left adjoint to the
embedding functor N → T . We let N to be the homotopy direct limit of the phantom tower.⊕

j

Nj
id−S−−−→

⊕
j

Nj → holim
−→

Nj →
⊕
j

Nj [1], S =
⊕
j

ij+1
j

Since F commutes with direct sums, and ij+1
j ∈ kerF , F (S) = 0. Therefore F (id−S) = F (id)

is invertible so that F (holim
−→

Nj) = 0.

Let M ∈ N . Then T∗(Pj ,M) = 0 because Pj is kerF -projective. Therefore ij+1
j induces

an isomorphism
T∗(Nj+1,M) '−→ T∗(Nj ,M)

There is an extension

lim
←−

1 T∗−1 // // T∗(holim
−→

Nj ,M) // // lim
←−
T∗(Nj ,M)

0 T∗(N0,M) T∗(B,M)

1.6 Index maps in K-theory and K-homology

Consider the following extension of C*-algebras

I //
i // E

p // // Q

There are long exact sequences in K-theory and in K-homology:

K0(I) // K0(E) // K0(Q)

∂
��

K1(Q)

∂

OO

K1(E)oo K1(I)oo

(1.7)

K0(Q) // K0(E) // K0(I)

δ
��

K1(I)

δ

OO

K1(E)oo K1(Q)oo

(1.8)

and we have pairings between K-theory and K-homology. We will prove that

− 〈∂(x), y〉 = 〈x, δ(y)〉, x ∈ K1(Q), y ∈ K0(I) (1.9)

We will use only formal properties of the boundary maps.

Theorem 1.76. Let

∂ : K1(Q)→ K0(I)

δ : K0(I)→ K1(Q)
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be natural for morphisms of extensions. Then there is ε ∈ {±1} such that

〈∂(x), y〉 = ε〈x, δ(y)〉

for all extensions and all x ∈ K1(Q), y ∈ K0(I).

Remark 1.77. The sign ε is fixed by looking at the extension

K� T � C(S1)

and the generators of K1(C(S1)) = Z, K0(K) = Z.

[K� T � C(S1)] ∈ K1(C(S1)) ' Hom(K1(C(S1))) ' Z

[K� T � C(S1)] 7→ −1 ∈ Z

Even more, up to sign there is only one natural boundary map.

Theorem 1.78. Let ∂ : K∗+1(Q) → K∗(I) be a natural boundary map. Then there is ε ∈
{±1} such that for all extensions ε · ∂ is the composition

K∗+1(Q) ' KK∗+1(C, Q)→ KK∗(C, I) ' K∗(I)

where the middle map is the Kasparov product with the class of the extension in KK1(Q, I).
The same holds in K-homology.

1.7 Mayer-Vietoris sequences

Consider the category of pullback diagrams

I // // A // //

��

B

��
I // // A′ // // B

A natural Mayer-Vietoris sequence is a functor from this category to the category of exact
chain complexes, whose entries are K∗(A), K∗(A′)⊕K∗(B), K∗(B′).

Theorem 1.79. Let d : K∗(B′)→ K∗+1(A) be a boundary map in a natural Mayer-Vietoris
sequence. Then there is a sign ε∗ ∈ {±} such that for any pullback diagram ε · d is the
composition

K∗(B′)
δ// K∗(ker(A′ → B′))

K∗(A) K∗(ker(A→ B))oo

Remark 1.80. To fix sign, one can look at pullback

C0((0, 1)) //

��

0

��
C0((0, 1]) // C

or its suspension.
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Let F be a homological functor on separable C*-algebras, and let d : F1(B′)→ F0(A) be
a natural transformation on pullback diagrams

A // //

��

B

��
A′ // // B′

We compare a given structure to simpler one

ker p′ // //

��

0

��
A′

p′ // // B′

→ A // //

��

B

��
A′ // // B′

F (B′)
d2 // F (ker p′)

F (can)

��
F (B′)

d1 // F (?)

