
ON RAPIDLY DECREASING DISTRIBUTIONS

JAN KISYŃSKI

Abstract. A connection is established between the two defini-
tions of the space of rapidly decreasing distributions on Rn, one
given by L. Schwartz and the other by J. Horváth.

Introduction

Rapidly decreasing distributions on Rn were defined by L. Schwartz
in the form of a limit space. In the present paper it is proved that
this limit space corresponds to a locally convex space with underly-
ing set denoted by RD which is equipped with a topology denoted
by b̃. J. Horváth’s approach to rapidly decreasing distributions is dif-
ferent. He defines them as the members of the set H of those slowly
increasing distributions on Rn which extend to continuous linear func-
tionals on the inductive limit OC = limµ→∞ Sµ. Here Sµ, µ ∈ [0,∞[, are
some spaces of infinitely differentiable functions on Rn with unbounded
growth as µ→∞.

Chapter 1 of the present paper is devoted to relations between
Schwartz’s and Horváth’s approaches from the point of view of initial
topologies. In Chapter 2, by a purely analytical method, we introduce
in RD the strong convolutional topology which behaves well with re-
spect to the Fourier transformation.

1. Initial topologies in (OC)′ and consequences for RD

I. The J. Horváth space OC. For every µ ∈ R and p ∈ [1,∞[ con-
sider the following Fréchet spaces of infinitely differentiable functions
on Rn:
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Spµ = {φ ∈ C∞(Rn) : for every α ∈ Nn
0 the function

Rn 3 x 7→ (1 + |x|)−µ∂αφ(x) ∈ C belongs to Lp(Rn)},

Sµ =
{
φ ∈ C∞(Rn) : lim

|x|→∞
(1 + |x|)−µ∂αφ(x) = 0 for every α ∈ Nn

0

}
,

S̃µ =
{
φ ∈ C∞(Rn) : sup

x∈Rn
(1 + |x|)−µ|∂αφ(x)| <∞ for every α ∈ Nn

0

}
.

For µ ∈ R, p ∈ [1,∞[ and λ ∈ ]n/p,∞[ one has the continuous imbed-
dings

(1.1) Spµ ↪→ Sµ ↪→ S̃µ ↪→ Spµ+λ,

the proof of which (together with the definitions of the relevant semi-
norms) is postponed to Section III. From [B1, Remark in Sect. II.2.4]
and the imbeddings (1.1) it follows that the three inductive limits
limµ→∞ S

p
µ, limµ→∞ Sµ, limµ→∞ S̃µ define the same locally convex space

of infinitely differentiable functions on Rn, denoted by OC . This space,
in the form OC = lim indµ→∞ Sµ, was introduced by J. Horváth [H,
Sect. 2.12, Example H 9].

If Sµ denotes either Spµ, Sµ or S̃µ, then the equality OC = limµ→∞ Sµ
means that OC is the union

⋃
µ∈[0,∞[ Sµ, equipped with the strongest

locally convex topology such that Sµ ↪→ OC for every µ ∈ [0,∞[.
Let S denote the set of rapidly decreasing infinitely differentiable

functions on Rn. Then S is dense in every Spµ and Sµ for µ ∈ [0,∞[,
and in OC , so that the sets of continuous linear functionals (Spµ)′, (Sµ)′

and (OC)′ are sets of distributions in the sense discussed in Section IV.
It is instructive to look at the inductive limit limµ→∞ Sµ of the filtering
family { Sµ : µ ∈ [0,∞[} of Fréchet spaces from the perspective of
glueing the members of various spaces Sµ in accordance with the general
procedure described in [B1, Sect. I.2.5.].

II. The weight functions (1 + |x|2)−µ/2. In the definitions of the
spaces Spµ, Sµ and S̃µ the weight functions (1 + |x|)−µ where |x|2 =

x21+· · ·+x2n can be replaced by (1+|x|2)−µ/2. The asymptotic behaviour
as |x| → ∞ of (1+ |x|)−µ and (1+ |x|2)−µ/2 is the same. The advantage
of using the latter will be illustrated on the example of the spaces S̃µ.

Lemma 1. Whenever µ ∈ R, then

∂α(1 + |x|2)−µ/2 = (1 + |x|2)−µ/2−|α|Pα(x)

for every multiindex α ∈ Nn
0 and every x ∈ R where Pα is a polynomial

on Rn of degree no greater than |α|.
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This lemma appears in [H, Sect. 2.5, Example 8] and can be proved
by induction on the length |α| of the multiindex α.

Lemma 2. Whenever µ ∈ R, then
S̃µ=

{
φ ∈ C∞(Rn) : sup

x∈R
|∂α[(1+|x|2)−µ/2φ(x)]|<∞ for every α∈Nn

0

}
.

Lemma 2 implies

Theorem 1. Whenever λ, µ ∈ R, then (1 + |x|2)λ/2φ ∈ S̃µ+λ for every
φ ∈ S̃µ, and the mapping

S̃µ 3 φ 7→ (1 + |x|2)λ/2φ ∈ S̃µ+λ
is a linear topological isomorphism of S̃µ onto S̃µ+λ. Similar statements
are true for the spaces Spµ and Sp.

Theorem 1 in the version for the spaces Sµ was proved by J. Horváth
[H, Sect. 2.5, Example 8]. Our proof is essentially the same and differs
only in the organization of the argument.

Proof of Lemma 2. The topology of S̃µ is determined by the system of
seminorms {pα : α ∈ Nn

0} where pα(φ) = supx∈Rn(1 + |x|2)−µ/2|∂αφ(x)|
for φ ∈ S̃µ. By the Leibniz formula and Lemma 1, for every α ∈ Nn

0 ,
φ ∈ S̃µ and x ∈ Rn,

|∂α[(1 + |x|2)−µ/2φ(x)]|

≤
∑

β∈Nn0 , β≤α

α!

β!(α− β)!
|∂α−β(1 + |x|2)−µ/2| · |∂βφ(x)|

≤
∑

β∈Nn0 , β≤α

α!

β!(α− β)!
Kα(1 + |x|2)−µ/2|∂βφ(x)|

≤
∑

β∈Nn0 , β≤α

α!

β!(α− β)!
Kαpβ(φ)

where
Kα = sup

x∈Rn, β∈Nn0 , β≤α
(1 + |x|2)−|α−β||Pα−β(x)| <∞.

It follows that whenever α ∈ Nn
0 , then

qα(φ) = sup
x∈Rn
|∂α[(1 + |x|2)−µ/2φ(x)]|, φ ∈ S̃µ,

is a continuous seminorm on S̃µ, and

(2.1) qα(φ) ≤ Kα

∑
β∈Nn0 , β≤α

α!

β!(α− β)!
pβ(φ)

for every α ∈ Nn
0 and φ ∈ S̃µ.
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Furthermore, whenever µ ∈ R, φ ∈ S̃µ and α ∈ Nn
0 , then

(2.2) pα(φ) = sup
x∈Rn

∣∣∣∣∂α[(1 + |x|2)−µ/2φ(x)]

−
∑

β∈Nn0 , α 6=β≤α

α!

β!(α− β)!
∂α−β[(1 + |x|2)−µ/2∂βφ(x)]

∣∣∣∣
≤ qα(φ) +Kα

∑
β∈Nn0 , α 6=β≤α

α!

β!(α− β)!
sup
x∈Rn

(1 + |x|2)−µ/2|∂βφ(x)|

= qα(φ) +Kα

∑
β∈Nn0 , α 6=β≤α

α!

β|(α− β)!
pβ(φ).

Now we prove, by induction on |α|, the following statement T (α):
there are finite collections {Cα,1, . . . , Cα,kα ] ⊂ ]0,∞[ and
{βα,1, . . . , βα,kα} ⊂ Nn

0 such that
pα(φ) ≤ Cα,1qβα,1(φ) + · · ·+ Cα,kαqβα,kα (φ)

for every φ ∈ S̃µ.
Indeed, the statement T (0) is true because p0(φ) ≡ q0(φ), and if we
suppose that T (α) is true for |α| ≤ k, then (2.2) implies that T (α) is
true whenever |α| ≤ k + 1.

