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1 Universal graph C*-algebras

Let G be a directed graph with

G° — vertices,
G' — edges,
r,s: Gt — G — range and source of an edge.

Definition 1.1. The universal C*-algebra C*(QG) is given by generators
{po[veG} {sc|eeGl},
with the following relations:
e p, are mutually orthogonal projections i.e. p> = p’ = p, and pyp, = 0 for v # w,
® S;Se =DPr(e) and sgsyp =0 fore# f,

e if the set {e | s(e) = v} is nonempty (v is not a sink) and finite then

® SeSp < Py(e)-
Ezxample 1.2. Some known C*-algebras arise in this way.

1. If G is only one vertex, then there is one generator p = p? = p*. In this case C*(G) = C.

®v

Figure 1: C

2. G with one vertex and one edge (loop). Generators:

e

\Y

Figure 2: C(S!)

relations:
s*s=p =55, sp=ps, s=ss"s.

Then
C*(G) = C*(1,u) = C(S1), u — unitary.
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Figure 3: Toeplitz algebra 7
3. G with two vertices and two edges like on the picture (H]).

Do =Dr =Dl DPw = Doy = Dl
S:Se = pv’ S?Sf g pw
Do = SeSs + st;.

C*(@G) is isomorphic to the Toeplitz algebra - the universal C*-algebra for the relation
s*s = 1. The isomorphism is given by s +— s, + 5.

4. G with three vertices and three edges like on a picture ().

Figure 4: C(S2,.)

Do = Do =Dy Puy = Py, = Dy 0 =1,2,
pvai — Oa pw1pw2 - Oa
S:Se =py = 363: + SfIS;1 + SfQS;Q,
5}218f1 = Duwis 5}228/:2 = Dy
C*(@) is isomorphic to the quantum sphere
S2.: B*B=1-A% A=A* BB*=1, BA=0

and the isomorphism is given by

A = Pw; — Pwa>

B —  sp+ sy + 8%,

We denote this graph by G 52
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Figure 5: C(RP;)

5. In the example (@) we glue the vertices wi,wy into one w obtaining graph G like on a
picture (H).

Po =Py = Pyy P = Py = Py
PuPw = 0,
SeSe = Pu = 8¢8c + 81,87 + 5£,8%,,
ST SfH = Dw = S§,5f,-
Define Zs-action on the graph in the example (@).
Se = —S8ey Sfi 't TS8fys Sfy 7 TSH
Then

Pv = Pvs Pwy 7 Pwas Pws 7 Dwy -

This action corresponds to
A— —A B~ —B

under the identification

C*(Ggz_) = C(S3).

If we take the quotient C(S3,,)/Z2 we obtain C(RP}) - quantum projective space.
On the other hand the quotient of the graph C*-algebra C*(ngoo) by the defined
action is the graph C*-algebra for our graph, which we now can denote C*(Gpg pg). The
isomorphism is given by

Dy = Puy Pw 7= DPwy + Puwsys

St SeSey Sfy o Se(Sp +8p), g Sp — Sfy

Note that this Zs action is not induced from a graph automorphism.

6. G with one vertex and n edges like on the picture (@).

\Y

€n

Figure 6: Cuntz algebra O,



r(ex) =slex) =v, k=1,...,n,

n
X _ *
p= Seksek - E Sek86k7
k=1

5¢, 8¢, = 0 for k # k.
When p = 1 then C*(G) is the Cuntz algebra O,, - the universal C*-algebra for the
relations

n
spsp=1, k=1,...n, Zsks;;:l.
k=1

7. G with n vertices and (n — 1) edges in the straight segment as in the picture ().

1 €h-1
0 1

2 n-1 f

Figure 7: M, (C)

sep) =k, r(ex) =k+1fork=1,...,n—1,

Dk = S¢;Se;, Pkl = Sp, 8¢, for k=1,...n—1,

Se, e = 0 for k # k.
C*(@) is the algebra of complex matrices n x n, that is M, (C).

8. Similarly to the previous example we take straight segment, but infinite in both direc-
tions. Vertices are indexed by integers as in the picture (&).