As a consequence, a natural transformation for pullback diagrams reduces to a natural trans-
formation E1(Q)→ F0(I) for extensions

I //
i // E

p // // Q

Next we compare this extension with mapping cylinder extension

I //
i //

��

E
p // //

��

Q

Cp // // Zp // // Q

where
Zp := {(e, q) ∈ E ⊕ C([0, 1], Q) | p(e) = q(1)}

Now there are
F1(Q)

d3 // F0(I)

F (can)
��

F1(Q)
d4 // F0(Cp)

, d3 = F0(can)−1 ◦ d4

If p has a completely positive contractive section, then F0(I) '−→ F0(Cp). Actually if F is
exact, this is true without completely positive contractive section. Then the class of the
extension in KK1(Q, I) is the product of

C0((0, 1))⊗Q ↪→ Cp
'←− I

The map I ↪→ Cp has to be an E-equivalence because it is part of an extension

I // // Cp // // C0((0, 1], Q)

and C0((0, 1], Q) is contractible.
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Next we consider
Cp // // Zp // // Q

SQ

OO

// // C0([0, 1], Q)

OO

// // Q

and

F1(Q)
d4 // F0(Cp)

F1(Q)
d5 // F0(SQ)

F0(can)

OO
, d5 = F0(can)−1 ◦ d4

This is d5 composed with the class of the extension I � E � Q in KK0(SQ, I) or rather
E0(SQ, I) if there is no completely positive contractive section.

Now assume F∗ = K∗. We want to get rid of Q. Now the boundary map for the
cone extension of Q is a natural transformation K1(Q) → K0(SQ). We have naturality
of *-homomorphisms to begin with, but this implies naturality of KK0-morphisms. Any
x ∈ K1(Q) is of the form x̃∗(g), where g ∈ K1(C0(R)) is the canonical generator, and
x̃ ∈ KK0(C0(R), Q).

K1(Q) ' KK0(C0(R), Q)
x 7→ x̃

x K1(Q) d // K0(SQ)

g
_

OO

K1(C0(R)) d //

x̃

OO

K0(SC0(R))

x̃

OO

We conclude that d(x) = (x̃)∗(d(g)), so d is fixed completely once we know d(g) ∈ K0(C0(R2)) =
Z. If we use an exact sequence

K1(C0([0, 1)), C0(R))︸ ︷︷ ︸
=0

→ K1(C0(R))︸ ︷︷ ︸
'Z

'−→ K0(C0(R2))→ 0

we conclude that d(g) has to be a generator of K0(C0(R2)) ' Z, and

K1(Q) ' KK0(C0(R), Q) ' KK0(C, C0(R, Q)) ' K0(C0(R, Q))

x 7→ x̃

We fix natural isomorphisms

K1(Q) ' KK0(C0(R), Q) ' KK0(C, C0(R)⊗Q) ' K1(SQ)

which are unique up to sign. Then d is this isomorphism up to sign.
For the boundary map K0(Q)→ K1(SQ) the same thing happens, but replacing g by the

generator of K0(C).
Let x ∈ K1(Q), y ∈ K0(I).

C→ Q
[E]−−→ I
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Using Kasparov product ◦ we write

∂(x) = ε∂ [E] ◦ x
δ(y) = εδy ◦ [E]

〈x, δy〉 = δ(y) ◦ x = εδ(y) ◦ [E] ◦ x ∈ KK0(C,C) ' Z
〈∂(x), y〉 = y ◦ ∂(x) = ε∂(y) ◦ [E] ◦ x

1.8 Localisation of functors

Assume we have a triangualted category T with ⊕, a localising subcategory N and a class
of objects P such that (〈P〉,N ) is complementary. For example we can take T = KK,
N = {B ∈ KK | K∗(B) = 0}, P = {C}. Furthermore, let F : T → A be a homological
functor commuting with ⊕. Recall that there are functors

P : T → 〈P〉, N : T → N

and natural exact triangles

P (B)→ B → N(B)→ P (B)[1]

Definition 1.81. The localisation of functor F at N , denoted LF , is a functor

F ◦ P : T → A

We may also view this as a functor on T /N . There is a natural transformation LF → F .

Proposition 1.82. LF → F is universal among natural transformations G → F with G
homological and G/N = 0

G //

!!C
C

C
C F

LF

OO

Proof. There is an isomorphism
G(P (B)) '−→ G(B)

and a map
G(P (B))→ F (P (B)) = LF (B)

Roughly speaking, LF is the best approximation to F that vanishes on N .

Corollary 1.83. If LF → F is invertible, then F |N = 0.

Proposition 1.84. Let G,F be homological, commuting with ⊕, G/N = 0, and let Φ: G→ F
be a natural transformation. Then if ΦB is invertible for all B ∈ P, then Φ induces a natural
isomorphism G ' LF .