The inequalities (2.1) and (2.2) show that {pα : α ∈ Nn
0} and {qα :

α ∈ Nn
0} are equivalent systems of seminorms on S̃µ. �

III. Proof of the imbeddings (1.1). Let µ ∈ R and p ∈ [0,∞[ be
fixed. For every multiindex α ∈ Nn

0 and every function φ ∈ C∞(Rn) let
ρ̃µ,α(φ) = sup

x∈Rn
(1 + |x|2)−µ/2|∂αφ(x)|,

πpµ,α(φ) =

(∫
Rn

[(1 + |x|2)−µ/2|∂αφ(x)|]p dx
)1/p

.

Then {ρµ,α : α ∈ Nn
0} is a system of seminorms in S̃µ and Sµ defining

the topology in both spaces. Moreover Sµ is a closed subspace of S̃µ
characterized by the property that lim|x|→∞(1 + |x|2)−µ/2∂αφ(x) for
every φ ∈ Sµ and every α ∈ Nn

0 . The system of seminorms {πpµ,α :
α ∈ Nn

0} defines the topology in Spµ.
Let λ ∈ ]n/p,∞[. The imbeddings Spµ ↪→ S̃µ ↪→ Spλ+µ follow at once

from the inequalities

πpλ+µ,α(φ) ≤
(∫

Rn
(1 + |x|2)−λp dx

)1/p

ρ̃µ,α(φ)

for every φ ∈ S̃µ and α ∈ Nn
0
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and
ρ̃µ,α(φ) ≤ cpπ

p
µ,α(φ) for every φ ∈ Spµ and α ∈ Nn

0 .

The first of these inequalities, in which
∫
Rn(1+|x|2)−λp dx <∞ because

λp > n, is easy to prove. The second, in which cp ∈ ]0,∞[ is a constant
independent of µ, α and φ ∈ Spµ, follows immediately by applying to
u(x) = (1 + |x|2)−µ/2∂αφ(x) the Sobolev type imbedding theorem of
[A-F, Theorem 4.18, Part I, Case A].

The imbedding Spµ ⊂ S̃µ having been proved, the imbeddings Spµ ↪→
Sµ ↪→ S̃µ follow from the inclusion Spµ ⊂ Sµ which is a consequence of

lim
|x|→∞

(1 + |x|2)−µ/2∂αφ(x) = 0 for every φ ∈ Spµ and α ∈ Nn
0 .

To prove this last equality, one applies to u(x) = (1 + |x|2)−µ/2∂αφ(x)
the following proposition.

Proposition 1. If u ∈ Wm,p(Rn) where either p = 1 and m = 0, or
p ∈ ]1,∞[, m ∈ N and mp > n, then u is almost everywhere on Rn

equal to a function continuous on Rn, denoted again by u, such that
|u(x)| ≤M‖u‖Wm,p(Rn)

for some M ∈ ]0,∞[ independent of u, and
(3.1) lim

|x|→∞
u(x) = 0.

Proof. Apart from (3.1), the proposition is nothing but [A-F, Theo-
rem 4.18, Part I, Case A] in a special case when the domain Ω with
the cone property is the whole Rn. The equality (3.1) will be proved by
inspecting the proof of the above mentioned theorem from [A-F]. We
shall consider the cases p = 1 and p ∈ ]1,∞[ separately.

Let p = 1 and u ∈ C(Rn)∩W n,1(Rn). Then there is r0 ∈ ]0,∞[ such
that Cx,r ⊂ {y ∈ Rn : |x − y| ≤ r0} for all cones Cx,r occurring in the
inequality (8) of [A-F, Lemma 4.15]. If r ∈ [r0,∞[ and |x| ≥ 2r, then
Cx,r ⊂ Rn \ Br where Br = {x ∈ Rn : |x| ≤ r}. Therefore from that
inequality, replacing every cone Cx,r by Rn \ Br, one infers that there
is M ′ ∈ ]0,∞[ such that

|u(x)| ≤M ′
∑
|α|≤n

∫
Rn\Br

|∂αu(x)| dx whenever r ∈ [r0,∞[ and |x| ≥ 2r.

This inequality implies (3.1) by letting r →∞.
Let now p ∈ ]1,∞[, m ∈ N, mp > n, and u ∈ C(Rn) ∩Wm,p(Rn).

Then there is r0 ∈ ]0,∞[ such that Cx,ρ ⊂ {y ∈ Rn : |x−y| ≤ r0} for all
cones Cx,ρ occurring in [A-F, Section 4.16] in estimates obtained from
(8) there by means of the Hölder inequality. Again if r ∈ [r0,∞[ and
|x| ≥ 2r, then Cx,ρ ⊂ Rn \Br, and one infers from the above mentioned
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estimates that there is L ∈ ]0,∞[ such that whenever r ∈ [r0,∞[ and
|x| ≤ 2r, then

(3.2) |u(x)| ≤ K

[
L
∑

|α|≤m−1

(∫
Rn\Br

|∂αu(x)|p dx
)1/p

+

(∫
Cx,ρ

|x− y|(m−n)q dy
)1/p ∑

|α|=m

(∫
Rn\Br

|∂αu(x)|p dx
)1/p]

where K ∈ ]0,∞[ is the constant from [A-F, Lemma 4.15], and q =
p
p−1 . Since

∫
C0,ρ
|x − y|(m−n)q dy =

∫
C0,5ρ
|y|(m−n)q dy and (m − n)q =

(m − n) p
p−1 > n(1 − p) p

p−1 = −n, the integral
∫
Cx,ρ
|x − y|(m−n)q dy is

independent of x and finite. Therefore it follows from (3.2) that there
is M ′′ ∈ ]0,∞[ such that

|u(x)| ≤M ′′
∑
|α|≤m

(∫
Rn\Br

|∂αu(x)|p dz
)1/p

whenever r ∈ [r0,∞[ and |x| ≥ 2r.

Again, this inequality implies (3.1) by letting r →∞. �

IV. The strong and the weak initial topologies in (OC)′. Denote
by (OC)′ the set of all continuous linear functionals on OC , the latter
being equipped with the topology of the inductive limit limµ→∞ Sµ of
the Fréchet spaces Sµ = Spµ, Sµ or S̃µ. For every µ ∈ [0,∞[ denote by
S′µ the set of all continuous linear functionals on the Fréchet space Sµ.

Let ( Sµ)′b and ( Sµ)′w denote respectively the strong and the ∗-weak dual
space of Sµ.

Since S is dense in OC , it follows that (OC)′ is a set of slowly in-
creasing distributions on Rn. The exact meaning of the above phrase
is as follows: every f ∈ (OC)′ is a continuous linear functional on the
locally convex space OC containing S as a dense subset, so that f is
uniquely determined by f |S which belongs to S ′. See [S, Sect. VI.8,
pp. 199–200].

We define the strong initial topology τb in (OC)′ as the initial topol-
ogy in (OC)′ (see [B1, Sect. I.2.3]) determined by the family of strong
dual spaces ( Sµ)′b, µ ∈ [0,∞[, and the family of projections prµ :
(OC)′ 3 f 7→ f | Sµ ∈ ( Sµ)′, µ ∈ [0,∞[. Every prµ is dual to the con-
tinuous imbedding Sµ ↪→ OC . The locally convex space ((OC)′, τb) is
defined by declaring that if for every µ ∈ [0,∞[ a family Vµ of convex
balanced subsets of ( Sµ)′b is a basis of neighbourhoods of zero in ( Sµ)′b,
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then

(4.1)
{ ⋂
µ∈M

pr−1µ (Vµ) :

M a finite subset of [0,∞[, νµ ∈ Vµ for every µ ∈M
}

is a basis of neighbourhoods of zero in ((OC)′, τb).
Two properties of τb will occur in the forthcoming arguments:

(4.2) If t : E → ((OC)′, τb) is a linear mapping of a locally convex space
E into ((OC)′, τb), then t is continuous if and only if for every
µ ∈ [0,∞[ the mapping prµ ◦ t is continuous (see [B1, Sect. I.2.3,
remarks after Proposition 4], [R-R, Sect. V.4, Proposition 12], [Sf,
Sect. II.5, Theorem 5]).

(4.3) The extremal property: τb is the coarsest among the topologies
τ in (OC)′ such that whenever µ ∈ [0,∞[, then the mapping
prµ : ((OC)′, τ)→ ( Sµ)′b is continuous (see [B1, Sect. I.2.3, Propo-
sition 4]).

The definition and properties of the ∗-weak initial topology τw in
(OC)′ are similar.

The initial topologies τb and τw as S-topologies. The initial topologies
τb and τw in (OC)′ appear to be S-topologies, i.e. topologies of uni-
form convergence on members of some coverings of OC by its bounded
subsets.