€1 € € €1
e ° ° °o ... o > o
-1 0 1 2

n-1 n

Figure 8: Compact operators

slex) =k, rleg) =k+1, keZ,

* *
pk} = Seksek’ pk}+1 = Sekseka
* /
SepSey = 0 for k # K.

We obtain algebra of compact operators IC, the limit of the algebras in the preceeding
example.

9. G with n vertices and n edges forming a cycle as in the picture ().

s(ex) =k, r(ex)=k+1fork=1,....,n—1, r(e,) =1,
Pk = Sekszkv Pk+1 = S:ksekv
S, Se,, = 0 for k # k.

We obtain algebra of matrices over the algebra of functions on the circle, C*(G)
M, (C(SY).
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Figure 9: M, (C(S1))
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Figure 10: C(SU,4(2))

G with two vertices with loops and connected by one edge.
—* — 2 —
pvi - pvi - pvi’ L= 1) 25 Pvi1Pvy = Oa

ok X *
pUl - 86118611 - 86118611 + 86128611’

* * *
p’U2 - 86228622 - 86128612 - 8622 86227

* _ * _ * _
Sey;Sers = 0, Sey;Sesn = 0, SeypSess = 0.

We obtain C*-algebra for quantum SU(2), that is C'(SU4(2)) ~ C(SUp(2)), which is
generated by two elements a, b satisfying the relations

afa+b'b=1, aa* + ¢*b*b=1,
ab = gba, ab* = qb*a, b*b = bb*.

The isomorphism is given by
* *
a = Sell + 8512’

b —  Sey-

The example (M) can be treated as the C*-algebra of the quantum sphere Sf;’. Now
we present graph C*-algebra for the quantum sphere S; , which is next generalized to
arbitrary odd dimension. We take a graph G with four vertices with loops and each
vertex is connected with all vertices with the greater index as in the picture (). The

C*-algebra for the quantum sphere SZ is generated by the four elements z1, 29, 23, 24



Figure 11: C(S])

satisfying the relations

2127 + 2225 + 2323 + 242

= qziz; for i < g,
= qzz; for i # j,
= 212} + (1 — ¢*) (2225 + 2325 + 242)),

= 22+ (1 ¢*)(2325 + 242)),
= 2325 + (1 — ¢*)zzl,

= 2z,

= 1

For ¢ = 0 we have the isomorphism C*(G) ~ C(S§) given by

zZ1
z9
zZ3 =
Z4

12. As in the example ([[l) we take a graph with n vertices and edge between v; and v; if

8611 + 8612 + 8613 + 86145
Segy T Segz T+ Seaqs
Segs T Sesas

Segqq-

and only if 7 < j as in the picture (I2).

€n-1 &




eij, ] = ’L', ey, S(Sij) = Uy, T(GZ’]') = ’Uj.
The C*-algebra for the quantum sphere Sg”fl is generated by the n elements z1,..., z,
satisfying the relations

zjz; = qziz; for i < g,
ziz = qzz; for i # j,
2y = zzi+(1-¢%) E zjz; | fori=1,...,n,

j>i

For ¢ = 0 we have the isomorphism C*(G) ~ C(Sz"~!) given by
n
Zj Zseij, 1=1,...,n.
j=i

13. We take a similar graph G to the one in the example (), but with infinitely many
paralell edges v; — v; for i < j.

OHONONO

Figure 13: C(CP})

14. We take a similar graph G to the one in the example (), but with infinitely many
paralell edges v; — v; for i < j.

15. If we modify the graph for the quantum sphere Sg by adding two additional vertices
w1, we and edges from each vertex vy, vy, vs to both of the added ones, then we obtain
graph for the sphere Sg as in the picture ([[H).

16. The example (@) can be generalized to arbitrary even dimension just by adding two

vertices wy, wy to the graph of the sphere Sg”_l. We have n + 2 vertices vy, ...,v, and
wi,wy. Edges e;; are from v; to v; whenever ¢ < j and g;, are between v; and wy, for
k = 1,2. More precisely for i = 1,...,n we have

s(eij) =vi, rley) =vj, j=14,...,n,

s(gix) = vi, r(gi) = wg, k=1,2.
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Figure 14: C

Figure 15: C’(Sg)
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Figure 16: C
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Figure 17: C(RPY)

17. In the example ([[O) we identify vertices wy,wy and leave vy, v, v3 unchanged. The
edges are as in the picture. General construction is described in the next example ()

18. In the example ([[H) we identify vertices w;,ws and leave vy,...,v, unchanged. The
edges of the new graph are pairs (h, hs) of edges from ([[H) such that r(hy) = s(hsa)
and r(hg) # wi,ws. Additionally we have edges f;; from v; to w for i = 1,...,n and

k=1,...,n+2—1i. The picture is analogous to the ().