Proof. We get a transformation Ψ: G→ LF by the previous proposition. Ψ is invertible on
P because LF (B) ' F (B) for B ∈ P. Since G and LF are homological and commuting with
⊕, the class of objects where Ψ is invertible is localising. Hence contains P. It also contains
N because G and LF vanish on N . Thus it contains T .
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Usually we do not expect the map LF → F to be an isomorphism. But sometimes
in noncommutative topology this happens for rather deep reason. For example the Baum-
Connes assembly map is of this form for suitable choice of N and F (B) = K∗(Gor B).

Let T = KKG, G locally compact group. How to chose N ? In the group case the following
choice is most useful

B ∈ N if and only if ResHG (B) ' 0 in KKH , for all compact subgroups H ≤ G

This definition contains the insight that the K-theory for crossed products by compact groups
has to be computes by hand, whereas those for non-compact groups often reduce to compact
groups.

Theorem 1.85. Let T = KKG for a Lie group G, and F (B) = K∗(GorB), N as above. Then
the natural transformation LF → F is naturally isomorphic to the Baum-Connes assembly
map with coeffictients.

Proof. The domain of the Baum-Connes map

Ktop
∗ (G,B) = lim

−→
X⊂EG, X G−compact

KKG(C0(X), B)

has two properties

• it vanishes for B ∈ N

KKG(C0(X), B)→ KK(Gor C0(X), Gor B)→ K∗(Gor B)

• the Baum-Connes assembly map is invertible

Definition 1.86. A G-algebra is called proper Husdorff if there is a proper G-space X and
a continuous G-map Prim(A)→ X (equivalently C0(X)→ A is central).

1.9 Towards an analogue of the Baum-connes conjecture for
quantum groups

The main question is: what are good choices for P, N ? We must choose N , P so that
the resulting assembly map is invertible for ”nice” quantum groups. first approach is to use
restriction functors to all compact quantum subgroups.

Definition 1.87. A quantum group is a C*-algebra A with a comultiplication ∆: A →
A⊗A satisfying certain properties.

A quantum group is compact if A is unital.

Example 1.88. Right now, we had only two examples: groups and their duals

1. A = C0(G)
∆: C0(G)→ C0(G×G), (∆f)(x, y) = f(xy).

2. A = C∗r (G),

∆: C∗r (G)→M(C∗r (G)⊗ C∗r (G)), ∆
(∫

G
f(t)λtdt

)
=
∫
G
f(t)λt ⊗ λtdt.
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Group actions on C*-algebras become coactions of (A,∆)

δB : B →M(B ⊗A)

coassociative plus technical conditions.
Example 1.89.

1. Group actions as usual.

2. Grading by G.

Definition 1.90. A closed quantum subgroup of (A,∆) is a quotient A/I to which ∆ de-
scends.

Example 1.91.

1. Closed quantum subgroups of C0(G) are C0(H) for H ≤ G closed subgroup.

2. Closed quantum subgroups of C∗r (G) are too few. The candidates are C∗r (G/N), where
N ≤ G is a closed normal subgroup.

Many locally compact groups such as GL2(Qp) have many open subgroups but no open
normal subgroup.

Definition 1.92. A quantum homogeneous space for (A,∆) is a C*-subalgebra B of
M(A) that is a left ∆-coideal (∆(B) ⊆M(B ⊗A)). It is proper if B ( A.

Example 1.93.

1. B = C0(G/H), H ⊆ G closed subgroup.

2. C∗r (H), for any closed subgroup of H ⊆ G is even a two-sided Cl-coideal. Proper
homogeneous spaces are open subgroups here.

Let us look at C∗r (G) when G is a compact Lie group. Then the following conditions are
equivalent

1. G is connected.

2. G has no open subgroups.

3. C∗r (G) has no non-trivial proper homogeneous spaces.

But G = SO(3) creates a problem because it has projective representations. G acts on M2(C)

because of the representation of S̃O(3) on C2. G coacts on GorM2(C).
What are particularly simple actions of a quantum group?

C0(G/H) nr G ∼M.E. C
∗(H) '

⊕
π∈ bG

Mdπ(C)

A necessary condition for a torsion coefficient algebra is that the crossed product B nr A be
a sum of matrix algebras (compact operators).

Theorem 1.94. Let G be a locally compact group.