In order to exhibit the covering of OC corresponding to the S-
topology τb in (OC)′, for every µ ∈ [0,∞[ denote by Bµ the family
of all bounded subsets of Sµ. Denote by ◦µ the forward polar in the
sense of the duality 〈 Sµ, ( Sµ)′〉, and let ◦ stand for the forward polar in
the sense of the duality 〈OC , (OC)′〉. Consider the continuous imbed-
ding t : Sµ ↪→ OC , and let t′ : (OC)′ → ( Sµ)′b be its adjoint mapping.
Then, by [R-R, Sect. II.6, Lemma 6],
(4.4) pr−1µ (B◦µ) = (t′)−1(B◦µ) = (t(B))◦ ≈ B◦ for every B ⊂ Sµ.

Henceforth we follow the proof of [R-R, Sect. V.4, Proposition 15].
Since

Vµ = {B◦µ : B ∈ Bµ}

is a basis of neighbourhoods of zero in ( Sµ)′b, it follows that{ ⋂
µ∈M

pr−1µ (B◦µ) :

M a finite subset of [0,∞[, Bµ ∈ Bµ for every µ ∈M
}
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is a basis of neighbourhoods of zero in the locally convex space
((OC)′, τb). By (4.4) this basis can be rewritten in the form{( ⋂

µ∈M

Bµ

)◦
: M a finite subset of [0,∞[, Bµ∈Bµ for every µ∈M

}
.

Since from a basis of neighbourhoods of zero we can remove every set
larger than some other set belonging to that basis, we conclude that

{C◦ : C ∈ Ub} where Ub =
⋃

µ∈[0,∞[

Bµ

is a basis of neighbourhoods of zero in ((OC)′, τb). This means that τb
is a S-topology in (OC)′ determined by the covering Ub of OC . All the
sets belonging to Ub are bounded subsets of OC because any of them
belongs to a certain Bµ, so that it is a bounded subset of Sµ, and since
Sµ ↪→ OC , it is also a bounded subset of OC . Therefore Ub is a covering

of OC by bounded subsets of OC . Summing up, we get the following

Theorem 2 (A. P. Robertson and W. Robertson). The topology τb in
the set (OC)′ of continuous linear functionals on OC is equal to the
S-topology corresponding to the covering Ub =

⋃
µ∈[0,∞[ Bµ of OC.

Similarly, τw is a S-topology in (OC)′ determined by the covering
Uw of OC , where Uw =

⋃
µ∈[0,∞[ Fµ, Fµ being the family of all finite

subsets of Sµ.

Equivalence of τw and the ∗-weak topology in (OC)′. By [Sf, Sect. IV.4,
Theorem 4.5] the ∗-weak topology in (OC)′ is equivalent to the initial
topology τw.

This equivalence can be deduced from the extremal property of τw
and from [R-R, Sect. V.4, Proposition 15]. Indeed, whenever µ ∈ [0,∞[,
then Sµ ↪→ OC , so that the mapping prµ : (OC)′ 3 φ 7→ φ| Sµ ∈ ( Sµ)′ is
continuous. Comparing this with the extremal property of τw we infer
that in (OC)′ the ∗-weak topology is finer than τw. On the other hand,
by [R-R, Sect. V.4, Proposition 15], a subset A of OC belongs to Uw if
and only if A∩ Sµ is finite for every µ ∈ [0,∞[. Thus the covering of OC
by its finite subsets is finer than Uw, whence, of the two S-topologies,
the ∗-weak topology in (OC)′ is coarser than τw.

V. The set RD of rapidly decreasing distributions on Rn and
the locally convex spaces (RD, b̃) and (RD, w̃). Whenever µ ∈
[0,∞[, then S is dense in the Fréchet space S1

µ, and so any distribution
T ∈ S ′ has at most one extension to a continuous linear functional
on S1

µ. If such a unique extension exists, it will be denoted by Tµ.
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The set RD of rapidly decreasing distributions on Rn is defined as
follows:
RD := {T ∈ S ′ : for every µ ∈ [0,∞[

the distribution T extends uniquely to Tµ ∈ (S1
µ)′}.

The locally convex topology b̃ (resp. w̃) is induced in RD from the
topological product

∏
µ∈[0,∞[(S

1
µ)′b (resp.

∏
µ∈[0,∞[(S

1
µ)′w) via the map-

ping

RD 3 T 7→ (Tµ)µ∈[0,∞[ ∈
∏

µ∈[0,∞[

(S1
µ)′b

(
resp.

∏
µ∈[0,∞[

(S1
µ)′w

)
(see [B1, Sect. I.2.3, Example III], [R-R, Sect. V.5]). It follows that

(5.1) a net (Tι)ι∈J ⊂ RD is convergent in the topology b̃ (resp. w̃) if
and only if for every µ ∈ [0,∞[ the net of extensions ((Tι)µ)ι∈J is
convergent in the topology of (S1

µ)′b (resp. (S1
µ)′w).

Recall that J. Horváth defined the rapidly decreasing distributions
as members of the set
H = {T ∈ S ′ : T has a unique extension

to a continuous linear functional T̃ on OC},
the continuity being understood in the sense of the inductive topology
in OC = limµ→∞ S

1
µ. J. Horváth did not discuss any topology in H.

Theorem 3. H = RD.

Proof of H ⊂ RD. We have to prove that if a distribution T belongs
to H, then for every µ ∈ [0,∞[ the distribution T extends uniquely to
a continuous linear functional Tµ on S1

µ. To this end define Tµ := T̃ |S1
µ
.

Then Tµ ∈ (S1
µ)′ because S1

µ ↪→ OC , and Tµ|S = T because Tµ|S =

(T̃ |S1
µ
)|S = T̃ |S = T . Moreover, since S is dense in S1

µ, the extension Tµ
is unique. �

Proof of RD ⊂ H. Let T ∈ RD. Keep T fixed throughout the present
proof. Let (Tµ)µ∈[0,∞[ ∈ ×µ∈[0,∞[(S

1
µ)′ be the system of extensions of T

occurring in the definition of RD. Then
(5.2) whenever 0 ≤ µ < ν <∞, then Tµ is a restriction of Tν .
Indeed, if 0 ≤ µ < ν < ∞, then S1

µ ↪→ S1
ν , so that Tν |S1

µ
∈ (S1

µ)′. Fur-
thermore, since S is dense in S1

µ, it follows that Tν |S1
µ
is the unique ex-

tension of T to a continuous linear functional on S1
µ, so that Tν |S1

µ
= Tµ.

We are going to construct the extension of the distribution T ∈ RD
to a continuous linear functional T̃ on OC . To this end we shall use the
following facts:
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1o as a set, OC is equal to
⋃
µ∈[0,∞[ S

1
µ,

2o when µ ∈ [0,∞[ increases, the spaces S1
µ increase in the sense of

inclusion,
3o OC is equipped with the inductive topology determined by the

Fréchet spaces S1
µ.

From 1o and (5.2) it follows that there is a unique function T̃ on OC
such that
(5.3) T̃ (φ) = Tµ(φ) for every µ ∈ [0,∞[ and φ ∈ S1

µ.

From 1o, 2o and (5.3) it follows that for every µ ∈ [0,∞[ the restriction
of T̃ to S1

µ is equal to a continuous linear functional Tµ on S1
µ, so that

T is an algebraic linear functional on OC . From 3o and (5.3) it follows
that T̃ is a continuous linear functional on OC with respect to the
inductive topology of OC .

Again by (5.3), whenever µ ∈ [0,∞[, then T̃ is an extension of Tµ.
Since Tµ is an extension of T , it follows that T̃ is an extension of T .
Finally, since S is dense in OC , it follows that T̃ is the unique extension
of T to a continuous linear functional on OC , so T ∈ H. �

Remark. For every µ ∈ [0,∞) denote byCµ the subset ofC(Rn) consist-
ing of functions g such that supx∈Rn |x|µ|g(x)| <∞. For any µ ∈ [0,∞[,
the set (S1

µ)′ consists of all distributions of the form
∑
|α|≤mν ∂

αgα,µ
where mµ ∈ N0, gα,µ ∈ Cµ for |α| ≤ mν , and differentiation is under-
stood in the sense of distributions (see [G-L, Sect. 5, Exercise after
Theorem 5.4], [K-R, Sect. 3, Theorem 3.4]). It follows that⋂

µ∈[0,∞[

(S1
µ)′ =

⋂
ν∈[0,∞[

⋃
µ∈[ν,∞[

(S1
µ)′(5.4)

=
{
T ∈ S ′ : ∀

ν∈[0,∞[
∃

µ∈[ν,∞[

(
T =

∑
|α|≤mµ

∂αgα,µ

)}
.