2 Computation of K-theory

The main tool for the computation of K-theory groups of the graph C*-algebras is the fol-
lowing

Theorem 2.1. Let G be a directed graph and let GS)F C G be the collection of vertices that
emit at least one and at most finitely many edges. Let ZG9r and ZG° be the free abelian groups
on free generators Gg and G°. Let Ag: ZGS)r — ZGO be the map defined by the formula

Ag(v) = Z r(e) | —wv.

e€GL, s(e)=v
Then
Ko(C*(G)) =~ coker Ag
Ki(C*(G)) =~ kerAg

The proof of this theorem will be postponed to the section (B, and now we compute the
K-theory groups of the graph C*-algebras for the examples from section ().

Ezample 2.2. 1. K.(C)

G° = {v}
GY =0
Ag: 0 = Z
In this case Ag is from the empty set, but still we can write
Ko(C) = cokerdg = Z
Ki(C) = kerAg = 0

10



2. K,(C(SY)

4. K, (C(S?

5. K. (C(

RP?

G° = {v}
¢ = o)
Aq: 7 — 7

v — v—uv=0

Ko(C(SY) = cokerdg = Z
K (C(S')) = kerAg

I
N

GO = {v,w}
¢ ={v)

Aqg: 2 —- 77

Vo= vF+w—v=w

Ko(7) = cokerAg = Z
Ki(T) = kerAg = 0

GO — {’U,wl,’wg}
GY = {v}

Aqg:Z -7 DL DL

Vv o= UVt wtwy — U= wp + Wy

Ko(C(S3,)) = cokerAg = Z®Z
Ki(C(S2.)) = kerAg =0
G = {v,w}
& = {v)

Aqg: 2 —- 77

v o= v+ 2w —v=2w

Ko(C(RP?)) = cokerAg = Z&Zy
Ki(C(RP}) = kerAg = 0

11
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G = {v}
& = {v)
Ac: 7 — 7

v — nv—v=(n—1w

Ko(O,) = cokerAg = Zp
Ki(0,) = kerAg =0
GY {vi,v2, ..., vn 1}
GS]r = {vy,v2,...,05}
Ag: 72"t > zn
— vl —v fori=1,...,n—1
Ko(M,(C)) = cokerAg = Z
Ki(M,(C)) = kerA¢ = 0
GO {vi | i€z}
G = {v|iez}
Aq: @Z — @Z
1€EZ €L
vi > Vg —v; fori€Z
Ko(K) = cokerdg = Z
Kl(lC) = kerAG = 0

Ramark 2.3. If we take direct product instead of direct sum, then there will be nontrivial

kernel.

9. Ki(M,(S1))

Vi

Un

K
K

GO {vl,vg,...,vn}
G?r = {vl,vg,...,vn}
Aqg: 7" —=7"
— vy —vfori=1,....,n—1,
= U1 — Up
o(M,(SY) = cokerAdg = 7Z
1(Mn(SY) = kerdg = Z
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10. K.(C(SU,(2)))

11. K.(C(S]))

12. K, (C(S21))

13. K.(C(CPy))

Cat
U2
v3

V4

GO = {’1)1,’[)2}
Gg_ = {’1)1,’[)2}

Ac: 2072 —- 7.7

v U U2 — U = U2,

Vo = ’1)2—?)220

Ko(C(SU4(2))) = cokerAg = Z
Ki(C(SU4(2))) = kerAg

Il
N

GY = {v1,v2,v3,v4}
GY = {vi,v2,vs,04}
Ac: 74 - 74

V1 +v2+v3+v4— v =02+ 03+ vy
V2 + U3 + U4 — V2 = V3 + Uy

V3 + V4 — V3 =4

11711

U4—’U4=0

Ko(C(S])) = cokerAg = Z
Ki(C(S1) = kerAg

I
N

G' = {vihzl,...,n}
GS)F = {vi“:l,...,n}

Aq: 7" —=7"
v; E Uj —V; = E ’Uj
jzi J>i

Ko(C(S2"71)) = cokerAg = Z

K(C(S ) = kerdg = Z
G° = {v1,v2,v3,04}
G = 0
Ac: 00— 74
Ko(C(CP})) = cokerAg = Z*
Ki(C(CF}) = kerAdg = 0