P := {C0(G/H) | H ≤ G, compact}

Ñ = Pa := {B | KKG(P,B) = 0 for all P ∈ P}
The localisation of K∗(G o B) at Ñ and N agree with the domain of the Baum-Connes
assembly map

N = {B | ResHG B ' 0 for all compact H ≤ G}.
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1.10 Quantum groups

Definition 1.95. A quantum group is a C*-algebra A with a comultiplication ∆ ∈ Mor(A,A⊗
A) such that

∆(A)(A⊗A) = A⊗A

∆: A //
��

��

M(A⊗A)

A

::t
t

t
t

t

⊗ = ⊗min, 1A ∈M(A)

and for all a, b ∈ A

∆(a)(1⊗ b) ∈ A⊗A
(a⊗ 1)∆(b) ∈ A⊗A

span{∆(a)(1⊗ b) | a, b ∈ A} is dense inA⊗A
span{(a⊗ 1)∆(b) | a, b ∈ A} is dense inA⊗A

in the compact case, that is when 1A ∈ A we have

(∆ ◦ id) ◦∆ = (id⊗∆) ◦∆

A
∆ //

∆
��

M(A⊗A)

id⊗∆
��

M(A⊗A)
∆⊗id
//M(A⊗A⊗A)

Theorem 1.96. There is a unique state h on A such that

(id⊗ h)∆(A) = h(a)1A = (h⊗ id)∆(a)

Let G be a locally compact quantum group, A = C0(G), (∆f)(x, y) = f(xy). Here
∆ ∈ Mor(A,A⊗A) is induced by the group multiplication µ : G×G→ G. Multiplication µ
is associative if ∆ is coassociative. The conditions

span{∆(a)(1⊗ b) | a, b ∈ A} is dense inA⊗A
span{(a⊗ 1)∆(b) | a, b ∈ A} is dense inA⊗A

can be written as

∃ x µ(xy) = µ(xz) =⇒ y = z

∃ x µ(yx) = µ(zx) =⇒ y = z

On a group Haar measure h satisfies∫
G
f(st)dh(s) =

∫
G
f(s)dh(s)

Definition 1.97. A function h : A+ → [0,∞] such that h(a+b) = h(a)+h(b), h(λa) = λh(a)
for λ ≥ 0 is called a weight.

42



We define

Nh := {a | h(a∗a) <∞} (L2)
Mh := span{a ≥ 0 | h(a) <∞}

= span{a∗b | a, b ∈ Nh}

Then Mh = A (h locally finite), and (id⊗ h)∆(a) = h(a)1A (h lower semicontinuous).
Let ϕ ∈ A∗, a ∈ A. Then

ϕ ∗ a := (id⊗ ϕ)∆(a).

In particular, for ϕ = δt
(ϕ ∗ a)(s) = a(st).

Right invariance of h means that

h(ϕ ∗ a) = h(a)ϕ(1A)

for all ϕ ∈ A∗+ and all a ≥ 0.
We say that h is strictly faithful if

h(a∗a) = 0 =⇒ a = 0.

There exists κ - closed densely defined map A→ A, such that

κ = R ◦ τi/2,

where R is an antiautomorphism, and τi/2 is an analitic extension of a 1-parameter group
(τt)t∈R of automorphisms of A. There exists λ > 0 such that h ◦ τt = λth.

For all ϕ ∈ A∗, ϕ ◦ κ ∈ A and all a, b ∈ Nh

h((ϕ ∗ a∗)b) = h(a∗((ϕ ◦ κ) ∗ b))

Strong right invariance means that

µ(κ⊗ id)∆(a) = ε(1)1A = µ(id⊗ κ)∆(a)

The maps

Φ: a⊗ b 7→ ∆(a)(1A ⊗ b)
Ψ: r ⊗ s 7→ (id⊗ κ)(∆(r))(1⊗ s)

are inverse to each other.
We can embed A in a Hilbert space H and extend Φ, Ψ to

W : H⊗H → H
V : H⊗H → H

Strong right invariance means that W ∗ = V

〈W (a⊗ b), c⊗ d〉 = 〈a⊗ b, V (c⊗ d)〉.
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1.11 The Baum-Connes conjecture

Let G be a torsion-free group, that is without compact subgroups. The Baum-Connes conjec-
ture with coefficients for G means that K∗(GorA) = 0 whenever K∗(A) = 0. If G has torsion,
then the statement is: if K∗(Aor H) = 0 for all H ≤ G compact, then K∗(Aor G) = 0.

Theorem 1.98 (Higson-Kasparov). The Baum-Connes conjecture with coefficients holds for
all amenable groups.

In particular it holds if G = Zn for some n ∈ N.
Let

N := {A ∈ KKG | K∗(AoH) = 0 for all compact H ≤ G}
N ` := {A ∈ KKG | KKG(A,B) = 0 for all B ∈ N}

for a discrete G. Then (N `,N ) are complementary.
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