The complete proofs of the above assertions are omitted. The equality
(5.4) yields a new proof of [S, Sect. VII.5, Theorem IX.10].

VI. Derivation of the locally convex spaces (RD, b̃) and (RD, w̃)
from the locally convex spaces ((OC)′, τb) and ((OC)′, τw). Recall
that RD = H and if T ∈ H, then T̃ denotes the unique extension of T
to a continuous linear functional on OC .
Lemma 3. ε : H 3 T 7→ T̃ ∈ (OC)′ is a one-to-one mapping of H
onto (OC)′.

Proof. Since S is dense in OC , for every T ∈ H there is exactly one
T̃ ∈ (OC)′ extending T . Since S ↪→ OC , it follows that if T̃ ∈ (OC)′,
then T̃ |S ∈ S ′, so that T̃ |S ∈ H. �
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Theorem 4. There are isomorphisms of locally convex spaces (H, ε−1τb)

≈ ((OC)′, τb) ≈ (RD, b̃) and (H, ε−1τw) ≈ ((OC)′, τw) = (OC)′w ≈
(RD, w̃). Here ε−1τb and ε−1τw denote the inverse images of the topologies
τb and τw under the mapping ε.

Proof. The proofs of the two sequences of isomorphisms being similar,
we shall limit ourselves to the first. By Lemma 3 the one-to-one linear
mapping ε of H onto (OC)′ yields a linear homeomorphism of the lo-
cally convex space (H, ε−1τb) onto the locally convex space ((OC)′, τb).
The phrase “linear homeomorphism of locally convex spaces” used by
H. Jarchow [J] means “isomorphism of locally convex spaces” in com-
mon terminology.

It remains to prove that ((OC)′, τb) is isomorphic to (RD, b̃). To that
end, consider a net (T̃ι)ι∈J ⊂ (OC)′ and the associated net (Tι)ι∈J =
(ε−1T̃ι)ι∈J ⊂ H = RD. Whenever µ ∈ [0,∞[, then
(6.1) ((Tι)µ)ι∈J = (T̃ι|S1

µ
)ι∈J

because, by the imbedding S1
µ ↪→ OC , T̃ι|S1

µ
is an extension of Tι to a

continuous linear functional on S1
µ, and the extension is unique, so that

it must be equal to (Tι)µ. By (5.1) and (6.1), the net (T̃ι)ι∈J ⊂ (OC)′

converges in the topology τb if and only if (Tι)ι∈J ⊂ RD converges
in the topology b̃. This shows that the mapping ε−1 : (OC)′ 3 T̃ 7→
T ∈ H = RD is a linear homeomorphism of the locally convex space
((OC)′, τb) onto the locally convex space (RD, b̃). �

VII. Relation of the locally convex space (RD, b̃) and the set
H to the rapidly decreasing distributions on Rn in the sense
of L. Schwartz and in the sense of J. Horváth. L. Schwartz [S,
Sect. VII.5], without using OC , defined the limit space O′C of rapidly
decreasing distributions on Rn by two conditions:
(a) as a set, O′C is equal to {T ∈ S ′ : (1+ | · |2)µ/2T ∈ (DL1)′ for every

µ ∈ [0,∞[},
(b) a net (Tι)ι∈J ⊂ O′C converges if and only if for every µ ∈ [0,∞[

the net ((1 + | · |2)µ/2Tι)ι∈J converges in the topology of (DL1)′b.
For a general explanation of the notion of limit space see [F] and [J,
Chapter 9].

Theorem 5. As a set, the limit space O′C of L. Schwartz is equal
to RD. A net (Tι)ι∈J ⊂ RD converges in the sense of L. Schwartz if
and only if it converges in the topology b̃.

Proof. By Theorem 1, whenever µ ∈ [0,∞[, the mapping S1
0 3 φ 7→

(1 + |x|2)µ/2φ ∈ S1
µ is a linear homeomorphism of the Fréchet space
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S1
0 onto the Fréchet space S1

µ. It follows that a distribution T ∈ S ′
satisfies condition (a) of L. Schwartz if and only if, for each µ ∈ [0,∞[,
it extends uniquely to Tµ ∈ (S1

µ)′. Thus condition (a) is satisfied if
and only if T ∈ RD. Furthermore, a net (Tι)ι∈J ⊂ RD converges in the
sense of L. Schwartz, i.e. for every µ ∈ [0,∞[ the net ((1+ |x|2)µ/2Tι)ι∈J
converges in the topology of (DL1)′b = (S1

0)′b, if and only if for every
µ ∈ [0,∞[ the net of extensions ((Tι)µ)ι∈J ⊂ (S1

µ)′ converges in the
topology of (S1

µ)′b. By (5.1), the latter holds if and only if the net
(Tι)ι∈J ⊂ RD is convergent in the topology b̃. �

J. Horváth [H, Sect. 4.11, p. 420] defined the rapidly decreasing dis-
tributions on Rn as members of the set H, without explicitly discussing
the topology. But H = RD by Theorem 3, and (RD, b̃) ≈ (H, ε−1τb)
by Theorem 4.

2. The strong convolutional topology in RD

VIII. Characterization of rapidly decreasing distributions by
their convolutions with functions belonging to S.

Theorem 6 (R. E. Edwards [E]). For every slowly increasing distri-
bution T on Rn the three conditions are equivalent:

1o T ∈ RD,
2o whenever ϕ ∈ S, then T ∗ ϕ ∈ S,
3o [T ∗]|S ∈ L(S,S).

Theorem 6 is quoted in [G-L, Sect. 7•.2] as Theorem 7•.2.2 without
any reference. R. E. Edwards’ original proof bases on Fourier trans-
formation, and in particular on L. Schwartz’s Theorem XV from [S,
Sect. VII.8] whose proof is incomplete (see L. Schwartz’s own remarks
in [S, pp. 269–270]). We shall obtain the equivalence 1o⇔3o as an im-
mediate consequence of Proposition 2 below, the Fourier-theoretical
proof of 3o⇔2o being postponed to Section X.

Following [Kh, Vol. 2, Sect. CC.III.30], by a periodic partition of unity
on Rn we mean a partition of unity {ϕ(·+z) : z ∈ Zn} = {ϕz : z ∈ Zn}
consisting of translates of a non-negative function ϕ in C∞c (Rn).

Proposition 2. For every set {Tι : ι ∈ J} ⊂ S ′ the following condi-
tions are equivalent:
(a) every Tι has a unique extension to a continuous linear functional

T̃ι on OC and {T̃ι : ι ∈ J} is an equicontinuous set of linear
functionals on OC.

(b) {[Tι ∗]|S : ι ∈ J} is an equicontinuous set of operators belonging
to L(S,S),
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(c) whenever {ϕz : z ∈ Zn} is a periodic partition of unity on Rn,
then ∑

z∈Zn
sup
ι∈J
|Tι(ϕzφ)| <∞ for every φ ∈ OC .

For the application in the proof of Theorem 6 it is not necessary to
consider in Proposition 2 sets of distributions and operators, but just
a single distribution and operator. However, in subsequent sections we
shall use (a) and (b) in their version for sets.

We shall prove (a)⇒(b)⇒(c)⇒(a). To this end, in the domain of
C∞-functions φ on Rn, we shall use the seminorms

ρµ,α(φ) = sup
x∈Rn

(1 + |x|)−µ|∂αφ(x)|.

For instance, the family of seminorms {ρ−µ,α : µ ∈ N0, α ∈ Nn
0} de-

termines the topology of S, and for every fixed µ ∈ R the family
of seminorms {ρµ,α : α ∈ Nn

0} determines the topology of S̃µ. The
seminorms ρµ,α are invariant with respect to reflection at zero, i.e.
ρµ,α(φ∨) = ρµ,α(φ).