13



14. K, (C(CP))

GO = {vi|i:1,...,n}

GY = 0
Ag: 0 = 72"
Ko(C(CP} 1) = cokerAg = 2"
Ki(C(CP 1) = kerAg = 0
15. K.(C(S9))
GO = {’Ul,’UQ,’Ug,wl,’wg}
GY = {v,v2,v3}
Aq: 73 - 77

v > U1+ v+ U3+ w +wy — v = v +v3 4wy + wo
Vg > U2+ 3+ wi + wy — vy =03+ wp + wa

v3 — U3+ wp+ w2 — vz =w; + ws

KO(C(SS)) = cokerAg = ZBL
Kl(C(SS)) = ker Ag =0

16. K.(C(S"))

0
G = {’Ul,...,vn,’wl,’lUQ}
0
Gy = {vi,...,vn}
Aq: 72" — 72
v Y vt wi A wy — v =Y v 4wy 4wy
Jjzi J>i

Ko(C(S7") = cokerAg = Z&1Z
Ki(C(57") = kerAg = 0

17. K.(C(RPP))

GO - {7}177}27’03711)}

GY = {vi,v2,v3}

Aq: 73 > 74

&
1

S
1

&
1

Ko(C(RPP)) = cokerAg =
Ki(C(RF))) = kerAg =

14



18. K, (C(RP™))

G° = {v,...,vp,w}
Gg_ = {’Ul,...,’l)n}

Aq: 7" — VAR

v; — =

Ko(C(RP?")) = coker Ag =
Ki(CRP?") = kerAg =

3 Proof of the theorem (1)

Proof. There are seven steps in the proof, which we will sketch here.

1. Gauge action 7.

’Yz(se) = ZSe,

2. C*(G) x4 U(1) ~ C*(G x Z).
We construct the new graph G x Z

(Gx7Z) = G°x7z,
(GxzZ)} = G'xZ.

It has no loops and
s(e,n) = (s(e),n — 1), r(e,n) = (r(e),n).

Each loop is resolved in the infinite segment

@ e (e'O) (e,l) (e72) (8,3)

v vi-l) 0 1) (v2)  (w.3)

3. C*(G x Z) is AF.
It follows that K;(C*(G x Z)) = 0.

4. Dual action 4.

41 7 — Aut(C*(G) %, U(1))
W ()E) = (x, 1) f(¢t), where f: U(1) — C*(G).

15



5. Takesaki-Takai duality.
(C*(G) x4y U(1)) x5 Z ~ C*(G) x K.
From the stability of K, it follows that

K.((C*(G) 1, U(1)) %5 Z) = K. (C*(@)).

6. Pimsner-Voiculescu sequence.

The Pimsner-Voiculescu sequence is as follows

Ko((C™(G) %7 U(1)) —— Ko((C™(G) x5 U(1)) — Ko((C™(G) x, U(1)) x5 Z)

Ki((C*(G) %7 U(1)) x5 Z) «— K1 ((C*(G) x4 U(1)) ~—— K1 ((C*(G) %, U(1))
where the maps are given by the formulas
K.(C"(G) %, U(1) S0 K (€7(6) %, U(),
K.(C*(G) %, UL) TPk (07(@) 0, U() x5 2),
and the map (: Z — Aut(C*(G x Z)) is given by

ﬁm(p(v,n)) = P(vn+m),
ﬁm(s(e,n)) = S(e,;nt+m)-

Using preceeding computations we can write the sequence as

id — Ko(571) 1-Ko(3™1)

Ko(C™(G x Z)) Ko(CH(G x 7)) Ko(C*(@))

Ki(C™(@)) 0 0

7. Computation of the kernel and cokernel of 1 — Ko(571).
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