Proof of (a)⇒(b).1 Whenever µ ∈ [0,∞[, then S̃µ ↪→ OC . Therefore
(a) implies that
(a)′ whenever µ ∈ [0,∞[, then {T̃ι|S̃µ : ι ∈ J} is an equicontinuous

set of continuous linear functionals on the Fréchet space S̃µ.
From (a)′ it follows that for every µ ∈ [0,∞[ there are Cµ ∈ ]0,∞[ and
νµ ∈ N0 such that

sup
ι∈J
|T̃ι(φ)| ≤ Cµ sup

|α|≤νµ
ρµ,α(φ) for every φ ∈ S̃µ.

Consequently, whenever x ∈ Rn, ϕ ∈ S and µ ∈ [0,∞[ then
sup
ι∈J
|(T̃ι ∗ ϕ)(x)| = sup

ι∈J
|(T̃ι)(y)(ϕ(x− y))| = sup

ι∈J
|(Tι)(y)(ϕ(x− y))|

= sup
ι∈J
|(T̃ι|S̃µ)(y)(ϕ(x− y))|

≤ Cµ sup
|α|≤νµ

sup
y∈Rn

(1 + |y|)−µ|(∂αϕ)(x− y)|

≤ Cµ sup
|α|≤νµ

sup
y∈Rn

(1 + |y|)−µ[ρ−µ,α(ϕ)(1 + |x− y|)−µ]

≤ Cµ sup
|α|≤νµ

ρ−µ,α(ϕ)(1 + |x|)−µ

where the last inequality follows from 1+|x| ≤ (1+|y|)(1+|x−y|). The
above estimate implies that for every µ ∈ [0,∞[ there are Cµ ∈ ]0,∞[

1We give a slightly polished version of the proof of Proposition 2 published earlier
in a preprint of Institute of Mathematics, Polish Academy of Sciences.
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and νµ ∈ N0 such that

sup
ι∈J

ρ−µ,0(Tι ∗ ϕ) ≤ Cµ sup
|α|≤νµ

ρ−µ,α(ϕ) for every ϕ ∈ S.

Applying this to ∂βϕ in place of ϕ, we infer that

sup
ι∈J

ρ−µ,β(Tι ∗ ϕ) ≤ Cµ sup
|α|≤νµ

ρ−µ,α+β(ϕ) for every ϕ ∈ S and β ∈ Nn
0 .

It is obvious that {sup|β|≤λ ρ−µ,β : µ ∈ [0,∞[, λ ∈ N0} is a filtering (see
[B2, Sect. II.5.4, Remark after Proposition 4]) system of seminorms
determining the topology of S. Therefore for neighbourhoods of zero
in S the following holds: for every µ ∈ [0,∞[ and λ ∈ N0 there are
Cµ ∈ ]0,∞[ and ν ∈ N0 such that whenever ϕ ∈ S and ε ∈ ]0,∞[, then

Cµ sup
|α+β|≤ν+λ

ρ−µ,α+β(ϕ) ≤ ε ⇒ sup
ι∈J

sup
|β|≤λ

ρ−µ,β(Tι ∗ ϕ) ≤ ε

(see [K-A, Sect. III.2.1, Theorem 1]). The last implication means that
{[Tι ∗]|S : ι ∈ J} is an equicontinuous subset of L(S,S). �

Proof of (b)⇒(c). Let {ϕz : z ∈ Zn} be a periodic partition of unity
on Rn, and let (Tι)ι∈J ⊂ S ′. Since [Tι∗ψ](x)=Tι((ψx)

∨) and (((ψx)
∨)x)

∨

= ψ, it follows that [Tι ∗ (ψx)
∨](x) = Tι((((ψx)

∨)x)
∨) = Tι(ψ). If φ ∈

C∞(Rn), then taking ψ = φϕ−z and x = z, one obtains Tι(φϕ−z) =
[Tι ∗ (φzϕ)∨](z). Hence

|Tι(φϕ−z)| ≤ |[Tι ∗ (φzϕ)∨](z)(8.1)

≤
(

sup
x∈Rn

(1 + |x|)κ|[Tι ∗ (φzϕ)∨](x)|
)
· (1 + |z|)−κ

= ρ−κ,0(Tι ∗ (φzϕ)∨) · (1 + |z|)−κ

for all φ ∈ C∞(Rn), κ ∈ [0,∞[ and z ∈ Zn.
Assume now that (b) holds and let φ ∈ C∞(Rn). Then, for every

κ ∈ [0,∞[,

pκ(ψ) = sup
ι∈J

ρ−κ,0(Tι ∗ ψ∨), ψ ∈ S,

is a continuous seminorm on S. Therefore there are Cκ ∈ ]0,∞[, λκ ∈
[0,∞[ and νκ ∈ N0 such that

(8.2) pκ(ψ) ≤ Cκ sup
|α|≤νκ

ρ−λκ,α(ψ) for every ψ ∈ S.
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From (8.1) and (8.2) it follows that

sup
ι∈J
|Tι(φϕ−z)|

≤ sup
ι∈J

ρ−κ,0(Tι ∗ (φzϕ)∨) · (1 + |z|)−κ = pκ(φzϕ) · (1 + |z|)−κ

≤ Cκ sup
|α|≤νκ

ρ−λκ,α(φzϕ) · (1 + |z|)−κ

= Cκ sup
x∈Rn, |α|≤νκ

(1 + |x|)λκ|∂α[φ(x+ z)ϕ(x)]| · (1 + |z|)−κ

≤ Cκ(1 + r)λκ sup
x∈Rn, |α|≤νκ

|∂α[φ(x+ z)ϕ(x)]| · (1 + |z|)−κ

where
r = sup{|x| : x ∈ suppϕ}.

From these estimates, by the Leibniz formula, it follows that if con-
dition (b) of Proposition 2 is satisfied, then for every φ ∈ C∞(Rn),
z ∈ Zn and κ ∈ [0,∞[ one has
(8.3) sup

ι∈J
|Tι(φϕ−z)| ≤ Dκ sup

x+z∈ suppϕ, |α|≤νκ
|∂αφ(x+ z)| · (1 + |z|)−κ

where Dκ = LCκ(1 + r)λκ supx∈suppϕ, |α|≤νκ |∂αϕ(x)|, L being the max-
imum of the coefficients in the Leibniz formula. The only important
thing is that Dκ is a finite non-negative constant depending only on κ.

Till now we have assumed that (b) holds and φ ∈ C∞(Rn). Hence-
forth we shall assume that (b) holds and φ ∈ OC . Since, as a set,
OC =

⋃
µ∈[0,∞[ S̃µ, it follows that to every φ ∈ OC we can assign

µ = µ(φ) ∈ [0,∞[ such that φ ∈ S̃µ. Then, for every z ∈ Zn,
sup

x+z ∈ suppϕ, |α|≤νκ
|∂αφ(x+ z)| ≤ sup

|x|≤r, |α|≤νκ
|∂αφ(x+ z)|

≤ sup
|α|≤νκ

ρµ,α(φ)(1 + r + |z|)µ

≤ sup
|α|≤νκ

ρµ,α(φ)(1 + r)µ(1 + |z|)µ,

and so from (8.3) it follows that
(8.4) sup

ι∈J
|Tι(φϕ−z)| ≤ Dκ(1 + r)µ sup

|α|≤νκ
ρµ,α(φ)(1 + |z|)µ−κ.

Now fix a ∈ ]n,∞[. Given φ ∈ OC , choose κ = a+ µ(φ). From (8.4) it
follows that
(8.5) sup

ι∈J
|Tι(φϕ−z)| ≤M(φ)(1 + |z|)−a for every z ∈ Zn,

where
M(φ) = Dκ(1 + r)µ sup

|α|≤νκ
ρµ,α(φ) <∞.
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Condition (c) of Proposition 2 follows from (8.5) once it is shown that
the series

∑
z∈Zn(1+|z|)−a is convergent. To check this, fix ρ ∈ [n1/2,∞[

and for every z ∈ Zn define Bz := {x ∈ Rn : |x − z| ≤ ρ}. Then
{Bz : z ∈ Zn} is a covering of Rn. If x ∈ Bz, then 1+ |x| ≤ 1+ |z|+ρ ≤
(1 + |z|)(1 + ρ), so that (1 + |z|)−a ≤ (1 + ρ)a(1 + |x|)−a. Hence

(1 + |z|)−a ≤ V −1(1 + ρ)a
∫
Bz

(1 + |x|)−a dx for every z ∈ Zn,

where V is the volume of Bz, independent of z. It follows that∑
z∈Zn

(1 + |z|)−a ≤ KV −1(1 + ρ)a
∫
Rn

(1 + |x|)−a dx <∞,

where K denotes the order of the covering {Bz : z ∈ Zn} of Rn. �

Proof of (c)⇒(a). Suppose that (c) holds. We shall construct the ex-
tensions T̃ι of the distributions Tι by the series expansions
(8.6) T̃ι(φ) :=

∑
z∈Zn

Tι(φϕz), φ ∈ OC ,

where {ϕz : z ∈ Zn} is a periodic partition of unity on Rn. For every
ι ∈ J , k ∈ N, and φ ∈ OC let

T̃ι,k(φ) :=
∑
|z|≤k

Tι(φϕz).

Then
(8.7) each T̃ι,k is a continuous linear functional on OC ,
because the sum T̃ι,k is finite and for every fixed z ∈ Zn the mapping
OC 3 φ 7→ φϕz ∈ C∞c is continuous. Whenever ι ∈ J and φ ∈ OC are
fixed, then, by the definition (8.6), the sequence (T̃ι,k(φ))k∈N of complex
numbers is convergent and
(8.8) lim

k→∞
T̃ι,k(φ) = T̃ι(φ).

As the inductive limit of Fréchet (and hence barrelled) spaces, OC is a
barrelled space. Furthermore, from (c) and (8.8) it follows that when-
ever φ ∈ OC is fixed, then {T̃ι,k(φ) : ι ∈ J, k ∈ N} and hence also
{T̃ι(φ) : ι ∈ J} are bounded subsets of C. Since OC is barrelled, from
boundedness of {T̃ι(φ) : ι ∈ J} for every fixed φ ∈ OC and from the
generalized Banach–Steinhaus theorem ([B2, Sect. III.3.6, Theorem 2]
or [O, Sect. 4.2, Theorem 4.16]) it follows that
{T̃ι : ι ∈ J} is an equicontinuous set of linear functionals on OC .

In order to complete the proof of (c)⇒(a) it remains to show that for
every ι ∈ J the continuous linear functional T̃ι on OC defined by (8.6)
is an extension of the distribution Tι, i.e.
(8.9) T̃ι(ψ) = Tι(ψ) for every ψ ∈ S.
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To this end, notice that if ψ ∈ C∞c and k ∈ N is so large that suppψ ∩
suppϕz = ∅ for |z| > k, then

T̃ι(ψ) =
∑
|z|≤k

Tι(ψϕz) = Tι

(
ψ
∑
|z|>k

ϕz

)
(8.10)

= Tι

(
ψ
∑
z∈Zn

ϕz

)
= Tι(ψ).

Now (8.10) implies (8.9) by the dense continuous imbeddings C∞c ↪→ S
↪→ OC . �

Proof of 1o⇔3o in Theorem 6. From the equality RD = H proved in
Theorem 4 of Section 5 it follows that if T ∈ S ′, then T ∈ RD if
and only if the singleton {T} satisfies condition (a) of Proposition 2.
Thus 1o⇔3o in Theorem 6 follows from (a)⇔(b) in Proposition 2. The
implication 3o⇒2o in Theorem 6 is obvious. The Fourier-theoretical
proof of 2o⇒3o is postponed to Section X. �

IX. The strong convolutional topology in RD. This topology is
induced from L(S,S)b via the mapping

pr : RD 3 T 7→ [T ∗]|S ∈ L(S,S),

which makes sense by Theorem 6. Thus the strong convolutional topol-
ogy is defined as the initial topology determined in RD by only one
locally convex space L(S,S)b and only one projection operator.

The locally convex space L(S,S)b has a basis of neighbourhoods of
zero of the form
{Uµ,a,A;ε : µ ∈ [0,∞[, a ∈ N0, A a bounded subset of S, ε ∈ ]0,∞[}

where

Uµ,a,A;ε =

{
K ∈ L(S,S) :

∫
Rn

(1 + |x|2)µ/2|[∂αK(ϕ)](x)| dx ≤ ε

whenever |α| ≤ a and ϕ ∈ A
}
.

Appearance of the integral in the last formula is a consequence of the
integral description of neighbourhoods of zero in S.

It follows that the strong convolutional topology in RD has a basis
of neighbourhoods of zero of the form

Vµ,a,A;ε =

{
T ∈ RD :

∫
Rn

(1 + |x|2)µ/2|(T ∗ ∂αϕ)(x)| dx ≤ ε

whenever |α| ≤ a and ϕ ∈ A
}
.
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Therefore the strong convolutional topology in RD is determined by
the system of seminorms

{pµ,α,A : µ ∈ [0,∞[, a ∈ N0, A a bounded subset of S}
where, for every T ∈ RD,

pµ,α,A(T ) = sup
ϕ∈A

∫
Rn

(1 + |x|2)µ/2|T(y)((∂αϕ)(x− y))| dx.

In Section V we proved that for every T ∈ RD and every µ ∈ [0,∞[
there is a unique Tµ ∈ (S1

µ)′ extending T . Therefore whenever T ∈ RD,
µ ∈ [0,∞[, a ∈ Nn

0 and A is a bounded subset of S, then

pµ,α,A(T ) = sup
ϕ∈A

∫
Rn
|∂αϕ(x)| · T(y)((1 + |x+ y|2)µ/2)| dx

≤
∫
Rn
|T(y)(ωα,A(x)(1 + |x+ y|2)µ/2)| dx

=

∫
Rn
|(Tµ+n+1)(y)(ωα,A(x)(1 + |x+ y|2)µ/2)| dx

=

∣∣∣∣(Tµ+n+1)(y)

(∫
Rn
ωα,A(x)(1 + |x+ y|2)µ/2 dx

)∣∣∣∣
where ωα,A(x) = supϕ∈A |∂αϕ(x)|, so that ωα,A(x) converges rapidly to
zero as x ∈ Rn and |x| → ∞.

The last equality in the above estimations follows from the fact that
its sides are both equal to lim

∑
ν

∫
Rn |(Tµ+n+1)(y)(ωα,A(xν)(1 + |xν +

y|2)µ/2)| (dx)ν . In the course of the proof of Theorem 7 we shall prove
that the integral

∫
Rn ωα,A(x)(1 + | · + x|2)µ/2 dx is convergent and rep-

resents a function belonging to S1
µ+n+1.

Theorem 7. The strong convolutional topology in RD is no finer than
the topology w̃ defined in Section V.

Proof. Similarly to the proof of Theorem 4 in Section VI, the topology
w̃ in RD is determined by the system of seminorms {qµ+λ,F : µ ∈
[0,∞[, F ∈ F1

µ+λ} where

qµ+λ,F (T ) = sup
φ∈F
|Tµ+λ(φ)| for T ∈ RD,

λ ∈ [0,∞[ is any fixed constant, and F1
µ+λ denotes the family of all

finite subsets of S1
µ+λ. For convenience in subsequent calculations we

choose λ = n+ 1. Theorem 7 will follow once it is shown that

(9.1) pµ+n+1,α,A(T ) ≤ sup
φ∈Fa,A

|Tµ+n+1(φ)|
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for a certain set Fα,A ∈ F1
µ+n+1. We shall see that (9.1) is true when

Fα,A is the singleton

Fα,A =

{∫
Rn
ωα,A(x)(1 + | · + x|2)µ/2 dx

}
.

First we shall prove that the integral
∫
Rn ωα,A(x)(1 + | · + x|2)µ/2 dx

represents a function belonging to S1
µ+n+1. This will follow once we

check that for every µ ∈ [0,∞[ and β ∈ Nn
0 the iterated integral

Iµ,β =

∫
Rn

(1 + |y|2)−(µ+n+1)/2

[∫
Rn
ωα,A(x)|∂β(y)(1 + |x+ y|2)µ/2| dx

]
dy

is finite. By Lemma 1 from Section II we have
∂β(y)(1 + |x+ y|2)µ/2 = (1 + |x+ y|2)µ/2(1 + |x+ y|2)−|β|Pβ(x+ y)

where Pβ is a polynomial on Rn of degree no greater than |β|. Con-
sequently, by the inequality 1 + |x + y|2 ≤ (1 + |y|2)(1 + |x|)2 [Hö,
Sect. II.2.1, Example 1], monotonicity of the integral, and the Fubini
theorem (see [El, Sect. IV.2.4, and Sect. V.2, Theorem 2.1]), for every
β ∈ Nn

0 there is Kβ ∈ ]0,∞[ such that

Iµ,β ≤ Kβ

∫
Rn
ωα,A(x)(1 + |x|)µ dx

∫
Rn

(1 + |x+ y|2)−(n+1)/2 dy <∞

for every µ ∈ [0,∞[.

This proves that
∫
Rn ωα,A(x)(1 + | · + x|2)µ/2 ∈ S1

µ+n+1, so that the
singleton Fα,A = {

∫
Rn ωα,A(x)(1 + | · + x|2)µ/2 dx} belongs to F1

µ+n+1,
completing the proof. �

Theorem 8. RD equipped with the strong convolutional topology is
complete.

Proof. Let Λ(S,S)b be the closed subspace of L(S,S)b consisting of all
operators in L(S,S) commuting with translations. Since S, as a Fréchet
space, is bornological, applying the argument in [O, Sect. 4.3, proof of
Theorem 4.20] one concludes that the locally convex space L(S,S)b is
complete, hence so is Λ(S,S)b. We shall prove below that the mapping
pr : RD 3 T 7→ [T ∗]|S ∈ L(S,S) is a linear homeomorphism of RD
onto Λ(S,S). Therefore RD equipped with the strong convolutional
topology is complete, because Λ(S,S)b is.

Since convolution with a distribution is an operator on sample func-
tions that commutes with translations, it follows that pr indeed maps
into Λ(S,S). It remains to prove that it is injective and maps RD onto
Λ(S,S).

To prove injectivity it is sufficient to observe that if [T ∗]|S = 0,
then T (ϕ) = [T ∗ ϕ∨](0) = 0 for every ϕ ∈ S, which means that the
distribution T is equal to zero.
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Surjectivity means that for every K ∈ Λ(S,S) there is T ∈ RD such
that K = [T ∗]|S . To prove the latter, let K ∈ Λ(S,S) and define the
slowly increasing distribution T on Rn by T (ϕ) = [K(ϕ∨)](0) for every
ϕ ∈ S. Then T ∗ ϕ = T (ϕ∨x ) = [K(ϕx)]|x=0 = K(ϕ) ∈ S for every
ϕ ∈ S, i.e. K = [T ∗]|S and T ∈ RD, by equivalence of conditions 1o

and 2o in Theorem 6. �

Another proof of Theorem 8 is by applying Theorem 9 below and
the completeness of OM (see [H, Sect. 2.9, Example 7]).

X. The strong convolutional topology in RD and Fourier trans-
formation. Since the Fourier transformation F : S → S is a linear
topological automorphism of S, it follows from [T, Sect. II.23, Proposi-
tion 23.1] that F′, the transpose of F, is a is ∗-weakly continuous linear
automorphism of S ′, so that, by [B2, Sect. IV.4.2, Proposition 6], F′ is
also a linear topological automorphism of S ′ when S ′ is equipped with
its usual strong dual topology. Moreover, since S is sequentially dense
in S ′ (equipped with the strong dual topology), from the Parseval equal-
ity for F : S → S it follows that F′ is equal to the extension of F by
continuity. For this reason in what follows we shall write F instead F′.

A function φ belonging to C∞(Rn) is called a multiplier of S if
φ · ϕ ∈ S for every ϕ ∈ S. The multipliers of S constitute a func-
tion algebra on Rn, which will be denoted by m. The strong multi-
plicational topology in m is determined by the system of seminorms
{sµ,α,B : µ ∈ [0,∞[, α ∈ Nn

0 , B a bounded subset of S} where
sµ,α,B(φ) = supϕ∈B ρ−µ,α(φ ·ϕ) for every φ ∈ m. The strong multiplica-
tional topology in m coincides with topology defined in [S, Sect. VII.5]
(see [K1, Sects. 2.1 and 2.2]).

Let OM = {φ ∈ C∞(Rn): for every α ∈ Nn
0 there is µ ∈ [0,∞[ such

that ρµ,α(φ) < ∞}. Then OM = m, the inclusion OM ⊂ m being ob-
vious. An ingenious short proof of the inclusion m ⊂ OM is presented
in [Kh, Vol. 2, Chap. CA.III]. Roughly, every φ ∈ m is a slowly in-
creasing C∞-function on Rn, so that to every φ belonging to m there
corresponds the distribution [φ] belonging to S ′, represented by the
function φ. The Fourier transformation is a linear bijective mapping
F : RD → [m]. Moreover, if T ∈ RD, and φ ∈ m is uniquely deter-
mined by F(T ) = [φ], then (F|S)(T ∗ϕ) = ϕ̂ ·φ for every ϕ ∈ S.2 Under
the strong convolutional topology in RD and strong multiplicational

2The above statement is the last of the four theorems collected in [K2, Sects. 8
and 9] concerning the algebraic linear exchange between convolution and multipli-
cation via Fourier transformation.
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topology in m, the linear bijective mapping F : RD → [m] becomes a
linear homeomorphism of locally convex spaces:

Theorem 9. The Fourier transformation is a linear homeomorphism
F : RD → m of RD equipped with the strong convolutional topology
onto m equipped with the strong multiplicational topology.

Proof. A net (Tι)ι∈J ⊂ RD converges to zero in the strong convolu-
tional topology if and only if
(10.1) limι Tι ∗ϕ = 0 in the topology of S, uniformly in ϕ ranging over

any bounded subset of S.
A net (φι)ι∈J ⊂ m converges to zero in the strong multiplicational
topology if and only if
(10.2) limι φι · ϕ = 0 in the topology of S, uniformly in ϕ ranging over

any bounded subset of S.
If Tι ∈ RD and F(Tι) = [φι] where φι ∈ m, then

(10.3) (F|S)(Tι ∗ ϕ) = φι · ϕ̂ for every ϕ ∈ S.

Theorem 9 follows once it is shown that whenever Tι ∈ RD and φι ∈ m
satisfy (10.3), then conditions (10.1) and (10.2) are equivalent. But if
Tι ∈ RD and φι ∈ m satisfy (10.3), then the equivalence of (10.1) and
(10.2) is a consequence of (10.3) and the fact that F|S is a topological
linear automorphism of S. �

Completion of the proof of Theorem 6. It remains to show that

(10.4) if T ∈ S ′ and T ∗ ϕ ∈ S for every ϕ ∈ S, then T ∈ RD.

By the remarks preceding Theorem 9, concerning the algebraic linear
exchange between convolution and multiplication via Fourier transfor-
mation, (10.4) is equivalent to the tautological statement that if φ ∈ m
and φ · ϕ ∈ S for every ϕ ∈ S, then φ ∈ m. �

XI. Coincidence of the strong convolutional topology and the
topology b̃ on bounded sets.

Proposition 3. For every set {Tι : ι ∈ J} ⊂ S ′ the following four
conditions are equivalent:
(a) for every ι ∈ J the distribution Tι can be (uniquely) extended to

a continuous linear functional T̃ι on OC, and {Tι : ι ∈ J} is an
equicontinuous set of linear functionals on OC,

(a)′ for every ι ∈ J the distribution Tι can be (uniquely) extended to
a continuous linear functional T̃ι on OC, and {Tι : ι ∈ J} is a
bounded subset in (OC)′ in any S-topology,
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(b) {[Tι ∗]|S : ι ∈ J} is an equicontinuous subset of L(S,S),
(b)′ {[Tι ∗]|S : ι ∈ J} is a bounded subset of L(S,S)b.

Proof. From Theorem 2 we know that (a)⇔(b). Moreover, S is bar-
relled as a Fréchet space, and OC is barrelled as the inductive limit of
Fréchet (and hence barrelled) spaces. Thus the equivalences (a)⇔(a)′
and (b)⇔(b)′ follow by [O, Sect. 4.2, Theorem 4.16] or by [B1, Sect.
III.3.6, Proposition 7 and Theorem 2]. �

From Theorem 3 in Section V and Theorem 4 in Section VI it follows
that

RD = {T ∈ S ′ : T has a unique extension T̃ ∈ (OC)′}

and the mapping RD 3 T 7→ T̃ ∈ (OC)′ is a linear isomorphism.
From Theorem 4 it also follows that the topology τb in (OC)′ is

determined by the system of seminorms {qµ,B : µ ∈ [0,∞[, B ∈ B1
µ}

where qµ,B(F ) = supφ∈B |F (φ)| for every F ∈ (OC)′, µ ∈ [0,∞[ and
B ∈ B1

µ, B1
µ being the family of all bounded subsets of S1

µ. Therefore
the topology b̃ in RD is determined by the system of seminorms {pµ,B :
µ ∈ [0,∞[, B ∈ B1

µ} where

pµ,B(T ) = sup
φ∈B
|T̃ (φ)| for every T ∈ RD, µ ∈ [0,∞[ and B ∈ B1

µ.

If, as in Section V, Tµ denotes the (unique) extension of T ∈ RD to
a continuous linear functional on S1

µ, then (T̃ |S1
µ
)(φ) = Tµ(φ) for every

T ∈ RD, µ ∈ [0,∞[ and φ ∈ S1
µ. Therefore

pµ,B(T ) = sup
φ∈B
|Tµ(φ)| for every T ∈ RD, µ ∈ [0,∞[ and B ∈ B1

µ.

Consequently, the set {Tι : ι ∈ J} ⊂ RD is bounded in the topology b̃
if and only if

sup
ι∈J

pµ,B(Tι) <∞ for every µ ∈ [0,∞[ and B ∈ B1
µ.

The last condition is equivalent to the boundedness of {Tι : ι ∈ J} in
the locally convex space ((OC)′, τb). By (a)′⇔(b)′, the latter is equiv-
alent to the boundedness of {Tι : ι ∈ J} ⊂ RD in the strong convolu-
tional topology. Summing up, we have proved the following

Corollary. The boundedness of a subset of RD means the same for
all the three topologies in RD: the strong convolutional topology, the
topology w̃ (intermediate) and the topology b̃.
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Now we shall prove that on bounded subsets of RD, common for
all the three topologies occurring in the Corollary, all these topologies
coincide. This is an immediate consequence of the following theorem.

Theorem 10. If (Tι)ι∈J ⊂ RD is a net such that the set {Tι : ι ∈ J}
of its terms is bounded (in the sense of the Corollary) and limι Tι = 0

in the strong dual topology of S ′, then limι Tι = 0 in the topology b̃.

A convenient technical formulation of Theorem 9 is the following

Proposition 4. Let (Tι)ι∈J be a net in RD. If

(11.1) lim
ι

sup
ϕ∈A
|Tι(ϕ)| = 0 for every bounded subset A of S

and

(11.2) sup
ι∈J, φ∈B

|T̃ι(φ)| <∞ for every µ ∈ [0,∞[ and B ∈ B1
µ,

then (Tι)ι∈J converges to zero in the topology b̃.

Proof. It is sufficient to prove that if (11.1) and (11.2) are satisfied then

(11.3) lim
ι

sup
φ∈B
|T̃ι(φ)| = 0 for every µ ∈ [0,∞[ and B ∈ B1

µ.

Indeed, (11.3) means that (T̃ι)ι∈J ⊂ (OC)′ converges to zero in the
topology τb discussed in Section IV, and hence, by Theorem 4 from
Section VI, (Tι)ι∈J ⊂ RD converges to zero in the topology b̃.

In order to prove (11.3) take non-negative functions ψ ∈ C∞c (R)
and η ∈ C∞(Rn) such that suppψ ⊂ {x ∈ Rn : |x| ≤ 2}, supp η ⊂
{x ∈ Rn : |x| ≥ 1}, and ψ(x) + η(x) = 1 for all x ∈ Rn. For r ∈ ]0,∞[,
let

ψr(x) = ψ(r−1x) and ηr(x) = η(r−1x).

Then suppψr ⊂ {x ∈ Rn : |x| ≤ 2r}, supp ηr ⊂ {x ∈ Rn : |x| ≥ r}
and ψr(x) + ηr(x) = 1 for every x ∈ Rn. The equality (11.3) will follow
once we prove that

(11.4) lim
ι

sup
φ∈B
|T̃ι(ψrφ)| = 0

for any fixed r ∈ ]0,∞[, µ ∈ [0,∞[ and B ∈ B1
µ,

and

(11.5) lim
r→∞

sup
ι∈J, φ∈B

|T̃ι(ηrφ)| = 0 whenever µ ∈ [0,∞[ and B ∈ B1
µ.

Proof of (11.4). Let µ ∈ [0,∞[ and B ∈ B1
µ. For any fixed r ∈

]0,∞[ the mapping S1
µ 3 φ 7→ ψrφ ∈ S is continuous, so that A =
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{ψrφ : φ ∈ B} is a bounded subset of S. Moreover supφ∈B |T̃ι(ψrφ)| =
supϕ∈A |T̃ι(ϕ)|. Hence (11.1) implies (11.4).

Proof of (11.5). For every φ ∈ OC let

s(φ) = sup
ι∈J
|T̃ι(φ)|.

Then s is a seminorm on OC , and in terms of s condition (11.2) can be
equivalently written as

(11.6) sup
φ∈B

s(φ) <∞ whenever µ ∈ [0,∞[ and B ∈ B1
µ.

This means that for every µ ∈ [0,∞[ the seminorm s is bounded on S1
µ.

In terms of s condition (11.5) can be written as

(11.7) lim
r→∞

sup
φ∈B

s(ηrφ) = 0 whenever µ ∈ [0,∞[ and B ∈ B1
µ.

Since for every µ ∈ [0,∞[ the space S1
µ is bornological as a metriz-

able space, it follows that the restriction of the seminorm s to S1
µ is

continuous in the topology of S1
µ (see [Y, Sect. I.7, Theorem 2]).

To prove (11.7) we shall perform some estimations. As before, for
every µ ∈ [0,∞[ denote by B1

µ the family of all bounded subsets of the
Fréchet space S1

µ. From the definition of the functions ηr it follows that

(11.8) {ηr : r ∈ [r0,∞[} is a bounded subset of C∞b (Rn)

for every r0 ∈ ]0,∞[.

From Theorem 1 in Section II, and from (11.8), it follows that whenever

µ ∈ [0,∞[, B ∈ B1
µ, λ ∈ ]0,∞[, r0 ∈ ]0,∞[ and r ∈ [r0,∞[,

then C := {(1 + | · |2)λ/2φ : φ ∈ B} ∈ B1
µ+λ, so that

(11.9) if φ ∈ B ∈ B1
µ, then ψ = (1 + | · |2)λ/2φ ∈ C ∈ B1

µ+λ.

We shall prove that if

ζ = ζλ,r0,r =
(1 + | · |2)λ/2

(1 + r20)
−λ/2 ηrψ,

then

(11.10) ζ ∈ D ∈ B1
µ+λ.

To this end, notice that the positive function

ρ(x) =
(1 + |x|2)−λ/2

(1 + r20)
−λ/2 , x ∈ Rn,
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takes values from ]0, 1] on supp ηr, and by Lemma 1 from Section II
one has

∂α(1 + |x|2)−λ/2 = (1 + |x|2)−λ/2ξα(x) for every x ∈ Rn and α ∈ Nn
0

where ξα(x) = (1 + |x|2)−|α|Pα(x) ∈ Cb(Rn). Therefore

(11.11) πµ+λ,α(ζ) =

∫
Rn

(1 + |x|2)−(µ+λ)/2|∂αζ(x)| dx

≤
∫
Rn

(1 + |x|2)−(µ+λ)/2ρ(x)
∑

β+γ+δ=α

α!

β!γ!δ!
|ξβ(x)∂γηr(x)∂δψ(x)| dx

≤
∫
Rn

(1 + |x|2)−(µ+λ)/2
∑

β+γ+δ=α

α!

β!γ!δ!
|ξβ(x)∂γηr(x)∂δψ(x)| dx

≤ Lα

∫
Rn

(1 + |x|2)−(µ+λ)/2
∑
|ϑ|≤|α|

|∂ϑψ(x)| dx ≤ Kα,C <∞

where the last two inequalities follow from the facts that ξβ ∈ Cb(Rn),
(11.8) holds, and ψ ∈ C ∈ B1

µ+λ. The estimate (11.11) proves (11.10).
Now we are ready to complete the proof of (11.7). If φ ∈ B ∈ B1

µ,
then, by (11.9) and (11.10),

s(ηrφ) = s((1 + | · |2)−λ/2ηrψ) = (1 + r20)
−λ/2s(ζ) ≤ (1 + r20)

−λ/2KD

where KD < ∞ because the seminorm s is bounded on D ∈ B1
µ+λ.

Thus
s(ηrφ) ≤ (1 + r20)

−λ/2KD,

whence (11.7) follows by letting r0 →∞. �
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